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Abstract

Recent research has demonstrated the feasibility of combining functional near-infrared spectroscopy (fNIRS) and graph
theory approaches to explore the topological attributes of human brain networks. However, the test-retest (TRT) reliability
of the application of graph metrics to these networks remains to be elucidated. Here, we used resting-state fNIRS and a
graph-theoretical approach to systematically address TRT reliability as it applies to various features of human brain
networks, including functional connectivity, global network metrics and regional nodal centrality metrics. Eighteen subjects
participated in two resting-state fNIRS scan sessions held ,20 min apart. Functional brain networks were constructed for
each subject by computing temporal correlations on three types of hemoglobin concentration information (HbO, HbR, and
HbT). This was followed by a graph-theoretical analysis, and then an intraclass correlation coefficient (ICC) was further
applied to quantify the TRT reliability of each network metric. We observed that a large proportion of resting-state
functional connections (,90%) exhibited good reliability (0.6, ICC ,0.74). For global and nodal measures, reliability was
generally threshold-sensitive and varied among both network metrics and hemoglobin concentration signals. Specifically,
the majority of global metrics exhibited fair to excellent reliability, with notably higher ICC values for the clustering
coefficient (HbO: 0.76; HbR: 0.78; HbT: 0.53) and global efficiency (HbO: 0.76; HbR: 0.70; HbT: 0.78). Similarly, both nodal
degree and efficiency measures also showed fair to excellent reliability across nodes (degree: 0.52,0.84; efficiency:
0.50,0.84); reliability was concordant across HbO, HbR and HbT and was significantly higher than that of nodal
betweenness (0.28,0.68). Together, our results suggest that most graph-theoretical network metrics derived from fNIRS are
TRT reliable and can be used effectively for brain network research. This study also provides important guidance on the
choice of network metrics of interest for future applied research in developmental and clinical neuroscience.
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Introduction

The human brain is a highly complex system that can be

represented as a structurally or functionally interconnected

network that assures rapid segregation and integration of

information processing. Considerable progress has recently been

made in describing the topological organization of human whole-

brain networks using neuroimaging data and graph-theoretical

approaches [1,2,3,4]. A wealth of research has demonstrated that

human structural or functional brain networks can be constructed

using a variety of non-invasive neuroimaging techniques, including

structural MRI [5], diffusion MRI [6,7,8], blood oxygenation level

dependent functional MRI (BOLD-fMRI) [9,10,11], and func-

tional near-infrared spectroscopy (fNIRS) [12]. Graph theory

analysis has further revealed that these brain networks exhibit

many non-random topological properties, such as small-world

efficiency, modularity and highly connected hubs. These quanti-

tative topological properties have been found to change with

normal development, aging and disease conditions (for reviews, see

[10,13,14,15,16]).

Compared to traditional functional imaging techniques such as

BOLD-fMRI, fNIRS is a newly developed but promising

neuroimaging technology that uses light in the near-infrared

spectrum (670–900 nm) to noninvasively monitor cortical hemo-

dynamic variations induced by neural activation [17,18]. The

primary advantages of fNIRS over other neuroimaging techniques

include portability, effective cost, ecological validity and higher

temporal resolution. One of the main contributions of fNIRS

research is the detection of resting-state functional connectivity

(RSFC), which characterizes the synchronization of spontaneous

neural activity between spatially remote brain regions

[19,20,21,22,23,24,25]. Very recently, we proposed resting-state

fNIRS (R-fNIRS) and graph-theoretical approaches to explore the

topological architecture of human whole-brain functional net-

works [12]. In the R-fNIRS based network analysis framework,

the channels are considered vertices, and RSFCs between
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channels are considered edges. Using this approach, we previously

demonstrated that R-fNIRS can effectively characterize the

topological attributes of human brain networks, such as small-

world efficiency, modularity and highly connected hubs [12]. The

results of this study were also consistent with recent findings from

BOLD-fMRI research, suggesting the feasibility and validity of

combining R-fNIRS and graph theory analysis to identify the

functional properties of human brain networks. However, it still

remains largely unknown whether the topological brain network

measures derived from R-fNIRS data are repeatable or test-retest

(TRT) reliable. If these metrics can be consistently replicated, they

have the potential to be adopted as biomarkers in further cognitive

neuroscience and clinical research. This could prove important in

longitudinal studies of brain changes and in research using

repeated measurements in the context of normal development or

even pharmacological treatment. Consequently, it is an important

and necessary task to explore the TRT reliability of functional

brain networks derived from human R-fNIRS data.

In the present study, we aimed to provide a comprehensive

assessment of the TRT reliability of graph metrics for R-fNIRS

brain networks. To this end, we collected human R-fNIRS data in

a group of healthy young adults over two sessions with a 20-minute

interval between sessions. For each participant, we constructed

whole-brain functional networks by computing temporal correla-

tions between the time series of pairs of channels based on

hemoglobin concentration. We further analyzed three sets of

network properties (functional connectivity, global network metrics

and regional nodal metrics) using graph-theoretical approaches

[12]. Finally, intraclass correlation coefficients (ICC) were calcu-

lated to assess the TRT reliability of these network metrics.

Materials and Methods

Subjects and protocol
Twenty-one healthy right-handed subjects (mean age:

24.5 years; range: 21–27 years; 17 male) participated in this

study. All subjects were college students recruited from Beijing

Normal University. The study was approved by the Review Board

at the State Key Laboratory of Cognitive Neuroscience and

Learning, Beijing Normal University, and written informed

consent was obtained from each subject prior to the experiment.

Each participant underwent two eleven-minute sessions of resting-

state fNIRS scanning separated by an interval of twenty minutes.

Participants were instructed to remain still during scanning and to

keep their eyes closed without falling asleep. During the rest

interval, participants were instructed to sit still while wearing the

probe holder, but they were allowed slight body and head motion.

The signal quality from all measurement channels will be

separately checked before the performance of the second session

for each participant. If the signal at one or several channel(s)

showed low signal-to-noise ratio, the whole probe holder or the

specific source-detector pair determining the defective measure-

ment channel will be readjusted.

Data acquisition and preprocessing
The data were acquired using a continuous wave (CW) near-

infrared optical imaging system (CW6, TechEn Inc., MA, USA)

equipped with 12 laser sources and 24 detectors designed to cover

almost the entire head, including the frontal, temporal, parietal,

and occipital lobes. The probe arrays allowed for 46 different

measurement channels, with 3.2 cm of source-detector separation

(Fig. 1). The positioning of the probes was based on the

international 10–20 system, and the positions were measured at

each scanning session to establish consistent placement. Specifi-

cally, two detectors around channels 17 and 18 were placed in T3

and T4, and the midpoint of the two detectors was localized in Cz.

The system generated two wavelengths of near-infrared light (690

and 830 nm) and measured changes in the concentrations of

oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) based on the

modified Beer-Lambert law [26]. The sum of the HbO and HbR

signals was defined as the total hemoglobin (HbT) concentration.

Considering that the spontaneous fluctuations of each concentra-

tion data usually include various non-neural signals (e.g.,

respiratory and cardiac noises), we thus adopted a band-pass

filtering with cutoff frequencies of 0.009 and 0.08 Hz to reduce the

effects of these noises [23,27,28], which was similar to previous

resting-state fMRI study [29]. Three subjects were excluded due to

poor contact between the probe and scalp, leaving 18 subjects on

which further analysis was performed. To obtain a stable signal,

the first minute of each hemodynamic time series was discarded.

Figure 1. Schematic of fNIRS channel localization. (A) and (C) display the left and right view of measurement channels on an anatomical brain
image. (B) The arrangement of the whole-head 46 measurement channels on a brain template. Note that the red and purple solid circles represent
sources and detectors, respectively.
doi:10.1371/journal.pone.0072425.g001
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The sampling rate for the optical signal was set to 25 Hz, which

resulted in 15,000 sample points for each 10-min dataset for each

subject.

Network construction
In a previous study, we developed a procedure to construct

whole-brain functional networks based on R-fNIRS data [12].

Briefly, RSFC was calculated with Pearson correlation analysis

between the time series of every pair of nodes, where nodes were

measurement channels. This resulted in a {46646} correlation

matrix for each participant at each session. The correlation matrix

was then thresholded into a binary matrix that described the

topological organization of the functional networks. As in our

previous study [12], we chose sparsity (S) as a threshold measure,

and sparsity was defined as the number of actual connections

divided by the maximum possible number of connections in the

network, ranging from 0.01 to 0.99 at an interval of 0.01.

Network analysis
We explored two sets of topological measures for the brain

networks: 1) global network metrics: small-world properties

(clustering coefficient Cp, characteristic path length Lp, normalized

clustering coefficient c, normalized characteristic path length l,

and small-world s), efficiency parameters (local efficiency Eloc and

global efficiency Eglob), modularity Q, hierarchy b, and assortativity

r; and 2) nodal characteristics: nodal degree, nodal efficiency, and

nodal betweenness. For each subject at each sparsity level, we

computed the entire network metrics based on an in-house

Figure 2. Demonstration of R-fNIRS brain network reliability analysis.
doi:10.1371/journal.pone.0072425.g002
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GRETNA package. These metrics are described in further detail

below.

Small-world. Small-world measures of a network (clustering

coefficient, Cp, and characteristic path length, Lp) were originally

proposed by Watts and Strogatz (1998). Briefly, Cp is the average of

clustering coefficients over all nodes in a network, where the

clustering coefficient of a node v is defined as the number of existing

connections among the neighbors of the node divided by all their

possible connections. Cp quantifies the extent of local cliquishness of

a network [30,31]. Lp is defined as the average of the shortest path

lengths (i.e., the minimum number of edges that link any two nodes

of the network) between any pair of nodes in the network. It

quantifies the capability of parallel information propagation within a

network [32]. Mathematically, a real network would be considered

small-world if it meets the following requirements: c = Cp
real/Cp

rand

. 1 and l = Lp
real/Lp

rand & 1 [31], where Cp
rand and Lp

rand are the

mean clustering coefficient and characteristic path length of

matched random networks that preserve the same number of nodes,

edges, and degree distribution as the real network [33]. The two

metrics can also be summarized into a simple quantitative small-

worldness index s: s = c/l .1 [34].

Efficiency. The global efficiency of a network is defined as

the average inverse shortest path length. Correspondingly, local

efficiency is defined as the efficiency of the local sub-group of a

node v that comprises only the direct neighbors of node v. Global

and local efficiency measure the ability of a network to transmit

information at the global and local level, respectively [32].

Modularity. The modularity measure Q is defined by the

following equation [35]:

Q~
XN

m~1
½lm
L

{(
dm

2L
)2� ,

ð1Þ

where N is the number of modules, L is the total number of links in

the network, lm is the total number of links between nodes in

module m, and dm is the sum of the degrees of the nodes in module

Figure 3. Spatial similarity of RSFC maps. Group-level RSFC maps for session 1 and session 2 and their Pearson correlation are displayed in the
first to third columns. Figures (A) to (C) correspond to the RSFC data derived from HbO, HbR, and HbT, respectively. High similarity between sessions
was observed in both the qualitative visual inspection and quantitative correlational analysis.
doi:10.1371/journal.pone.0072425.g003
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m. It has been shown that connections are usually denser within

modules than between them.

Hierarchy. In a hierarchical network, nodes with a high

degree show a lower clustering coefficient, while nodes with a low

degree show a higher clustering coefficient, reflecting the top-down

organization of the network. This ratio can be quantified by [36]:

Cp&k{b : ð2Þ

The coefficient b was estimated by fitting a linear regression line

to the plot of log(Cp) versus log(k).

Assortativity. Assortativity is a measure of how often nodes

are linked to other nodes with a similar degree. Accordingly, it is

defined as the correlation between the degree of a node and the

mean degree of its direct neighbors [37].

Nodal degree, efficiency, and betweenness. The degree

of a node v is defined as the number of edges linked directly to the

node. The efficiency of a node v is the inverse of the harmonic

mean of the minimum path length between the node v and all

other nodes in the network [30,38]. Nodal efficiency is a measure

of local connectivity. The betweenness of a node v is defined as the

number of shortest paths between any two nodes that run through

node v [39]. Nodal betweenness quantifies how important a node

is within a network. It is defined as:

Nbc vð Þ~
P

m=v=n
dmn(v)

dmn
ð3Þ

where dmn is the total number of shortest paths from node m to

node n, anddmn(v) is the number of shortest paths from node m to

node n that pass through node v. A node with a high Nbc indicates a

greater impact of the node on information flow across the whole

network.

Test-retest reliability analysis
The intraclass correlation coefficient was used to evaluate the

test–retest reliability of R-fNIRS brain networks [40]. To

comprehensively investigate the test–retest reliability of the graph

theory-derived R-fNIRS network, we analyzed the reliability of R-

fNIRS network properties from three perspectives: resting-state

functional connectivity (RSFC), global network metrics and

regional nodal centrality metrics. For each metric, the individual

RSFC or network parameters values of all subjects in both two

sessions were first merged into one 1862 matrix, with rows

corresponding to participants and columns corresponding to

repeated measurements in two sessions. Notably, for RSFC, the

1862 matrix represents the connection strength between any two

nodes across two sessions; for network metrics, each 1862 matrix

represents the global or nodal parameter values across two

sessions. Using a one-way ANOVA on each matrix, with random

participant effects, we split the total variance of each network

property into between-participant (MSb) and within-participant

(MSw) variance. Then, the ICC values were calculated according to

the following equation [40]:

ICC~
MSb{MSw

MSbz(k{1)MSw
ð4Þ

where k is the number of repeated observations per participant,

MSb is the between-participant variance and MSw is the within-

participant variance. All reliability indices discussed above were

evaluated according to the criteria proposed by Sampat and Winer

et al. [41,42], where an ICC value from 0 to 0.25 indicates poor

reliability; 0.25 to 0.4 low reliability; 0.4 to 0.6 fair reliability; 0.6

to 0.75 good reliability; and 0.75 to 1.0 excellent reliability.

Notably, for one metric, if the within-participant variance is larger

than the between-participant variance, it will lead to a negative

ICC. Theoretically, such a situation is impossible [43], and the

reasons for negative values is even currently unclear [44]. Thus,

the negative ICC will be set to zero (not reliable), as generally

suggested [24,45]. Because we constructed the network over a

continuous sparsity threshold range, the ICC value is a function of

the threshold. To further conduct a threshold-independent

reliability assessment, we also calculated the integral or area

under the curve (AUC) of each network metric [46] to be used as

the corresponding ICC scalar of network evaluation. Figure 2

displays a flowchart of the reliability analysis of the R-fNIRS brain

network.

Denoising using independent component analysis
A general problem with R-fNIRS recordings is that the

acquired signals often include various different types of signal

noise and artifacts (e.g., instrumental noise, motion-induced

artifacts and physiological noises). Independent component

analysis (ICA) provides an important technique to reduce the

effects of these noise sources [25,47,48]. In this study we re-

analyzed our R-fNIRS data and assessed the TRT reliability of

functional brain networks after denoising based on a temporal

ICA analysis. The analysis procedure we used was similar to that

in previous R-fNIRS studies [24,25] and was performed here by

using a publicly available software, FastICA v2.5 (www.cis.hut.fi/

projects/ica/fastica/). Specifically, the parameter settings of the

FastICA algorithm [49] included: number of iteration steps

= 10000, step length = 0.00001, approach = ‘‘deflation’’, initial

Table 1. Pearson correlations at individual-level RSFC maps
between sessions.

Subject HbO HbR HbT

ID r p r p r p

1 0.64 2.646102121 0.40 2.34610241 0.76 3.606102192

2 0.66 2.696102129 0.62 5.546102110 0.66 5.676102132

3 0.56 3.83610286 0.59 1.81610296 0.56 2.83610288

4 0.75 1.496102184 0.63 1.166102117 0.66 1.046102130

5 0.76 2.726102198 0.69 3.226102145 0.60 8.936102104

6 0.75 7.126102188 0.78 1.126102210 0.74 6.876102183

7 0.54 3.86610279 0.77 1.876102206 0.72 7.236102263

8 0.76 6.816102198 0.53 3.35610275 0.79 9.786102221

9 0.85 4.046102294 0.88 0. 00 0.74 3.366102182

10 0.82 1.306102253 0.78 3.316102208 0.90 0.00

11 0.69 1.646102147 0.61 1.866102106 0.74 1.406102176

12 0.66 1.516102132 0.63 2.816102117 0.62 1.156102109

13 0.69 9.306102147 0.52 1.08610272 0.52 9.43610272

14 0.73 2.176102173 0.75 3.826102186 0.72 8.986102166

15 0.57 1.01610288 0.55 1.33610281 0.55 1.84610284

16 0.65 5.156102127 0.78 1.416102214 0.75 7.916102189

17 0.86 4.536102297 0.90 0. 00 0.81 1.646102238

18 0.67 2.426102137 0.56 4.73610288 0.66 1.866102128

mean 0.70 0.67 0.69

std 0.09 0.13 0.10

doi:10.1371/journal.pone.0072425.t001
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value = ‘‘random’’, nonlinearity = ‘‘skew’’, fine-tune = ‘‘on’’,

and stabilization = ‘‘on’’. The ICA analysis was separately

performed on the raw data of HbO, HbR and HbT with the

following procedures: extracting steady hemoglobin concentration

signals (e.g. removing the initial time points from total data length),

reducing the dimensionality of the data with principal component

analysis (PCA), performing ICA analysis on the reduced

dimensional data, identifying noise components, removing noise

from the measured data, and calculating ‘‘real’’ neural activity

signals. FastICA can automatically adjust the results of the analysis

required to compensate for these preprocessing steps. The number

of retained principal components (PCs) was determined according

to the minimum number of PCs that retained more than 99% of

data variance [50]. Meanwhile, the number of independent

components through ICA decomposition was set to be equal to the

number of PCs. After ICA analysis, the components related to

noise and artifacts were identified from three aspects: temporal

profiles, spatial maps and power spectra. A component would be

considered noise if it met one of the following conditions [25]: i)

the corresponding temporal profile included sudden jumps, slowly-

varied U or inverted U-shaped spike, or numerous inter-current

quick spikes; ii) the dominant frequency of power spectra of the

component was outside the range of 0.01,0.1Hz; iii) the spatial

map of the component presented a global and spatially dispersive

pattern. Notably, the map could be approximately related to the

interference in superficial layers of head [48]. After identifying

these types of noise components, each concentration signal of

HbO, HbR, and HbT was reconstructed with a particular

component eliminated from the original R-fNIRS time course

by replacing zero in the corresponding column of mixing matrix

[48]. Finally, we reconstructed the brain networks and then

computed their topological properties and the ICCs as described

above.

Results

TRT reliability of RSFC maps
The group-level RSFC maps of two R-fNIRS scans (session 1

and session 2) and the linear relationship between them are

presented in Fig. 3A–C. In general, the spatial patterns of the

RSFC maps exhibited high similarity between sessions across

HbO, HbR, and HbT, and this can be observed in both the

Figure 4. Reliability analysis of RSFC maps. The first to third columns correspond to the data derived from HbO, HbR, and HbT, respectively. (A,
B) The TRT reliability of RSFC maps and their corresponding reliability distributions. The reliability displays approximately normal configuration for all
1035 (i.e., 46645/2) connections. The connections exhibit good reliability across HbO (mean ICC values 0.70), HbR (0.65) and HbT (0.71). (C) The
relationship between RSFC strength and reliability as assessed by scatterplots. Each dot represents the group-level RSFC strength and the
corresponding ICC value at the same connections. The trend lines were obtained by a linear least-squares fit method. Significant (p,0.05) positive
correlations were found for HbO and HbR signals, suggesting stronger RSFC leads to higher reliability for both these signals.
doi:10.1371/journal.pone.0072425.g004
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qualitative visual inspection and quantitative correlation analysis

(HbO: r = 0.93, p,0.0001; HbR: r = 0.89, p,0.0001; HbT:

r = 0.92, p,0.0001). The individual RSFC correlation between

sessions was also examined independently, and these results are

summarized in Table 1. The RSFC maps between sessions also

manifested high similarities (p,0.001) for each participant and

each hemoglobin concentration signal; the average correlation

coefficients across subjects were 0.7060.09 (mean and standard

deviation) for HbO, 0.6760.13 for HbR, and 0.6960.10 for HbT.

The consistency of these measures was further confirmed by an

analysis of the reliability of the RSFC maps. Figure 4 shows the

TRT reliability for the RSFC maps and their corresponding

Figure 5. TRT reliability of global network metrics as a function of sparsity threshold. (A–C) The global metric reliability was derived from
HbO, HbR, and HbT, respectively. Five colors correspond to five different reliability grades. The red, yellow, green, cyan, and blue colors represent
excellent (0.75, ICC ,1), good (0.6, ICC ,0.75), fair (0.4, ICC ,0.6), low (0.25, ICC ,0.4), and poor (ICC,0.25) reliability of global network metrics,
respectively. Cp, Lp, c, l, and s denote the clustering coefficient, characteristic path length, normalized clustering coefficient, normalized characteristic
path length, and small-world, respectively. Eloc and Eglob denote local efficiency and global efficiency, respectively. Q, b, and r denote modularity,
hierarchy, and assortativity, respectively.
doi:10.1371/journal.pone.0072425.g005
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reliability distributions. The average ICC values across all 1035

(i.e., 46645/2) connections were 0.7060.15 for HbO, 0.6560.19

for HbR, and 0.7160.17 for HbT. These ICC values also

displayed an approximately normal distribution for all 1035

connections at each concentration signal (Fig. 4B). Notably, most

of the connections for each concentration signal also exhibited fair

to excellent reliability. For HbO, 985 of 1035 (95%) functional

connections exhibited fair to excellent reliability (fair: 214, 20.7%;

good: 402, 38.8%; excellent: 369, 35.7%). Similarly, for HbR and

HbT, 902 of 1035 (87%) and 948 of 1035 (92%) functional

connections exhibited fair to excellent reliability (HbR: fair: 244,

23.6.7%; good: 333, 32.2%; excellent: 328, 31.7%. HbT: fair: 229,

22.1%; good: 321, 31%; excellent: 398, 38.5%). Furthermore, a

Pearson’s correlation analysis revealed significant positive corre-

lations between RSFC strength and reliability for HbO (r = 0.26,

p,0.0001) and HbR (r = 0.25, p,0.0001) signals, whereas no

significant correlations were found for HbT (r = 0.03, p.0.05)

(Fig. 4C).

Figure 6. Threshold-independent reliability analysis of global network metrics. The areas under the curves (AUCs) of each global metric
were used to provide threshold-independent reliability evaluation. (A–C) The global metric reliability was derived from HbO, HbR, and HbT,
respectively. Cp, Lp, c, l, and s denote the clustering coefficient, characteristic path length, normalized clustering coefficient, normalized characteristic
path length, and small-world, respectively. Eloc and Eglob denote local efficiency and global efficiency, respectively. Q, b, and r denote modularity,
hierarchy, and assortativity, respectively.
doi:10.1371/journal.pone.0072425.g006

Table 2. Significant differences in the global network metric
(across subjects) between sessions revealed by a paired t-test.

Global HbO HbR HbT

network metrics t p t p t p

Cp 20.12 0.91 0.68 0.51 0.82 0.42

Lp 20.05 0.96 0.24 0.82 21.13 0.27

c 1.80 0.09 0.53 0.60 0.36 0.72

l 21.28 0.22 20.84 0.42 0.08 0.94

s 1.99 0.06 0.43 0.67 0.43 0.67

Eloc 0.06 0.95 0.52 0.61 1.15 0.26

Eglob 20.15 0.88 20.29 0.78 0.52 0.61

Q 0.65 0.53 20.26 0.80 0.88 0.39

b 1.31 0.21 2.44 0.03 1.37 0.19

r 20.25 0.81 22.63 0.02 20.07 0.94

The AUC of each global metric was used as the statistical variable.
doi:10.1371/journal.pone.0072425.t002
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TRT reliability of global network metrics
Figure 5 shows the TRT reliability of 10 global network metrics

against the increasing sparsity thresholds, from 0.01 to 0.99,

stepped by 0.01. In general, the reliability of the network metrics

manifested considerable variation across the sparsity threshold

values. The reliability also displayed moderate variation across

different network metrics at the same thresholds, irrespective of the

HbO, HbR, and HbT signals. The reliability of most of the

network metrics was maintained at a fair to excellent level over a

broad threshold range for the three hemoglobin signals. For

example, global efficiency Eglob exhibited fair to excellent reliability

in the threshold ranges of 0.1 to 0.7 for each hemoglobin signal.

Additionally, the AUC was calculated to test for significant

differences in each metric across subjects between sessions. The

results indicated that almost all parameters (except b in HbR) were

not significantly different (paired t-tests, p.0.05, Table 2),

suggesting a high similarity across global network measures

between sessions at the individual level. The AUC of each metric

was also employed to calculate the reliability measure. The results

of the reliability analyses are shown in Fig. 6A–C for HbO, HbR,

and HbT, respectively. For both HbO and HbR signals, almost all

network metrics consistently exhibited fair to excellent reliability

(except b in HbO and r in HbR showing poor and low reliability,

respectively). In contrast, four of ten metrics showed fair to

excellent reliability for HbT (Fig. 6C). Numerically, the ICC values

for HbR were the highest (ICC = 0.60, averaged across all metrics),

followed by HbO (mean ICC = 0.55); HbT had the lowest relative

ICC values (mean ICC = 0.36). Further statistical analysis using a

one-way repeated measures ANOVA revealed that the reliability

of all network metrics from the three different hemoglobin

concentration signals exhibited significant differences [F(2, 9)

= 5.20; p = 0.017] and that HbR generally displayed the best

relative reliability (paired t-tests, p = 0.03). Viewed from a single

network metric, the clustering coefficient Cp and global efficiency

measure Eglob displayed relatively better reliability, with an average

reliability level of excellent (ICC . 0.7) across the HbO, HbR, and

HbT signals.

TRT reliability of nodal metrics
Figure 7 shows the nodal reliability of the degree, efficiency and

betweenness measures as a function of the sparsity threshold

values. Similar to global network metrics, the reliability of the

nodal metrics also changes with sparsity and varies between

metrics. Visually, betweenness exhibited the worst reliability across

the range of thresholds, while the reliabilities of degree and

efficiency were higher and comparable to one another for the

HbO, HbR, and HbT signals. Furthermore, nodal reliability was

estimated based on a threshold-independent metric, the AUC of

each nodal metric. Figure 8 shows the reliability distribution of the

total 46 nodes on one brain image. The nodes with fair to excellent

reliability held ,90% (41/46) of the total nodes and were

distributed widely throughout the whole brain (Figs. 8A and 8B),

suggesting that nodal reliability is not related to the spatial position

of the nodes in brain regions.

We further performed a two-factor repeated measures ANOVA

to investigate the effects of different nodal measures (degree,

efficiency and betweenness) and different concentration signals

(HbO, HbR and HbT) on nodal reliability. The AUC-based ICC

values were used for this statistical analysis. The results showed a

significant main effect of network measures [F (2, 45) = 63.47,

p,0.0001] (Fig. 9A) and a significant main effect of concentration

signals [F (2, 45) = 5.54, p = 0.0054] (Fig. 9B). There was also a

Figure 7. TRT reliability of nodal centrality metrics as a function of sparsity threshold. (A–C) The nodal metric reliability was derived from
HbO, HbR, and HbT, respectively. The five colors correspond to five different reliability grades: red, yellow, green, cyan, and blue represent excellent
(0.75, ICC ,1), good (0.6, ICC ,0.75), fair (0.4, ICC ,0.6), low (0.25, ICC ,0.4), and poor (ICC,0.25) reliability of the nodal centrality metrics,
respectively.
doi:10.1371/journal.pone.0072425.g007
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significant interaction between network measures and concentra-

tion signals [F (2, 45) = 11.79, p,0.0001], indicating that the

reliability of nodal network measures was not consistent across all

concentration signals. Post hoc comparisons (paired t-tests) showed

that the reliability of degree and efficiency was concordant and

was higher than that of betweenness (p,0.0001) for HbO, HbR,

and HbT. The high reliability of degree and efficiency did not

significantly differ among these three concentration signals (p .

0.05), suggesting the robustness of degree and efficiency for

varying types of hemoglobin information.

TRT reliability of network metrics after denoising using
ICA

All the results of network analysis after denoising using ICA are

presented in Figs. 10–11, Figs. S1, S2, S3, S4, S5 in Supporting

Information S1, and Tables S1–S2 in Supporting Information S1.

In general, we found that the main results remained few changes

as compared to those without ICA analysis. For example, the ICC

values of RSFC maps with ICA denosing were 0.6360.20 for

HbO, 0.6860.20 for HbR, and 0.7160.21 for HbT, which was

highly compatible with the results without ICA analysis (HbO:

0.7060.15; HbR: 0.6560.19; HbT: 0.7160.17) (Figs. S1–S2 in

Supporting Information S1). Meanwhile, at the individual level,

the RSFC maps still remain a high correlation between two

sessions after denoising using ICA (Table S1 in Supporting

Information S1). For global and nodal network metrics, the

reliability was threshold-sensitive and varied among both network

metrics and hemoglobin concentration signals (Figs. 10–11 and

Figs. S3, S4, S5 in Supporting Information S1), which was highly

consistent with the results without ICA denosing. Specifically, the

ICC values for HbR were the highest (ICC = 0.60, averaged across

all metrics), followed by HbO (mean ICC = 0.48) and HbT (mean

ICC = 0.40). Moreover, the global efficiency Eglob still displayed the

highest reliability (the average ICC = 0.83 across the HbO, HbR,

and HbT signals) among all 10 global metrics (Fig. 10 and Fig. S3

in Supporting Information S1) and both the nodal degree and

efficiency centralities showed higher ICC values than the

betweenness centrality (p,0.0001) for all three hemoglobin

concentration signals (Fig. 11 and Figs. S4–S5 in Supporting

Information S1). There were no significant differences in the ICA-

Figure 8. Threshold-independent reliability analysis of nodal centrality metrics. The areas under the curves (AUCs) of each nodal metric
were used to provide threshold-independent reliability evaluation. (A–C) The nodal reliability was derived from HbO, HbR, and HbT, respectively.
Different colors in the nodes correspond to different reliability grades: red, yellow, green, cyan, and blue colors represent excellent (0.75, ICC ,1),
good (0.6, ICC ,0.75), fair (0.4, ICC ,0.6), low (0.25, ICC ,0.4), and poor (ICC,0.25) reliability of the nodal centrality metrics, respectively.
doi:10.1371/journal.pone.0072425.g008
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derived global network metrics between sessions (Table S2 in

Supporting Information S1). Notably, we also observed small

variations on the reliability magnitude of several network metrics

with ICA-based denoising. For example, the ICC values of Eloc and

Eglob slightly increased for HbO, HbR, and HbT signals, whereas

the ICC values of Cp and Lp slightly decreased for HbO and HbT

signals, as compared to the results without ICA denosing (Fig. 6 vs.

Fig. 10).

Discussion

Previously, we showed that R-fNIRS can be used in combina-

tion with graph theory methodology to reveal topological

properties of human functional brain networks [12]. In the

current study, we further addressed the TRT reliability of these

topological properties. A comprehensive assessment of network

reliability was carried out on three sets of network measures

(RSFC, global network metrics and regional nodal metrics). These

network metrics were calculated based on two sets of noise-

reduction data using frequency-based and ICA-based denoising

approaches, respectively, and the results consistently demonstrated

that the R-fNIRS brain networks possessed good reliability on

RSFC and fair to excellent reliability on most global and nodal

network metrics.

TRT reliability of RSFC maps
Based on a correlational analysis and a reliability assessment, we

demonstrated that the fNIRS-based RSFC maps have high

similarity (Pearson correlation: r = 0.9160.03, averaged across

three concentration signals) and high reliability (ICC = 0.6960.03,

averaged across three concentration signals) across sessions. Our

results are compatible with the findings of previous RSFC

reliability studies based on resting-state fMRI [51,52] and R-

fNIRS [24] data. For example, Shehzad and colleagues [51] found

Figure 9. Significant differences (paired t-test) in nodal metric reliability. (A) Reliability for three nodal centrality metrics (degree, efficiency,
and betweenness). (B) Reliability for three concentration signals (HbO, HbR, and HbT). Note that the reliability of nodal degree and efficiency is
concordant across HbO, HbR, and HbT and is also significantly (p,0.0001) higher than that of nodal betweenness. Error bars correspond to the
standard deviation of the mean across the total nodes. The double asterisk indicates p,0.0001.
doi:10.1371/journal.pone.0072425.g009
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that the fMRI-derived RSFC maps showed remarkable spatial

consistency and modest to good reliability across different

scanning sessions for both region-of-interest and voxel-wise

analyses. The high reliability of RSFC maps were also further

confirmed by Wang et al. [52] at a whole-brain level. Using R-

fNIRS data, Zhang et al. [24] demonstrated that the RSFC of the

sensorimotor regions was TRT reliable at both individual and

group levels within and between sessions. In the present study we

showed the high reliability of whole-brain RSFC maps based on

the R-fNIRS data. Collectively, these accumulated evidences

demonstrated that the measure of RSFC is reliable and

trustworthy to measure the brain’s intrinsic functional architecture

regardless of the imaging techniques of fNIRS and fMRI.

Additionally, we found positive correlation between RSFC

reliability and connectivity strength for HbO and/or HbR. This

finding suggests that the reliability of functional connectivity for

these two concentration signals is partly determined by their

connection strength.

TRT reliability of global network metrics
In recent years, TRT reliability of global network metrics has

been examined using different imaging modalities, including MEG

and fMRI techniques [52,53,54,55,56]. These research findings

provide solid foundation for potential applied studies on longitu-

dinal changes, measurements of normal development, or drug

treatment-related effects. In the present study, we investigated the

TRT reliability of global metrics of R-fNIRS brain networks from

two perspectives. First, we examined the effect of varying threshold

values on network reliability and found that the reliability of all

global metrics is related to those selected threshold values. The

threshold-sensitive characteristics of global network metrics are

considered as typical concerns in brain network study, and have

also been demonstrated in previous fMRI studies [52,53,54]. For

example, Wang and colleagues [52] pointed out that the reliability

of global network metrics varied from poor to excellent grades

which depended on the selected threshold values. These observa-

tions suggest that it is extremely important to select an appropriate

threshold for obtaining reliable results in the study of brain

networks. However, it needs to notice that there is currently no

Figure 10. Threshold-independent reliability analysis of ICA- derived global network metrics. The areas under the curves (AUCs) of each
global metric were used to provide threshold-independent reliability evaluation. (A–C) The global metric reliability was derived from HbO, HbR, and
HbT, respectively. Cp, Lp, c, l, and s denote the clustering coefficient, characteristic path length, normalized clustering coefficient, normalized
characteristic path length, and small-world, respectively. Eloc and Eglob denote local efficiency and global efficiency, respectively. Q, b, and r denote
modularity, hierarchy, and assortativity, respectively.
doi:10.1371/journal.pone.0072425.g010
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accepted standard in the literature for determining the suitable

threshold values applied to different network studies. Generally, a

compromise method is to investigate the network over a

continuous threshold range from the sparsest connection to the

densest connection.

Second, we examined the TRT reliability of global network

metrics by excluding the impact of thresholds and found that most

global network metrics exhibited overall high TRT reliability. Of

note, our observation is consistent with a previous report from

Telesford et al., [56], who demonstrated the TRT reliability of

graph metrics of functional human brain network based on a set of

BOLD-fMRI data and also investigated an overall high TRT

reliability on some global network metrics such as the clustering

coefficient Cp, path length Lp, and global efficiency Eglob. However,

it is worth noting that these findings are inconsistent with those

shown in two previous BOLD-fMRI studies demonstrating low

[52] and modest [53] TRT reliability for the global network

metrics, respectively. For example, Wang et al. [52] found that

most of the global network metrics displayed overall low TRT

reliability, especially for the clustering coefficient Cp that uniformly

showed poor reliability (ICC,0.25) regardless of which type of

network (binarized or weighted) adopted for that study. By

contrast, Braun et al. [53] found that the reliability of global

network metrics was moderate (0.41, ICC ,0.59) but highly

depended on the processing strategies such as the selection of

frequency-band range and the use of global signal regression. For

the discrepancies among these studies, we speculate that it could

be attributable to the different imaging modalities, scanning

intervals, network size, population size, and the node and edge

definitions applied in these studies. Moreover, the resting-state

imaging data captures the information of complex integration

among various brain regions, and the integration always exhibits a

Figure 11. Significant differences (paired t-test) in ICA-derived nodal metric reliability. (A) Reliability for three nodal centrality metrics
(degree, efficiency, and betweenness). (B) Reliability for three concentration signals (HbO, HbR, and HbT). Each of these three concentration signals
was denoised using ICA. Note that the reliability of nodal degree and efficiency is concordant across HbO, HbR, and HbT and is also significantly
(p,0.0001) higher than that of nodal betweenness. Error bars correspond to the standard deviation of the mean across the total nodes. The double
asterisk indicates p,0.0001.
doi:10.1371/journal.pone.0072425.g011
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dynamic, time-varying fashion on the order of second or minute

[57]. In the future, it would be interesting to compare TRT

reliability of graphic metrics of brain functional networks derived

from the technique of simultaneous acquisition of different

modalities (e.g., fNIRS vs. BOLD-fMRI). In addition, it is worth

noting that there also exist several global network metrics

exhibiting low reliability across different fNIRS signals (i.e.,

HbO, HbR, and HbT), such as the characteristic path length Lp

(Fig.10C), hierarchy (Fig. 6A), assorsitivity (Fig. 10A), and

modularity parameter Q (Fig.10C).The possible reasons for the

low reliability global-metrics could be 1) that these network metrics

depend on the fine structure of observed networks, while the fine

structure could be sensitive to the subtle fluctuations of functional

connections between two sessions; 2) that these network metrics

characterizing aspects of intrinsic brain function that can be less

robustly estimated using fNIRS signal(s) [53]; 3) that these network

metrics manifested a low between-subject variance in differenti-

ating subjects or a high within-subject variance across scanning

sessions [52]. Moreover, we also found that the normalized metrics

of normalized clustering coefficient c (Figs. 6C and 10C),

normalized characteristic path length l (Figs. 6C and 10C) and

small-world scale s (Figs. 6C, 10B, and 10C) also exhibited low

reliability across HbO, HbR and/or HbT signals. We speculated

that the low reliability of these three network metrics might be

related to the randomization approaches which were used to

generate the matched random networks. To examine this point,

we recalculated these three global metrics (normalized clustering

coefficient, normalized characteristic path length, and small-

worldness) using the correlation matrix randomization method

that preserves the transitive network structures [58]. Likewise, the

reliability level of these three metrics was also quantified by ICC.

We found that the reliability of these three metrics was largely

improved (Fig. 12) as compared to the results obtained from that

topology randomization method (Fig. 6 and Fig. 10). The

improvement of reliability could be attributable to decreased

within-subject variance due to the conservative estimation of

global metrics induced by the correlation matrix randomization

algorithm. This observation also suggested that it would be

important to choose appropriate randomization methods for

achieving reliable results of brain network analysis.

TRT reliability of nodal metrics
Similar to the findings in global network measures, we also

observed that nodal reliability was threshold-sensitive for local

nodal metrics. This finding further highlights the importance of

threshold selection for achieving reliable results. Additionally,

regarding to the reliability assessment of nodal centrality metrics, a

previous fMRI study [52] has made a systematic investigation on 6

nodal metrics (including the nodal degree, efficiency, betweenness,

cluster coefficient, participant coefficient, and normalized partic-

ipant coefficient), and found that the nodal degree had the highest

TRT reliability. In the current study, we found that in addition to

the nodal degree, the nodal efficiency also exhibited fairly high

reliability, and both were significantly higher than that reliability

of betweenness regardless of the HbO, HbR or HbT signals. More

importantly, the reliability of both nodal degree and nodal

efficiency exhibited no significant differences across the different

hemoglobin concentration signals, suggesting that both these

Figure 12. Reliability analysis of global network metrics derived from the correlation matrix randomization method. The areas under
the curves (AUCs) of each global metric were used to provide threshold-independent reliability evaluation. (A–C) show the frequency-derived (i.e.
band-pass filter) global metric reliability and (D–F) show the ICA-derived global metric reliability.c, l, and s denote the normalized clustering
coefficient, normalized characteristic path length, and small-world, respectively.
doi:10.1371/journal.pone.0072425.g012
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metrics are robust to different hemodynamic contrasts. Similarly,

in the previous BOLD-fMRI study [52], the authors also found

that the reliability of nodal network properties was minimally

affected by many factors such as scanning time interval, network

membership (networks excluding or including negative correla-

tions) and network type (binarized or weighted networks). These

findings indicated that the reliability of nodal properties (e.g.,

nodal degree and efficiency) was more robust and least affected, as

compared to that of global network metrics. However, we also

noticed that among the nodal centrality metrics, the nodal

betweenness was the most sensitive to spatial nodal configuration

and most unreliable across different concentration contrasts, which

indicated that the nodal betweenness metric should be used with

caution if no additional effort was made to improve its reliability.

This observation from fNIRS data was also proved to be consistent

with the previous BOLD-fMRI results [52].

Comparisons of graph metric reliability among the three
hemoglobin concentrations

In the current study, we found that the three hemoglobin

concentrations (HbO, HbR, and HbT) exhibited different

reliability profiles for graph-based network metrics: the HbR

showed the best global reliability (mean ICC = 0.604), while the

HbT showed the worst reliability (ICC,0.4 for most global

metrics). In our previous study [12], we also demonstrated that

although all the three types of concentration signals can be used to

characterize topological organization of intrinsic functional brain

architecture, the quantitative network parameters differed signif-

icantly. The discrepancies among different concentration signals

results may be attributable to their different nature in hemody-

namic responses to transient neural activity and/or the difference

in signal-to-noise ratio in the R-fNIRS measurements [23,59].

While all of these three hemoglobin concentration signals are

computed from the same raw R-fNIRS data, each signal reflects

different hemodynamic response during neuronal activity. Under

normal circumstances, the HbO signal reflects regional cerebral

blood flow changes and the HbT signal reflects regional cerebral

blood volume changes within the imaging field. HbR is generated

through oxygen utilization in cerebral tissue. During fNIRS

measurement, the signals recording the regional changes in

cerebral blood flow and cerebral blood volume were generally

aliased into various systemic physiological noises. The noise

components were further propagated into different concentration

signals during the calculation of hemoglobin concentration. It has

been demonstrated that the HbR signal was generally minimally

aliased into various noise components compared to the signals of

HbO and HbT [60,61], which, therefore, could bring about

higher reliability for HbR signal. By contrast, both the HbO and

HbT signals were more affected by changes in physiological

conditions such as heart rate, blood pressure, blood flow, and

breathing cycle [48,60,62,63], which, to some extent, could reduce

the reliability of the resultant network metrics.

In spite of the overall low reliability of global network metrics

for HbT signal, we also noticed that several global metrics (e.g.,

hierarchy b and assortativity r) displayed fairly good reliability

whereas they showed relatively lower reliability for the HbO and/

or HbR signal (Fig. 6 and Fig. 10). This implies that the TRT

reliability of some network metrics is specific to a certain

concentration signal. Consequently, these findings highlight that

fNIRS researchers should choose the optimum hemoglobin

concentration contrast with caution for achieving reliable network

investigation. Beyond the specificity of the high reliability of

network properties on hemoglobin concentration, we also found

that several network parameters (e.g., clustering coefficient Cp and

global efficiency measure Eglob) exhibited excellent reliability on

average across the three concentration signals. This suggests that

Cp and Eglob could be utilized as two reliable biomarkers of

functional brain architecture. In addition to these global metrics,

we also found two nodal metrics: nodal degree and efficiency,

which had mean ICC values across three concentration signals

larger than 0.65, displayed not only the best reliability among all

network measures but also the most robust performance among all

network measures but also the most robust performance among

the different hemoglobin concentration signals. These reliable and

robust features suggest these metrics as reliable candidates to

reveal the topological organization of intrinsic functional networks

in future fNIRS studies in the human brain.

Noise reduction in R-fNIRS data analysis
A common problem in R-fNIRS studies is that the spontaneous

low-frequency fluctuations are contaminated by various different

types of noise and artifacts such as instrumental noise, motion-

induced artifacts, and physiological interferences which often

occurs in the superficial layers of the head and in the brain tissue

[62,64,65,66]. These noises could have different sources and

possess various frequency distributions of spectra. A general way to

reduce the effect of these kinds of noise is the utilization of a band-

pass filter with cut-off frequency from 0.009 to 0.08 Hz that

represents the frequency range of hemodynamic signals thought to

emanate from spontaneous neural activity [23,27]. Using such a

noise-reduction strategy, several R-fNIRS studies have explored

intrinsic RSFC patterns in multiple brain networks involved in the

sensorimotor [20,23,25], auditory [20], visual [23,25], and

language systems [67] as well as the whole-brain functional

network [19]. The results from these studies are proved to be

compatible with each other [20,23,25] and with previous fMRI

investigations [27,68,69]. It suggests that the low-frequency

spontaneous fluctuations measured in R-fNIRS signals may reflect

spontaneous brain activity in spite of various confounding origins

(e.g., systematic interferences in the superficial layers from skin and

the scalp of the head). Nonetheless, the superficial interferences

have been considered an important noise source in R-fNIRS data

[70]. Recently, several denoising methods have been proposed for

separating the noise from neuronal signals, which includes short

separation measurement [71,72], independent component analysis

[48], and adaptive filter method [73,74]. These methods are

playing crucial roles in reducing the noise effects on the signals of

spontaneous neural activity. Among them, both the short-distance

measurement and the adaptive filter methods have a common

experimental consideration that they need a design of additional

short channels to record the superficial signal. However, a recent

study has pointed out that the location of short separation

measurement strongly impacts the performance of noise reduction

in fNIRS [75]. Thus, it would be important and necessary to

consider the number and the location of short-separation channels

while adopting these two methods. In contrast, the ICA is a pure

data-driven approach and does not require specific considerations

of experimental design. Due to the capability of blind source

separation, ICA can separate various noise and artifacts from

measurement data, which have been widely used in both task-

based and resting-state fMRI studies. In this study, we used the

ICA approach for denoising and found that the reliability of many

network metrics was not improved after the denoising processing.

One reason could be attributable to the intrinsic instability of these

network metrics [53], as estimated using fNIRS signal(s).

Meantime, the characteristic of blind source separation of ICA

makes the separated source components lack of explicit physio-

logical explanation, which could lead to the difficulties of
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completely identifying and removing the noise components from

the measured signals. Therefore, future studies are needed to test

whether TRT reliability of brain functional networks could be

improved by utilizing recording respiration and heart rates while

collecting R-fNIRS data or other noise-reduction approaches (e.g.,

short-separation measurement).

Further considerations
Several issues and limitations of the present study should be

further addressed. First, the present study focused mainly on the

evaluation of short-term reliability of R-fNIRS brain network

metrics. Of note, one previous BOLD-fMRI study [52] found that

the scanning interval had an influence on the network reliability

and that long-term scans provided a higher TRT reliability than

short-term scans on some network metrics such as normalized

characteristic path length l. Therefore, it would be our interests to

examine the long-term TRT reliability in future fNIRS brain

network studies. Second, several potential factors may affect the

assessment of reliability of R-fNIRS brain networks but have not

been elucidated in the present study, which includes: variation in

fNIRS measurement environment (e.g., natural light and dark

conditions) [76], variation in probe configuration across different

imaging systems [77], variation in probe placement across

participants and across scanning sessions[78], and potential

change in participants’ mental states during resting-state scanning

[51]. In the future, the effects of these factors need to be

systematically and comprehensively investigated. Third, we limited

our examination of TRT reliability to widely used network metrics

(10 global and 3 nodal characteristics). However, there are other

network metrics, such as synchronization and vulnerability, whose

TRT reliability should be evaluated in the future. Finally, there

are different preprocessing strategies in fNIRS data analysis.

Previous BOLD-fMRI studies have demonstrated that several

factors (e.g., global signal removal, frequency bands and correla-

tion metrics) might affect the network reliability [52,55]. Future

studies will be required to investigate the influence of different

preprocessing techniques on network reliability within the context

of R-fNIRS.

Conclusions

We comprehensively evaluated the TRT reliability of graph

metrics of R-fNIRS brain networks. Our results demonstrate that

the R-fNIRS brain networks show good TRT reliability on RSFC

and fair to excellent reliability on most global metrics and two

nodal network metrics (nodal degree and efficiency). These

findings suggest that the topological metrics with high reliability

in R-fNIRS brain networks are potential to be employed in future

studies of developmental and clinical neuroscience. Future

research should also focus on the investigation and improvement

of those network metrics that display low reliability.

Supporting Information

Supporting Information S1 Figure S1, Spatial similarity of

ICA-derived RSFC maps. Group-level RSFC maps for session 1

and session 2 and their Pearson correlation are displayed in the

first to third columns. Figures (A) to (C) correspond to the RSFC

data derived from HbO, HbR, and HbT, respectively. High

similarity between sessions was observed in both the qualitative

visual inspection and quantitative correlational analysis. Fig-

ure S2, Reliability analysis of ICA-derived RSFC maps. The first

to third columns correspond to the data derived from HbO, HbR,

and HbT, respectively. (A, B) The TRT reliability of RSFC maps

and their corresponding reliability distributions. The reliability

displays approximately normal configuration for all 1035 (i.e.,

46645/2) connections. The connections exhibit good reliability

across HbO (mean ICC values 0.63), HbR (0.68) and HbT (0.65).

(C) The relationship between RSFC strength and reliability as

assessed by scatterplots. Each dot represents the group-level RSFC

strength and the corresponding ICC value at the same connections.

The trend lines were obtained by a linear least-squares fit method.

Significant (p,0.05) positive correlations were found for HbO

signals, suggesting stronger RSFC leads to higher reliability for this

signal. Figure S3, TRT reliability of ICA-derived global network

metrics as a function of sparsity threshold. (A–C) The global

metric reliability was derived from HbO, HbR, and HbT,

respectively. Five colors correspond to five different reliability

grades. The red, yellow, green, cyan, and blue colors represent

excellent ( 0.75, ICC ,1), good (0.6, ICC ,0.75), fair (0.4, ICC

,0.6), low (0.25, ICC ,0.4), and poor (ICC,0.25) reliability of

global network metrics, respectively. Cp, Lp, c, l, and s denote the

clustering coefficient, characteristic path length, normalized

clustering coefficient, normalized characteristic path length, and

small-world, respectively. Eloc and Eglob denote local efficiency and

global efficiency, respectively. Q, b, and r denote modularity,

hierarchy, and assortativity, respectively. Figure S4, TRT reliabil-

ity of ICA-derived nodal centrality metrics as a function of sparsity

threshold. (A–C) The nodal metric reliability was derived from

HbO, HbR, and HbT, respectively. The five colors correspond to

five different reliability grades: red, yellow, green, cyan, and blue

represent excellent (0.75, ICC ,1), good (0.6, ICC ,0.75), fair

(0.4, ICC ,0.6), low (0.25, ICC ,0.4), and poor (ICC,0.25)

reliability of the nodal centrality metrics, respectively. Figure S5,

Threshold-independent reliability analysis of ICA-derived nodal

centrality metrics. The areas under the curves (AUCs) of each

nodal metric were used to provide threshold-independent

reliability evaluation. (A–C) The nodal reliability was derived

from HbO, HbR, and HbT, respectively. Different colors in the

nodes correspond to different reliability grades: red, yellow, green,

cyan, and blue colors represent excellent ( 0.75, ICC ,1), good

(0.6, ICC ,0.75), fair (0.4, ICC ,0.6), low (0.25, ICC ,0.4),

and poor (ICC,0.25) reliability of the nodal centrality metrics,

respectively. Table S1, Pearson correlations at individual-level

ICA-derived RSFC maps between sessions. Table S2, Statistical

comparisons of the ICA-derived global network metrics (across

subjects) between sessions.

(DOC)

Author Contributions

Conceived and designed the experiments: HJN YH. Performed the

experiments: HJN TDZ. Analyzed the data: ZL HJN. Contributed

reagents/materials/analysis tools: XHL JHW NS XHZ YH. Wrote the

paper: HJN.

References

1. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical

analysis of structural and functional systems. Nat Rev Neurosci 10: 186–198.

2. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat

Rev Neurosci 13: 336–349.

3. He Y, Evans A (2010) Graph theoretical modeling of brain connectivity. Current

Opinion in Neurology 23: 341–350

4. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity:

Uses and interpretations. NeuroImage 52: 1059–1069.

Test-Retest Reliability of fNIRS Brain Networks

PLOS ONE | www.plosone.org 16 September 2013 | Volume 8 | Issue 9 | e72425



5. He Y, Chen ZJ, Evans AC (2007) Small-World Anatomical Networks in the
Human Brain Revealed by Cortical Thickness from MRI. Cerebral Cortex 17:

2407–2419.

6. Gong G, He Y, Concha L, Lebel C, Gross DW, et al. (2009) Mapping

Anatomical Connectivity Patterns of Human Cerebral Cortex Using In Vivo

Diffusion Tensor Imaging Tractography. Cerebral Cortex 19: 524–536.

7. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey C, et al. (2008)

Mapping the structural core of human cerebral cortex. PLoS biology 6: e159.

8. Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen VJ, et al. (2007)

Mapping Human Whole-Brain Structural Networks with Diffusion MRI. PLoS
ONE 2: e597.

9. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A Resilient,

Low-Frequency, Small-World Human Brain Functional Network with Highly
Connected Association Cortical Hubs. The Journal of Neuroscience 26: 63–72.

10. He Y, Dagher A, Chen Z, Charil A, Zijdenbos A, et al. (2009) Impaired small-
world efficiency in structural cortical networks in multiple sclerosis associated

with white matter lesion load. Brain 132: 3366–3379.

11. Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, et al. (2005)

Neurophysiological Architecture of Functional Magnetic Resonance Images of

Human Brain. Cerebral Cortex 15: 1332–1342.

12. Niu H, Wang J, Zhao T, Shu N, He Y (2012) Revealing Topological

Organization of Human Brain Functional Networks with Resting-State
Functional near Infrared Spectroscopy. PLoS ONE 7: e45771.

13. Bassett DS, Bullmore ET, Meyer-Lindenberg A, Apud JA, Weinberger DR,

et al. (2009) Cognitive fitness of cost-efficient brain functional networks.
Proceedings of the National Academy of Sciences 106: 11747–11752.

14. Pievani M, de Haan W, Wu T, Seeley WW, Frisoni GB (2011) Functional
network disruption in the degenerative dementias. The Lancet Neurology 10:

829–843.

15. Wang J, Zuo X, He Y (2010) Graph-based network analysis of resting-state

functional MRI. Frontiers in Systems Neuroscience 4.

16. Xia M, He Y (2011) Magnetic Resonance Imaging and Graph Theoretical
Analysis of Complex Brain Networks in Neuropsychiatric Disorders. Brain

connectivity 1: 349–365.

17. Jobsis F (1977) Noninvasive, infrared monitoring of cerebral and myocardial

oxygen sufficiency and circulatory parameters. Science 198: 1264–1267.

18. Villringer A, Chance B (1997) Non-invasive optical spectroscopy and imaging of

human brain function. Trends in Neurosciences 20: 435–442.

19. Homae F, Watanabe H, Otobe T, Nakano T, Go T, et al. (2010) Development
of Global Cortical Networks in Early Infancy. The Journal of Neuroscience 30:

4877–4882.

20. Lu C-M, Zhang Y-J, Biswal BB, Zang Y-F, Peng D-L, et al. (2010) Use of fNIRS

to assess resting state functional connectivity. Journal of Neuroscience Methods
186: 242–249.

21. Mesquita RC, Franceschini MA, Boas DA (2010) Resting state functional

connectivity of the whole head with near-infrared spectroscopy. Biomed Opt
Express 1: 324–336.

22. White BR, Liao SM, Ferradal SL, Inder TE, Culver JP (2011) Bedside optical
imaging of occipital resting-state functional connectivity in neonates. Neuro-

Image.

23. White BR, Snyder AZ, Cohen AL, Petersen SE, Raichle ME, et al. (2009)

Resting-state functional connectivity in the human brain revealed with diffuse

optical tomography. NeuroImage 47: 148–156.

24. Zhang H, Duan L, Zhang Y-J, Lu C-M, Liu H, et al. (2011) Test–retest

assessment of independent component analysis-derived resting-state functional
connectivity based on functional near-infrared spectroscopy. NeuroImage 55:

607–615.

25. Zhang H, Zhang Y-J, Lu C-M, Ma S-Y, Zang Y-F, et al. (2010) Functional

connectivity as revealed by independent component analysis of resting-state

fNIRS measurements. NeuroImage 51: 1150–1161.

26. Cope M, Delpy D (1988) System for long-term measurement of cerebral blood

and tissue oxygenation on newborn infants by near infra-red transillumination.
Medical and Biological Engineering and Computing 26: 289–294.

27. Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS (1995) Functional

connectivity in the motor cortex of resting human brain using echo-planar
mri. Magnetic Resonance in Medicine 34: 537–541.

28. Sasai S, Homae F, Watanabe H, Sasaki AT, Tanabe HC, et al. (2012) A NIRS–
fMRI study of resting state network. NeuroImage 63: 179–193.

29. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, et al. (2005) The
human brain is intrinsically organized into dynamic, anticorrelated functional

networks. Proceedings of the National Academy of Sciences of the United States

of America 102: 9673–9678.

30. Latora V, Marchiori M (2001) Efficient Behavior of Small-World Networks.

Physical Review Letters 87: 198701.

31. Watts DJ, Strogatz SH (1998) Collective dynamics of /̀small-world/’ networks.

Nature 393: 440–442.

32. Latora V, Marchiori M (2003) Economic small-world behavior in weighted

networks. The European Physical Journal B – Condensed Matter and Complex

Systems 32: 249–263.

33. Maslov S, Sneppen K (2002) Specificity and Stability in Topology of Protein

Networks. Science 296: 910–913.

34. Humphries MD, Gurney K, Prescott TJ (2006) The brainstem reticular

formation is a small-world, not scale-free, network. Proceedings of the Royal
Society B: Biological Sciences 273: 503–511.

35. Newman MEJ (2006) Modularity and community structure in networks.

Proceedings of the National Academy of Sciences 103: 8577–8582.

36. Ravasz E, Barabási A-L (2003) Hierarchical organization in complex networks.

Physical Review E 67: 026112.

37. Newman MEJ (2002) Assortative Mixing in Networks. Physical Review Letters

89: 208701.

38. Achard S, Bullmore E (2007) Efficiency and Cost of Economical Brain

Functional Networks. PLoS Comput Biol 3: e17.

39. Linton CF (1977) A Set of Measures of Centrality Based on Betweenness.

Sociometry 40: 35–41.

40. Shrout PE, Fleiss JL (1979) Intraclass correlations: Uses in assessing rater

reliability. Psychological Bulletin 86: 420–428.

41. Sampat MP, Whitman GJ, Stephens TW, Broemeling LD, Heger NA, et al.

(2006) The reliability of measuring physical characteristics of spiculated masses

on mammography. British Journal of Radiology 79: S134–S140.

42. Winer BJ (1962) Statistical principles in experimental design. New York, NY,

US: McGraw-Hill Book Company. x, 672 p.

43. Rousson V, Gasser T, Seifert B (2002) Assessing intrarater, interrater and test–
retest reliability of continuous measurements. Statistics in medicine 21: 3431–

3446.
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