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Abstract: We report on the design and characterization of the building blocks of a  

single-chip wireless chemical sensor fabricated with a commercial complementary  

metal-oxide-silicon (CMOS) technology, which includes two types of transducers for 

impedimetric measurements (4-electrode array and two interdigitated electrodes), 

instrumentation circuits, and a metal coil and circuits for inductive power and data transfer. 

The electrodes have been formed with a polycrystalline silicon layer of the technology by a 

simple post-process that does not require additional deposition or lithography steps, but just 

etching steps. A linear response to both conductivity and permittivity of solutions has been 

obtained. Wireless communication of the sensor chip with a readout unit has been 

demonstrated. The design of the chip was prepared for individual block characterization and 

not for full system characterization. The integration of chemical transducers within 

monolithic wireless platforms will lead to smaller, cheaper, and more reliable chemical 

microsensors, and will open up the door to numerous new applications where liquid 

mediums that are enclosed in sealed receptacles have to be measured. 
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1. Introduction 

 

The combination of wireless readout and single-chip integration features is particularly attractive 

for chemical and biochemical sensors fabricated using microtechnologies. Such single-chip systems 

will not require wire-bond or any other type of electrical connection to external components or circuits, 

thereby enabling full packaging at the wafer level. Packaging has always been one of the most critical 

aspects of chemical microsensors due to the difficulty in reliably protecting their electrical connections 

while exposing part of the chip to the liquid environments they are meant to measure. Hence, avoiding 

such electrical connections should be very advantageous in terms of cost and reliability. On the other 

hand, their small size and wireless readout capability should be very convenient for many applications 

requiring the measurement of liquid mediums enclosed in sealed receptacles. Single-chip wireless 

chemical sensors based on passive resonant structures have been reported in the past [1,2]. These 

sensors can be suitable for the specific applications they have been designed for. However, a higher 

design flexibility and sensor smartness can be achieved using standard microelectronic fabrication 

technologies, e.g., complementary metal-oxide-silicon (CMOS), for their implementation. 

Measurement and communication circuits are readily implemented with CMOS technologies, but 

integration of the chemical transducers and the power and data transfer antenna is more challenging. 

Different strategies have been used for the integration of these components. For example, electrodes 

for amperometric [3] and impedimetric [4] sensors have been typically integrated by noble metal 

deposition and lift-off process. High quality factor coils for power and data transmission in monolithic 

wireless systems have been integrated by electrodeposition of a thick copper layer in a photoresist 

mould and subsequent seed-layer etching [5,6]. However, the more complex the post-process of an 

integrated system is, the more difficult and expensive to mass produce it. 

Here we present the design, fabrication and characterization of a single chip wireless chemical 

sensor based on a commercial 0.35 µm CMOS technology. The focus of our approach has been to keep 

the post-processing simple, with no additional deposition or lithography steps. The chip includes two 

types of impedimetric transducers, a 4-electrode array and a pair of interdigitated electrodes, for the 

implementation of chemical sensors. Impedimetric transducers are easy to integrate because they do 

not require a reference electrode, unlike potentiometric or amperometric ones. By measurement of 

changes in conductivity or permittivity of a solution, this transducers have been used to acquire 

chemical parameters, like pCO2 [7], ethanol content in fuel [8], and hematocrit [9]. Biosensors have 

been obtained by combining impedimetric transducers with enzymes [10-12], and antibodies [13,14]. 

They have also been combined with selective membranes for the detection of ions such us calcium 

[15] and pH [16]. Therefore, the integration of impedimetric transducers with their associated 

instrumentation, inductive powering, and data transmission circuits will enable the development of a 

wide variety of single-chip, wafer-level encapsulated wireless chemical sensors. 

 

2. Design and Fabrication 

 

The block diagram of the system is depicted in Figure 1a. The external readout unit transfers power 

and control data to the chip by inductive telemetry, that is, by generating an alternating magnetic field 

with a loop antenna, which in turn produces an alternating electromotive force at the integrated coil. 
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The received voltage is rectified and regulated to generate a stable voltage supply for the integrated 

circuits. The impedimetric transducers are excited and measured with analog signal processing circuits, 

and the resulting impedance value is converted to the digital domain with a simple Pulse Width 

Modulation technique and transmitted back to the readout unit by load modulation. The process of 

measurement and data transmission is controlled by a digital block. The data to program the digital 

block is transferred from the external readout unit by amplitude modulation of the power signal. 

Figure 1. (a) Block diagram of the wireless chemical sensor measuring in the solution of a 

sealed container. (b) Distribution of blocks and components on the actual chip design 

(represented as the superposition of fabrication masks).  

(a)      (b) 

    

 

The 3.5 × 3.5 mm chip (Figure 1b) containing all the blocks and components shown in Figure 1a 

diagram was fabricated with a commercial CMOS technology (AMS035HV4M, Austria 

Microsystems) and post-processed in our laboratory. Various blocks and components of the system 

were made accessible through connection pads to allow their individual characterization. 

 

2.1. Impedimetric transducers 

 

The electrodes for the impedimetric transducers have been formed in polycrystalline silicon 

(polysilicon). One or two layers of this material are typically used in CMOS technologies for the 

transistor gate and capacitor electrodes. Polysilicon has the advantage over the metal interconnection 

layers (made of aluminum or copper) that does not degrade in contact with aqueous solution. A 

passivating thin layer (~3 nm) of native oxide grows spontaneously and stops further corrosion of the 

material. This thin layer of native oxide prevents using faradic processes for chemical detection. 

However it does not prevent their use in measuring conductivity and permittivity of the media between 

electrodes [11,17]. The impedance of the electrode-solution interface in this type of electrodes has 

been shown to behave as constant phase element [11]: 
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The modulus of this impedance decreases with increasing frequency, so that above a given 

frequency its value is small compared to the impedances associated with the solution.  

As already mentioned, two types of impedimetric transducers are tested: a 4-electrode array and a 

pair of interdigitated electrodes. The 4-electrode design is suitable for precise conductometric 

measurements in a wide range of conductivities. Injection of current through the external electrodes 

and measurement of voltage across the internal ones allows measurement of the conductance without 

interference of the interface impedance. However, due to a much higher capacitance through the 

silicon substrate than through the solution, this 4-electrode transducer is not suitable for measurement 

of permittivity. On the other hand, interdigitated electrodes can measure both conductivity and 

permittivity. In this case the impedance of the electrodes is in series with the impedance being 

measured, and thus, they are not suitable for measurements of very high conductivity media, which 

yields lower impedance than the electrodes themselves. Due to the short penetration depth of the 

currents generated by these electrodes, they are especially suited for the measurement of thin 

membranes and phenomena occurring close to the surface [13,14]. 

The area of the electrodes for both 4-electrode and interdigitated designs was chosen large enough 

so as to allow measurement of their impedance in a wide range of solution conductivities with 

reasonable values of injected currents and measured voltages within the 3.3 V of the voltage supply. 

Finite Element Analysis (FEA) simulations (Comsol MultiphysicsTM) were used to estimate the values 

of the impedance for different geometries and solution parameters. Each electrode of the 4-electrode 

array is a 500 × 100 µm2 rectangle. Distance between external and internal electrodes is 100 µm, and 

between internal electrodes is 200 µm. The interdigitated electrodes consist of 70 fingers spaced 3 µm, 

each having a length of 400 µm and a width of 3 µm. Figure 2 shows the distribution of electric 

potential at the 4-electrode array when a current of 10 µA is injected through one external electrode 

and collected at the other external electrode in a solution with conductivity of 1 mS/cm. The  

peak-to-peak voltage in this case is 580 mV, which is compatible with the available voltage supply. 

However, for a 100 µS/cm solution the peak-to-peak voltage would be 5.8 V, and hence a smaller 

excitation current would be necessary (e.g., 1 µA). The total resistance between external electrodes  

is 29 kΩ for the 1 mS/cm. The transresistance of the array, defined as: 

rm  Vi/Ie        (2) 

where Vi is the voltage amplitude at the internal electrodes and Ie is the current amplitude at the 

external electrodes, is 6.2 kΩ. This yields a cell constant of 6.2 cm−1. The resistance between the 

interdigitated electrodes for a 1 mS/cm aqueous solution is 1.61 kΩ as calculated from the simulations, 

which results in a cell constant of 1.61 cm−1. This cell constant can also be used to estimate the 

sensitivity of the electrodes to changes in permittivity [11]: 

k  R/ = /C       (3) 

where R is the measured resistance,  is the resistivity,  is the permittivity and C is the  

measured capacitance.   
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Figure 2. Distribution of electric potential in the 4-electrode array for a current of 10 µA 

through the external electrodes and a 1 mS/cm solution at the surface (a) and at a  

cross-section (b).  

(a)                                                                  (b) 

       
 

The post-process steps are performed at the chip level. However, wafer-level processing would be 

identical. The post-process to form the 4-electrode array in the CMOS chip consists on just one plasma 

etch (Figure 3a). The electrodes are defined in the second polysilicon layer of the technology (the one 

used in polysilicon-polysilicon capacitors). The area of the electrode to be exposed to the solution is 

defined in the pad layer. This layer indicates the areas of passivation to be etched and is typically used 

to open the metal area of the connection pads. Since there is no metal on top of the polysilicon 

electrodes, the etching of the passivation during the CMOS fabrication will also etch some of the 

underlying intermetal dielectric layers. The remaining silicon oxide layers (total thickness ~5 µm) are 

removed in the post-process with a selective CHF3-based Reactive Ion Etch (RIE) step. The 

passivation in the AMS technology used includes a 4.5 µm-thick layer of polyimide that protect the 

rest of the chip during the RIE etch. Figure 3b show a scanning electron microscope (SEM) image of 

the 4-electrode array after post-processing.  

The post-process to form the interdigitated electrodes is slightly different. The area of the 

interdigitated electrodes to be exposed to the solution is again defined in the pad layer. In this case, a 

line of the first metal layer has been included between the polysilicon fingers as an etch-stop to avoid 

exposing the silicon substrate by over-etching of the SiO2 layers. Once the SiO2 on top of the 

electrodes has been removed with the RIE step, an additional etch is necessary to remove the metal 

line (Figure 2c). During the metal etch, carried out in “piranha” solution (70% (v/v) H2SO4, 30% (v/v) 

H2O2) for 5 min, the connection pad areas are protected with a teflon piece pressed against the chip. It 

is important to note that the present prototype has connection pads for the individual test of the 

different blocks, but a real design would not need any pads, and hence, would not have any  

other metal area exposed to this etch. Figure 2d shows a SEM image of the interdigitated electrodes  

after post-processing. 
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Figure 3. Post-process of the CMOS chip: (a) A simple RIE etch is used to expose the 

large polysilicon electrodes. (b) SEM image of the 4-electrode array. (c) To expose the 

interdigitated electrodes, a metal layer is used to protect the silicon oxide between fingers 

during the RIE etch. (d) SEM image of the interdigitated electrodes. 

(a)                                                                             (c) 

            

(b)                                                                               (d) 
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2.2. Measurement circuit 

 

The block diagram of the measurement circuit is included in Figure 1a. The details of the circuit 

design are described elsewhere [18]. In brief, two sinusoidal current generators with 180° phase 

difference inject a current through the external electrodes, which produces a voltage across the internal 

electrodes with amplitude proportional to the impedance. The real and imaginary components of the 

impedance are extracted by coherent detection using a reference signal in phase and in quadrature with 

the injected current, respectively. The symmetric injection of currents through the external electrodes 

allows maintaining one internal electrode at a virtual ground and measuring a DC free differential 

voltage at the other internal electrode, thus avoiding the use of large capacitance filters that would be 

difficult to integrate. The sinusoidal current generators are implemented with a direct digital synthesis 

technique, which is low-power and allows fine tuning of the phase. The circuit can be used with both 

the 4-electrode array and the interdigitated electrodes. When measuring interdigitated electrodes each 

electrode is connected to one current generator and one voltage sensing input. The digital block can be 

externally programmed to run the measurement with different parameters, including 4 current values 

(0.5 µA, 1 µA, 5 µA and 10 µA) yielding different measurement ranges, phase error compensation 

with 0.3° resolution, frequency selection in the 10–100 kHz range, and selection of the real or 

imaginary component. 

 

2.3. Inductive telemetry 

 

Power and data for the integrated system are transferred wirelessly by classical telemetry at  

13.56 MHz, which is in an Industrial, Scientific, and Medical (ISM) radio band. This frequency is 

suitable for transmission through aqueous solutions without significant losses by induced eddy 

currents. In the present system the receiver coil is monolithically integrated, and therefore the readout 

distance is limited to a few millimeters [19]. The coil is implemented with the metal layers of the 

CMOS technology, which avoids the requirement of additional post-process but limits the quality 

factor to about 1. With such quality factor it is not possible to take advantage of the resonance 

phenomena, and therefore, the coil is directly connected to the rectifier without tuning capacitor. The 

number of turns was maximized to obtain maximum voltage from the alternating magnetic field, while 

keeping self-resonant frequency higher than the working frequency. The coil was implemented using 

three of the metal layers available in the CMOS technology, resulting in an equivalent thickness of  

4.1 µm. The coil is a square spiral having 32 turns, internal diameter of 3 mm and external diameter of 

3.5 mm, yielding a theoretical inductance and resistance of 7.68 µH and 480 Ω, respectively. 

Underneath the coil, a large (2.3 nF) poly-poly capacitor for energy storage at the regulator output was 

implemented. 

The readout coil is implemented as a square copper spiral in a printed circuit board, having 9 turns, 

external diameter of 20 mm, and internal diameter of 2 mm. A load modulation technique is used for 

the transmission of data from the sensor chip to the readout unit. The analog impedance values are 

converted to the digital domain with a simple pulse width modulation (PWM) technique. 
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3. Results and Discussion 

 

Figure 4a shows the impedance spectra measured with the 4-electrode array connected to the 

impedance analyzer in aqueous solutions of different conductivity. The Bode plot shows a wide 

constant modulus region of approximately two frequency decades with phase close to 0°, which is 

associated to the resistivity of the solution. Figure 4b shows the real part of the impedance measured 

with the 4-electrode array at 13.0 kHz using the integrated circuit for the impedance measurement.  

Figure 4. Characterization results of the 4-electrode array: (a) Impedance spectra  

for 0.97 mS/cm (green), 9.10 mS/cm (blue) and 96.7 mS/cm (red) as measured with an 

impedance analyzer. (b) Conductance at the electrodes for different solution conductivities 

measured with the integrated circuit using two different excitation currents (circles) and 

calculated response from simulations (dashed line). 

(a) 

 
(b) 

 



Sensors 2010, 10              

 

 

4079

Two different measurement ranges (i.e. excitation currents) were used, so that a total measurement 

range of two orders of magnitude could be achieved. The conductance shown in Figure 4b was 

calculated as the ratio of measured voltage to excitation current, which is the inverse of the 

transresistance defined in Equation (2). The estimated response calculated by finite element 

simulations is also shown in the figure. The slight disagreement with the measured values is probably 

related to some degree of attenuation at the filters of the integrated coherent detection circuit.  

The interdigitated electrodes exhibit a linear response to conductivity and permittivity as shown in 

Figures 5a and 5b, respectively. The response is obtained from the corresponding components of the 

equivalent circuit fitted to the impedance spectra as described elsewhere [11]. The linear response to 

permittivity does not cross the origin due to the parasitic capacitance of the electrodes with the silicon 

substrate. The cell constant from conductivity measurements is 1.72 cm−1 and from permittivity 

measurements is 1.76 cm−1, in good agreement with the values calculated from simulations  

(1.61 cm−1). 

Figure 5. Characterization results of the interdigitated electrodes: (a) Measured 

conductance for different solution conductivities. (b) Measured capacitance for different 

solution permittivities. Dashed lines show the response estimated from FEA simulations.  

(a)                                                                                  (b) 

      

 

Until recently, polysilicon had not been considered as a suitable material for electrodes in 

electrochemical sensors due to its rapid oxidation in wet environments. However, in impedimetric 

measurements of the electric properties of solutions, which are not affected by the electrode-solution 

interface phenomena, the use of polysilicon electrodes has been demonstrated to be suitable for many 

applications [11,13,14,17]. Here, for the first time, such electrodes have been fabricated with a 

commercial CMOS technology, and its suitability for impedimetric measurements has been confirmed 

with the results presented above. 

The different components and blocks involved in the wireless transfer of power and data to and 

from the sensor chip were also tested individually. The integrated coil parameters were measured with 

the impedance analyzer, yielding an inductance of 6.81 µH, a series resistance of 628 , and a 

corresponding Q of 1.12, in good agreement with the calculated values. With the readout coil at a 

distance of 3 mm, the integrated coil received a power of 5 mW. This power is sufficient to supply the 
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system during the programming, measuring, and back telemetry stages. The transfer of measurement 

parameters was performed by amplitude shift keying (ASK) modulation with a class E amplifier 

controlled by a field programmable gate array (FPGA). The measurement parameters were 

successfully transferred to the chip.  

At the same distance (3 mm) a load modulation test was performed to validate the back telemetry 

system. A modulation index of 3.5% was achieved, which is more than necessary for a correct  

data reception. 

 

4. Experimental Section 

 

The different components of the wireless sensor were characterized separately by attaching the chip 

to a printed circuit board (PCB) and connecting the test pads with wire-bonds. The pads and wires 

were protected with Epoteck H77 epoxy resin. In this way, the impedimetric transducers could be 

tested while immersed in different solutions. Solutions with conductivities in the range from  

0.1 mS/cm to 10 mS/cm were prepared by diluting a concentrated KCl solution. The conductivity was 

measured with a CRISON µCM 2202 conductimeter. Solvents with different permittivity, including 

water (r = 80.1), acetonitrile (r = 36.6), ethanol (r = 25.3), isopropanol (r = 21.0) and hexane  

(r = 1.89), were used to test the response of the interdigitated electrodes to permittivity. All chemicals 

are of reagent grade. The integrated electrodes were measured both with a commercial impedance 

analyzer (SI 1260 SOLARTRON) using an alternating excitation voltage amplitude of 10 mV, and 

with the integrated impedance measurement circuit included in the same chip using the predefined 

excitation currents mentioned in the previous section. 

 

5. Conclusions 

 

The results presented here demonstrate that polysilicon impedimetric transducers can be fabricated 

with a commercial CMOS technology and they yield linear responses to variations of conductivity and 

permittivity. By adding proper recognition components, implementation of single-chip chemical 

sensors and biosensors is possible. Integration of the transducers with circuits and components for 

wireless powering and data transfer has also been demonstrated. The maximum working distance for 

the present prototype is 3 mm, which is enough for many “through the wall” measurements. A distance 

in the order of centimeters could be achieved by adding an external independent resonator [20],  

which would open up the door to other applications like “lab-on-a-pill” devices for gastric disease  

monitoring [21], and small animal testing with implantable sensors [22]. The present chip design was 

intended to demonstrate the feasibility of the transducer integration and the wireless readout by 

individual characterization of the different blocks and components necessary to form the system. The 

characterization results show a proper functioning of each individual block. In the future, a fully 

interconnected version of the wireless chemical sensor chip will be designed and its use in real 

applications demonstrated. 
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