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Assigning medical codes for patients is essential for healthcare organizations, not only for billing 
purposes but also for maintaining accurate records of patients’ medical histories and analyzing 
the outputs of certain procedures. Due to the abundance of disease codes, it can be laborious 
and time-consuming for medical specialists to manually assign these codes to each procedure. To 
address this problem, we discuss the automatic prediction of ICD-9 codes, the most popular and 
widely accepted system of medical coding. We introduce a two-stream deep learning framework 
specifically designed to analyze multi-modal data. This framework is applied to the extensive and 
publicly available MIMIC-III dataset, enabling us to leverage both numerical and text-based data 
for improved ICD-9 code prediction.

Our system uses text representation models to understand the text-based medical records; the 
Gated Recurrent Unit (GRU) to model the numerical health records; and fuses these two streams to 
automatically predict the ICD-9 codes used in the intensive care unit. We discuss the preprocessing 
and classification methods and demonstrate that our proposed two-stream model outperforms 
other state-of-the-art studies in the literature.

1. Introduction

To accurately document surgical procedures and diagnoses, the World Health Organization (WHO) has developed the Interna-

tional Classification of Diseases, Ninth Revision (ICD-9) coding system. This system standardizes the surgical codes and descriptions, 
helps the billing processes, and supports public health surveillance and research efforts. ICD-9 codes consist of three to five digits. The 
first three digits represent the main category of the diagnosis or procedure, while the fourth and fifth digits provide additional de-

tailed information. These codes are essential for tracking the results of procedures over time, and they can help healthcare providers 
identify opportunities for improvement. For instance, physicians might determine ways to lower the risk of problems by examining 
the frequency of certain surgical operations and their outcomes. However, most medical coding is presently done manually, which is 
prone to errors and labor-intensive [1].

To help improve the healthcare industry, medical code prediction based on test results has become an important area of research 
in machine learning. By automating the process, doctors can make more accurate and timely diagnoses, and increase the quality 
of surgical care. In this work, we analyze the latest best practices for medical code prediction and propose an algorithm to predict 
the medical codes of both the procedures applied to a patient and the diagnoses made by the doctors. We use the publicly available 
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MIMIC-III healthcare dataset [2] collected in the patient recovery process from 58,576 adults in an intensive care unit. In this dataset, 
there are both numerical test results as well as unstructured written documents. While most of the work in the literature for ICD-9 
code prediction is performed on unstructured text data, in this work, we are proposing a two-stream method that investigates both 
the unstructured texts and the time series of numerical features based on transformer methods, comparing them to the state-of-the-art 
works in the literature.

In this study, our goal is to increase the accuracy and timeliness of diagnoses and procedures by automating the prediction of 
ICD-9 codes. The scope of the work involves the separate examination of text-based data and time-dependent numerical data within 
the MIMIC-III dataset. Later, deep learning-based methods that utilize both data types are employed. Different deep learning methods 
are trained and tested with the dataset for both data types. By employing deep learning techniques, the study achieves the best results 
for both data types. These successful methods are then combined to form an ensemble model, which is adopted as the final approach. 
Consequently, the developed method is capable of effectively estimating the ICD-9 codes of patients by using both text-based and 
numerical data as input.

We achieve better results in medical code prediction by utilizing deep learning techniques for both types of data and combining 
them in an ensemble model. Our findings indicate that when text-based methods are integrated with numerical data approaches, 
there is a significant improvement in accuracy, which highlights the effectiveness of our two-stream model.

The findings revealed that the results obtained from text-based data were more successful than those from time series data. 
However, when the text-based estimation methods were combined with methods using numerical data, the overall model’s success 
was found to increase significantly. To validate this outcome, the same approach was applied to the most successful text-based 
methods reported in the literature, which also demonstrates that the performance of these methods can be enhanced through a 
similar ensemble. Overall, the two-stream model achieved better results by leveraging the strengths of both text-based and numerical 
data, leading to improved ICD-9 code estimation.

2. Dataset and preprocessing

The MIMIC-III dataset [2] used in this study contains health data of patients who were treated in the intensive care unit (ICU) 
of the Beth Israel Deaconess Medical Center in the United States between 2001 and 2012. During MIMIC’s data collection period, 
two different critical care information systems were in place, making this dataset diverse in this sense. The dataset comprises clinical 
notes, time-dependent numeric data, and time-independent numeric data from 58,576 patient admissions, of which 53,423 are 
adults. The median age of the patients in the dataset is 65.68 years, and the median length of hospital stay is 7.08 days. The hospital 
mortality rate is 10.49%. Among adult patients, the first admission rate is 83%, and there is data on 38,425 different adult patients. 
For this study, only adult patient data were used, and if a patient had more than one admission, their first admission was selected. 
We focus on ICU data because ICU measurements are more common in the dataset we used. Additionally, the methods we compare 
are also designed for intensive care data, further ensuring a fair comparison. However, it is worth noting that the algorithms we 
propose can be generalized to other ICD code prediction areas beyond the ICU with further experiments.

To predict ICD-9 codes using both text and time-dependent numerical data, we utilize the noteevents, chartevents, inputevents and 
labevents tables as input. The noteevents table contains all the text-based data obtained during the hospitalization process, while 
the other tables contain numerical data collected over a specific period. In line with previous studies in the literature, only the 
patient discharge notes in the noteevents table were used as text-based data. These discharge notes are also the only documents used 
by clinical coders to assign medical codes. A short example of these discharge summaries can be found in Fig. 1. The discharge 
summaries are typically much longer.

For outputs in training our classifiers, we utilize the diagnoses_icd and procedures_icd tables as ICD-9 code labels of patients. ICD-9 
codes consist of 3 to 5 digits. The format of the 5-digit code is XXX.XX, where the first three digits are used for the disease category, 
and the last two digits are used for the etiology of the disease in two sub-breaks. In other words, codes with 3 digits represent 
the main diseases, while the 4th and 5th digits constitute the sub-branches of the main diseases. For example, the ICD-9 code 
290 is used to represent dementia, the code 290.1 to represent early dementia, and the code 290.12 to represent early delusional 
dementia.

Inevitably, the electronic health records that comprise the MIMIC-III dataset have some limitations. These include high missing 
rates since not all tests are administered to all patients, multidimensionality of each patient data, high noise, and random errors. Most 
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outpatient.
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Fig. 1. Sample Discharge Summary from MIMIC-III Dataset.
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Fig. 2. The 50 Most Common ICD Code Counts in both Filtered and Unfiltered Datasets.

importantly, each patient has a large number of parameters, and different parameters are needed for diagnosing different diseases. 
This leads to many missing data for each patient, which must be taken into account when analyzing electronic health data. Below, 
we describe how to process the dataset to handle these problems and make it ready for classification. After the preprocessing, we 
end up with three datasets, namely Dataset A, B, and C. Dataset A uses most of the available data and is our preferred dataset. The 
last two datasets were formed to be on the same scale as the other works in the literature for a fair comparison.

Dataset A: In MIMIC-III, some patients are in the text dataset but not in the numeric dataset. With this in mind, patients in the 
dataset were filtered and patients who exist in both the numeric and text datasets were taken. For label data, the 50 most common 
ICD codes in the dataset were used to create a fair comparison environment with the studies in the literature. Patients who did not 
have any of these 50 most common ICD codes were also excluded from the dataset. The resulting list of codes is given in Table 2, 
and statistics of the 50 most common ICD codes in both filtered and unfiltered (raw) datasets are also available in Fig. 2.

The resulting filtered, final dataset contains data from 33330 different patients. This dataset is referred to as Dataset A for the 
remainder of the study. For each experiment performed, the dataset was randomly divided into a training set, validation set, and test 
set, with ratios of 0.7, 0.15, and 0.15, respectively, and the trainings were carried out. The same training, validation, and test sets 
were used for each experiment to create a fair comparison environment.

Dataset B: Xie et al. [3] arranged the discharge reports into training, validation, and test datasets based on 8066, 1728, and 
1729 patient referrals from the MIMIC-III dataset, respectively. Afterward, this dataset was used in various state-of-the-art studies 
including [4–7]. In this study, this dataset is referred to as Dataset B.

Dataset C: To compare the proposed method with other studies, it was necessary to conduct some experiments with Dataset B for 
the proposed methods. However, since there is no numerical record of some patient applications in the Dataset, they were excluded 
from our study. For the training, validation, and test datasets, missing patient referrals were 2716, 395, and 400, respectively. 
Excluding these patient referrals, the training set consisted of 5350 patient referrals, the validation set consisted of 1333, and the test 
dataset consisted of 1329 patient referrals. This filtered dataset is named Dataset C in the rest of the study. In other words, Dataset 
C can be seen as a sub-dataset of Dataset B.

For numerical feature selection, the most comprehensive feature set in [8] was used. In this sub-dataset of the MIMIC-III, there 
are 136 time-dependent features from more than 20,000 patient referrals. These attributes are included in Table 1. Some attribute 
names in the dataset can appear in both uppercase and lowercase letters, so the names in the table are left as they are in the dataset. 
Also, since there are attributes with the same name, some attributes are included with a single name. The features in the table 
were handled for 24 hours from the patient’s admission and were sampled in one-hour slices. Therefore, it is possible to say that 
the obtained numerical data are time-dependent and 136x24 in size. Numerical tables in the MIMIC-III dataset have some problems 
due to their structure, as described. The main problems are high rates of missing data and data representing the occurrence of the 
same attribute in more than one table. These problems need to be taken into account in the pre-processing stage. Hence, attributes 
from more than one table are combined into a single attribute, as in the study of Purushotham et al. [8]. Values in the dataset are 
normalized for each feature. In addition, for missing data, if that attribute is included in a patient’s application at any time, forward 
and backward filling processes are applied, respectively. If a patient referral has no record of that attribute for any period, these 
missing fields are filled with zeros.

For text data, only discharge reports from the text-based reports in the MIMIC-III dataset were used as in other studies. For data 
3

preprocessing, the date, time, and special characters in each discharge report were deleted and all letters were reduced.
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Table 1

Numerical Features Used from the MIMIC-III Dataset with their Original Names (i.e. with both uppercase and 
lowercase letters as given in the dataset).

Albumin 5 Pre-Admission Bisacodyl

Fresh Frozen Plasma TF Residual Docusate Sodium

Lorazepam (Ativan) urinary output sum Humulin-R Insulin

Calcium Gluconate HEMATOCRIT Metoprolol Tartrate

Midazolam (Versed) PLATELET Pantoprazole

Phenylephrine HEMOGLOBIN ArterialBloodPressurediastolic

Furosemide (Lasix) MCHC ArterialBloodPressuremean

Hydralazine MCH RespiratoryRate

Norepinephrine MCV AlarmsOn

Magnesium Sulfate RED BLOOD CELLS MinuteVolumeAlarm-Low

Nitroglycerin RDW Peakinsp.Pressure

Insulin - Regular CHLORIDE PEEPset

Morphine Sulfate ANION GAP MinuteVolume

Potassium Chloride CREATININE GLUCOSE

Gastric Meds MAGNESIUM, TOTAL weight

D5 1/2NS CALCIUM height

LR PHOSPHATE glucose

Solution INR(PT) spo2 peripheral

Sterile Water PT arterial pressure mean

Piggyback PTT diastolic blood pressure mean

OR Crystalloid Intake LYMPHOCYTES ie ratio mean

PO Intake MONOCYTES fio2

GT Flush NEUTROPHILS body temperature

KCL (Bolus) BASOPHILS heart rate

Magnesium Sulfate (Bolus) EOSINOPHILS systolic blood pressure abp mean

epinephrine PH gcseyes

vasopressin BASE EXCESS gcsmotor

dopamine CALCULATED TOTAL CO2 gcsverbal

midazolam PCO2 SkinCare

fentanyl SPECIFIC GRAVITY RespAlarm-High

propofol LACTATE SpO2DesatLimit

Gastric Tube ALANINE AMINOTRANSFERASE (ALT) PulmonaryArteryPressurediastolic

Stool Out Stool ASPARATE AMINOTRANSFERASE (AST) TidalVolume(set)

Urine Out Incontinent ALKALINE PHOSPHATASE PulmonaryArteryPressuresystolic

Ultrafiltrate ALBUMIN HeartRateAlarm-Low

Fecal Bag pao2 Glucosefingerstick

Chest Tube #1 serum urea nitrogen level O2Flow

Chest Tube #2 white blood cells count mean PulmonaryArteryPressuremean

Jackson Pratt #1 serum bicarbonate level mean RespiratoryRate(Set)

OR EBL sodium level mean CentralVenousPressure

potassium level mean bilirubin level MeanAirwayPressure

hgb chloride TidalVolume(observed)

peep Aspirin MinuteVolumeAlarm-High

Packed Red Blood Cells

3. Literature review

In the quest for automating the ICD code prediction, traditional methods employed in this field rely on scoring systems, specifically 
SAPS [9], SOFA [10] and APACHE [11], which are expressed through mathematical formulas. These methods involve calculating 
scores based on a predefined set of attributes determined by physicians. These scores help healthcare professionals predict the 
survival status of patients in the intensive care unit by assessing the severity of their health conditions.

With the increasing success of machine learning algorithms, several methods have been proposed, offering superior results com-

pared to traditional approaches. In a study conducted by Purushotham et al. [8] various machine learning and deep learning methods 
used in this field were compared, demonstrating their superior performance over traditional scoring methods. The study employed a 
GRU-based model as a deep learning method to predict outcomes from time-dependent data. To conduct the analysis, three distinct 
sub-datasets were created using the MIMIC-III dataset, each containing different numerical features. The tasks examined for each 
dataset included estimating hospital mortality, short-term mortality, long-term mortality, hospital stay, and ICD code prediction. 
The first dataset consisted of 17 features used in the SAPS scoring system, the second dataset contained 20 raw features from which 
the SAPS scoring system features were derived, and the third dataset incorporated 136 raw features irrespective of scoring systems. 
The results revealed that deep learning-based methods outperformed other machine learning and scoring methods across all tasks, 
particularly in experiments involving a large number of features and raw data. Consequently, we also employ the most prevalent 136 
raw features from the numerical data for the estimation task.

Datasets that include electronic health records encompass more than just numerical information. Within these datasets, one can 
often encounter clinical notes obtained during hospital admission and stay. Notably, a significant portion of the MIMIC-III dataset 
primarily comprises these notes. As a result, the advancements in deep learning techniques within the field of natural language 
4

processing have led to numerous studies in this domain [12,13]. Consequently, estimation approaches based on clinical health 
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Table 2

50 Most Common ICD-9 Code Descriptions.

ICD9 Code Count Short Name Long Name Type

4019 15030 Hypertension NOS Unspecified essential hypertension Diagnosis

3893 9476 Venous cath NEC Venous catheterization, not elsewhere classified Procedure

41401 9393 Crnry athrscl natve vssl Coronary atherosclerosis of native coronary ar... Diagnosis

42731 8758 Atrial fibrillation Atrial fibrillation Diagnosis

4280 7933 CHF NOS Congestive heart failure, unspecified Diagnosis

3961 6177 Extracorporeal circulat Extracorporeal circulation auxiliary to open heart surgery Procedure

9604 6165 Insert endotracheal tube Insertion of endotracheal tube Procedure

25000 6113 DMII wo cmp nt st uncntr Diabetes mellitus without mention of complicat... Diagnosis

2724 6034 Hyperlipidemia NEC/NOS Other and unspecified hyperlipidemia Diagnosis

5849 5695 Acute kidney failure NOS Acute kidney failure, unspecified Diagnosis

966 5388 Entral infus nutrit sub Enteral infusion of concentrated nutritional substances Procedure

9671 5340 Cont inv mec ven <96 hrs Continuous invasive mechanical ventilation for less than 96 consecutive hours Procedure

9904 4967 Packed cell transfusion Transfusion of packed cells Procedure

51881 4904 Acute respiratry failure Acute respiratory failure Diagnosis

8856 4447 Coronar arteriogr-2 cath Coronary arteriography using two catheters Procedure

2720 4388 Pure hypercholesterolem Pure hypercholesterolemia Diagnosis

5990 4312 Urin tract infection NOS Urinary tract infection, site not specified Diagnosis

9672 4249 Cont inv mec ven 96+ hrs Continuous invasive mechanical ventilation for 96 consecutive hours or more Procedure

53081 4138 Esophageal reflux Esophageal reflux Diagnosis

3615 4086 1 int mam-cor art bypass Single internal mammary-coronary artery bypass Procedure

2859 3738 Anemia NOS Anemia, unspecified Diagnosis

2851 3310 Ac posthemorrhag anemia Acute posthemorrhagic anemia Diagnosis

3891 3191 Arterial catheterization Arterial catheterization Procedure

486 3134 Pneumonia, organism NOS Pneumonia, organism unspecified Diagnosis

2449 3086 Hypothyroidism NOS Unspecified acquired hypothyroidism Diagnosis

2762 2818 Acidosis Acidosis Diagnosis

3722 2768 Rflx sym dystrph lwr lmb Reflex sympathetic dystrophy of the lower limb Diagnosis

8872 2749 Dx ultrasound-heart Diagnostic ultrasound of heart Procedure

496 2733 Chr airway obstruct NEC Chronic airway obstruction, not elsewhere clas... Diagnosis

5070 2567 Food/vomit pneumonitis Pneumonitis due to inhalation of food or vomitus Diagnosis

3051 2485 Tobacco use disorder Tobacco use disorder Diagnosis

41071 2358 Subendo infarct, initial Subendocardial infarction, initial episode of ... Diagnosis

3324 2348 Closed bronchial biopsy Closed [endoscopic] biopsy of bronchus Procedure

99592 2330 Severe sepsis Severe sepsis Diagnosis

3723 2266 Conjunctivitis NOS Conjunctivitis, unspecified Diagnosis

V5861 2231 Long-term use anticoagul Long-term (current) use of anticoagulants Diagnosis

0389 2203 Septicemia NOS Unspecified septicemia Diagnosis

4240 2148 Mitral valve disorder Mitral valve disorders Diagnosis

9915 2120 Parent infus nutrit sub Parenteral infusion of concentrated nutritional substances Procedure

311 2116 Depressive disorder NEC Depressive disorder, not elsewhere classified Diagnosis

2875 2091 Thrombocytopenia NOS Thrombocytopenia, unspecified Diagnosis

2761 2039 Hyposmolality Hyposmolality and/or hyponatremia Diagnosis

5859 2037 Chronic kidney dis NOS Chronic kidney disease, unspecified Diagnosis

412 2004 Old myocardial infarct Old myocardial infarction Diagnosis

4241 2002 Partial esophagectomy Partial esophagectomy Procedure

40390 1976 Hy kid NOS w cr kid I-IV Hypertensive chronic kidney disease, unspecifi... Diagnosis

9971 1929 Therapeu plasmapheresis Therapeu plasmapheresis Procedure

4513 1920 Sm bowel endoscopy NEC Other endoscopy of small intestine Procedure

5119 1885 Biliary tr dx proc NEC Other diagnostic procedures on biliary tract Procedure

V1582 1873 History of tobacco use Personal history of tobacco use Diagnosis

reports have been developed. The concept of the Clinical Bert model has been mentioned in studies such as the studies of Alsentzer 
et al. [14] and Huang et al. [15]. Clinical BERT is a customized BERT [16] model specifically tailored for clinical applications. 
BERT itself is a deep learning model based on transformer encoders, which vectorizes words or text phrases by considering their 
contextual properties. Unlike other deep learning-based natural language processing techniques, this model processes word sequences 
bidirectionally, both left-to-right and right-to-left, aiming to improve the prediction of word relationships. Since the original BERT 
model was trained on a Wikipedia dataset that did not adequately represent medical sentences, Alsentzer et al. conducted model 
training using clinical texts instead of relying on the pre-trained BERT model. Huang et al. used the Clinical BERT model to estimate 
30-day hospital readmission. Their study utilized various clinical notes, including evacuation notes from the MIMIC-III dataset and 
ECG and radiology reports gathered during intensive care unit stays. This approach enables the estimation of hospitalization time 
upon patient discharge using text-based data acquired at any point during the intensive care hospitalization period. When evaluating 
the study’s results, it becomes evident that the Clinical BERT model outperforms BERT, Bag-of-words, and BI-LSTM methods in terms 
of producing more accurate outputs.

In a study published by Jin et al. [17], both textual and numerical data were used simultaneously. In this study, in which a 
multimodal deep learning method is proposed, the task of hospital mortality is discussed. An LSTM model is used for numerical 
5

data, and a deep learning method based on Doc2VecC [18] is used for text-based data. In the training phase, these two models are 
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connected and the vectors obtained as the output of the two models are combined into a single vector and given as input to the fully 
connected layer. Thus, both numerical and textual data were taught at the same time. Time-dependent data sampled in two-hour 
periods for the first 48 hours for each patient’s 17 features were given as input to the LSTM-based deep learning network used for 
numerical data. In the study of Jin et al., a medical NER-based service was used to be able to itemize sentences in the deep learning 
network used for learning text-based data [19]. Lexical itemized texts are given as input to the Doc2VecC model. The Doc2VecC 
model is a method for extracting a vector representation of all text. In the training of this model, each word output is given as input 
as well as randomly selected words as well as neighboring words. As a side effect of using random vectors, it is aimed that the 
averages of the word vectors represent the document vector. Considering that the Doc2Vec model is trained only with neighboring 
words, it is possible to say that the Doc2VecC model is more successful in representing the document vector. In addition, the model 
requires less effort for new data that has not yet been trained. This method, which is generally used for sentiment analysis, document 
classification, and semantic relatedness tasks, was used for the representation of clinical texts in the study. As a result of this study 
using the MIMIC-III dataset, it has been shown that such a multimodal deep learning method gives a 2% more successful result in 
estimating hospital mortality compared to other uniform (numerical or textual) methods.

Vu et al. proposed a deep learning model with a tag attention mechanism for estimating ICD code from text data [5]. In this 
study, Word2Vec was used as the basic natural language processing method. In addition, a BiLSTM model that takes Word2Vec word 
vectors as input is positioned to obtain the contextual properties of the words in the clinical notes. For the attention mechanism, the 
tag attention layer is applied after the BiLSTM layer, and a structure that can generate a different vector for each ICD code tag to be 
used as output is obtained. The label attention layer is based on the structured self-attention mechanism proposed by Lin et al. [20]. 
Based on the 50 most common ICD-9 codes, this study seems to yield more successful results than other attentional networks.

Reys et al. have created various classifiers based on the Word2Vec model for the task of estimating ICD code from text data in 
[21]. They created a dictionary with the text-based reports they obtained from the MIMIC-III dataset and completed the training of 
the Word2Vec model. The report vectors obtained with Word2Vec were tested with three different classifiers. These classifiers are a 
convolutional neural network-based classifier, a convolutional neural network-based classifier with an attention mechanism, and a 
GRU-based classifier.

Yang et al. proposed a deep learning method based on the Longformer method, powered by the Knowledge Enhanced PrompT 
(KEPT) method [7]. They explained that they chose a Longformer-based method as the natural language processing (NLP) method 
because the texts in the MIMIC-III dataset were too large to be fully represented by other methods. In this method, while giving the 
texts as input to the Longformer model, they also gave the segmented versions of the ICD code classes as input. Therefore, they aimed 
for the model to learn the ICD codes along with the texts in the MIMIC-III dataset.

As a result of the literature review, although there are studies that make various types of healthcare prediction using numerical 
methods, these studies generally focused on other estimation tasks rather than ICD code estimation. The study of Purothom et al. is 
one of the most comprehensive examples of them.

Text-based methods are generally diversifying in ICD code estimation studies. The latest increase in the number of text-based 
methods in ICD code estimation studies can be evaluated as a result of the massive progress in NLP literature. In different studies, 
deep learning models using various NLP methods have been proposed and their superiority over each other has been revealed. As 
mentioned above, the studies of Huang et al., Vu et al., Reys et al., and Yang et al. are examples of these studies using only text-based 
data. Table 3 shows the comparison of these and the other literature studies evaluated in this work in terms of target, data type used, 
and NLP method.

Table 3

Comparison of studies in the literature.

Work Year Estimation Task Data Type NLP Method Used
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Mengqi Jin [17] 2018

J. Mullenbach [4] 2020

Kexin Huang [15] 2020

L. Franz [22] 2020

Thanh Vu [5] 2020

Arthur D. Reys [21] 2020

Yang Liu [23] 2021

Zhichao Yang [7] 2022

Zheng Yuan [6] 2022
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Our study can be seen as a study that uses both data types for the ICD estimation task and shows that successful results can be 
obtained when both data types are used. Although some previous works have utilized both data types, similar to the study conducted 
by Jin et al., they were primarily applied to tasks other than the ICD estimation task. Our study takes a multi-instrumental approach, 
aligning with Jin et al.’s work. However, there is a key difference: while Jin et al.’s study focused on estimating hospital mortality, 
our research centered on estimating ICD codes. As a result, Jin et al.’s work addresses a two-class single-label task, whereas our study 
aims to tackle a multi-class multi-label problem.

4. Method

In this study, both time-dependent numeric data and text-based clinical notes from the MIMIC-III dataset were used to estimate 
ICD codes in a two-stream network. Initially, these two types of data were handled as separate tasks. Deep learning models that 
yielded the best results for each task were evaluated as separate streams, one as a text stream, and the other as a numerical stream; 
intended to be combined in the main task to achieve more robust outcomes. The outputs of these two streams were combined using 
a fully connected layer. Once the deep learning model for each stream was determined and preprocessing was applied, the entire 
proposed model was trained. Given that the task involves a multi-label multi-class structure, the binary cross-entropy with logit loss 
function was used as the error function during the training of each model.

4.1. Text stream

The text stream was trained to handle unstructured texts as in the medical records. For text-based classification, state-of-the-art 
transformer-based NLP methods were utilized and evaluated. These methods include Clinical BERT [14], Clinical Longformer [24]

and KEPT [7] based methods, respectively.

4.1.1. Clinical BERT

Unlike other word representation methods such as Word2Vec [25], the BERT and the Clinical BERT models are context-dependent, 
generating different vectors for the same words in different contexts. Moreover, they are designed not only for word-level vectors 
but also for representing sentences and paragraphs. In this study, we aim to represent clinical documents and classify them into 
ICD-9 codes based on these representations, as the dataset mainly consists of paragraphs with multiple sentences. Consequently, 
paragraph encodings from the output of the Clinical BERT model are utilized to represent clinical notes. However, the original BERT 
and Clinical BERT models were designed to handle a maximum input length of 512 tokens for each instance. In contrast, the clinical 
notes in the MIMIC-III dataset have longer sequences, with mean and median word sequence lengths of 1528 and 1415, respectively.

To address this issue, we split the texts into two sub-chunks, tokenize the first 512 words of each chunk, and use both chunks 
as input to the Clinical BERT model. The resulting encodings from both chunks are then concatenated, resulting in each text being 
represented by 1x1536 vectors, as the model has a hidden size of 768 for a single chunk. For the ICD-9 classification, a single fully 
connected layer is used. Given that each text is represented by a 1536-sized vector and there are 50 classes, the dimensions of the 
classification layer are 1536x50. The model is trained with Dataset A, which is the most comprehensive dataset in our study.

4.1.2. Clinical longformer

While the BERT model can deliver highly successful outputs for NLP tasks, it faces limitations in processing long strings, such as 
paragraphs. The standard BERT model and some other versions like Clinical BERT are designed to handle texts with a maximum of 
512 tokens. To address longer texts, one approach is to split them into separate chunks and input them into the model. However, 
using an excessive number of chunks can lead to challenges in effectively representing relatively shorter texts in the dataset.

Longformer [26] is a transformer-based method developed to overcome these issues and process long texts as input effectively. 
Unlike the BERT model, the Longformer can handle a larger token size, up to 4096 tokens. To enable the use of longer sequences as 
input, the Longformer model incorporates various attention methods in addition to the standard transformer-based methods. These 
include sliding window attention, dilated sliding window attention, and global attention.

In this study, for the Longformer-based text classification, the Clinical Longformer model [24] developed for clinical studies was 
examined and used. The structure of this model is in the same architecture as the basic longformer model and differs in terms of the 
dataset used. The Clinical Longformer model has been trained with the MIMIC-III dataset which is used in this study. This model is 
also trained with the Dataset A.

4.1.3. KEPT

To generalize the results obtained in this study, experiments were also carried out using the KEPT method, which has the most 
successful result in the literature for the top 50 ICD-9 prediction tasks. The KEPT method is another Longformer-based language model 
proposed by Yang et al. [7] for ICD encoding purposes. In this method, an alternative approach is developed for multi-class tasks. In 
the developed model, the input comprises descriptions of the ICD codes targeted for estimation, along with the discharge reports. At 
this point, firstly, the tokens for discharge notes and ICD code descriptions were obtained with the pre-trained Clinical Longformer 
method. In addition, while ICD code descriptions are given as input, [MASK] token is added to the end of these descriptions, aiming 
to predict this tokenized item by the language model. In the output, a one-to-one coding-like structure was created by representing 
the owned ICD codes with “yes” tokens and not owned ICD codes with “no” tokens for each patient application. Thus, in the output, 
7

the [MASK] tokens that the language model is estimated as “yes” are obtained as the predicted ICD code, and the tokens that are 
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Fig. 3. Ensemble Model Flow Diagram.

predicted as ‘no’ are obtained as the unpredicted ICD codes. The base KEPT model was trained with Dataset B by Yang et al. However, 
in this study, while training the KEPT model, the C dataset was used to compare the difference between the KEPT model and the 
ensemble model fairly. Dataset C is nothing but a subset of Dataset B, including its text data, as mentioned in Section 2.

The above three methods were trained and fine-tuned by using the Adam optimizer with the same learning rate of 0.001 for 15 
epochs. BCE with logit loss was used and the states that gave the best validation F1 score for each method were evaluated as the best 
models. Additionally, these best models for each approach were used independently to create ensemble models.

4.2. Numerical stream

This method was developed for processing the time series of numerical features as input. Since there are 136 features with 24-hour 
windows, the input dimensions are 24 for each patient. For representing the data which is in time series format, a GRU layer was 
used in the first layer with 20 features in hidden size and 2 recurrent layers. Using GRU makes it possible to cover time dependency 
given instances. The output dimension of the layer is 136x20 since there are 136 features in the input and the hidden size is 20. In 
the second layer, the GRU output is flattened to 2720 to feed the classification layer. For the classification part of the network, two 
fully connected layers with 100, and 50 (number of ICD-9 codes) units were used respectively. The ReLu activation function was 
used for the fully connected layers. The model is trained over 750 epochs with a batch size of 64. The Adam optimizer was used 
with a 1e-3 initial learning rate, which was reduced by half at every 100 epochs. As in models for the text-based classification task, 
BCE with logit loss was used and the state that gives the best validation F1 score was evaluated as the best model for the ensemble 
models. The GRU model for representing the time series of numerical features is trained with Dataset A.

4.3. Integrating text and numerical streams

After training the models for text-based and numerical data separately, each model pair was ensembled without their classification 
layers. Then, a single classification layer was added after jointly concatenating the outputs of each model. Two dropout layers with 
a probability of 𝑝 = 0.4 were used in the ensemble models: the first one for the concatenation of the text-based model output and 
the second one for the concatenation of both models. The resulting model can be found in Fig. 3. As an initial network, pre-trained 
models described in the above sections were used and fine-tuned collectively. For the training process of the ensemble models, the 
Adam optimizer is used with a learning rate of 1e-5. The models were trained over 30 epochs with a batch size of 8, and the results of 
the state that achieved the best validation F1 scores were reported as the final ensemble model. The ensemble model is trained with 
Dataset A for the Clinical BERT and Clinical Longformer-based models and Dataset C for the KEPT-based model. Thus, the results of 
this study were validated both with Clinical BERT and Clinical Longformer in comprehensive datasets, and with KEPT, the top study 
in the literature, creating a fair comparison environment.

5. Results

The results of each model were assessed using metrics such as BCE with logit loss, accuracy, recall, precision, and micro F1 score. 
The micro F1 score is a variant of the F1 score that takes into account the overall performance of a model across all classes in a 
multi-class classification task. It is calculated by aggregating the true positives, false positives, and false negatives over all classes 
before computing the F1 score. It is useful when there is a class imbalance in the dataset because it equally weighs the contribution 
8

of each class to the overall F1 score, regardless of their representation in the data.
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Table 4

Results showing the advantage of using both data types per each model. For each metric, the best-performing model is highlighted with bold 
typeface.

Loss Accuracy Precision Recall Micro F1

(BCE with Logit)

Data Type Dataset Model

Only Numerical Data Dataset A GRU 13.45 0.89 0.36 0.61 0.45

Only Discharge Summaries

Dataset A Clinical BERT 9.47 0.93 0.44 0.69 0.54

Dataset A Clinical Longformer 10.61 0.92 0.56 0.75 0.64

Dataset C KEPT 9.16 0.93 0.74 0.72 0.73

Numerical Data

& 
Discharge Summaries

Dataset A
Two-stream Model 9.66 0.93 0.53 0.71 0.60

(Clinical BERT)

Dataset A
Two-stream Model 9.32 0.93 0.61 0.76 0.69

(Clinical Longformer)

Dataset C
Two-stream Model 8.67 0.94 0.76 0.74 0.75

(KEPT)

Table 5

Comparison of Results with Other Works in Literature.

Work Micro F1 Score Data Type Dataset

This Work (KEPT & Numerical Classifier) 0.751 Text & Numerical Dataset C

KEPT 0.733 Text Dataset C

Zheng Yuan [6] 0.725 Text Dataset B

Thanh Vu [5] 0.716 Text Dataset B

Yang Liu [23] 0.717 Text Dataset B

This Work (Clinical Longformer & Numerical Classifier) 0.691 Text & Numerical Dataset A

Xiancheng Xie [3] 0.684 Text Dataset B

Fei Li [27] 0.670 Text Dataset B

Clinical Longformer 0.640 Text Dataset A

James Mullenbach [4] 0.633 Text Dataset B

For each model, the state that yielded the highest validation micro F1 score was chosen as the final model. Table 4 presents the 
outcomes obtained through these methods. Upon analyzing the results, numerical data has high accuracy but low precision values, 
resulting in low F1 scores. Therefore, it becomes evident that using numerical data alone is insufficient for the estimation task. 
However, when these data are combined with text-based data, a significant overall improvement can be observed. The micro F1 
score sees a remarkable boost of nearly 5%. Thus, it can be asserted that the targeted outcome has been achieved, and the top 50 
ICD-9 prediction task has yielded the best result in terms of micro F1 score.

Further, Table 5 provides valuable information by comparing the results of different studies in the literature with the results of the 
current study. The data in the table shows the performance of various models used in different studies in terms of the micro F1 Score, 
which gives the overall performance of multi-class classification models. Looking at the table, it is evident that the performance of 
the two different models used in this study is notably better compared to other studies in the literature. Our work with KEPT and 
the numerical classifier achieved a micro F1 Score of 0.751 by using both the text and numerical data types. Similarly, our other 
model using the Clinical Longformer and the numerical classifier obtained a micro F1 Score of 0.691 using the same data type. The 
comparison table also presents the performance of models used in other studies in the literature. Most of these models rely solely on 
text data, and their micro F1 Scores range from 0.633 to 0.733. These results suggest that an approach incorporating both text and 
numerical data is more effective in achieving better outcomes.

In this study, it was also revealed that the maximum token length produced by NLP algorithms is also important. The fact that 
the patient discharge notes were too long to be represented by 512 tokens caused the result from the Clinical BERT method to be 
more unsuccessful. In addition, although the maximum number of tokens was increased to 1024 with two Clinical BERT models for 
vectorization of discharge summaries, the results were insufficient. This inference is also similar to the conclusion in Yang et al.’s 
[7] study. Moreover, Biswas et al. [28], Zhang et al. [29], Pascual et al. [30] also showed the necessity of using higher dimensional 
token vectors.

It is also important to examine the results in more detail for each ICD Code. As an example, the resulting confusion matrices for the 
numeric-based GRU, text-based Clinical Longformer, and ensemble model are reported in Figs. 4, 5 and 6 respectively. These matrices 
show both the actual and expected results for every disease. Predicted outcomes are shown in columns, and actual labels are shown 
in rows. These matrices contain actual and predicted outcomes for each disease. Columns represent predicted results, rows represent 
actual labels. For each ICD code, the top left cell represents true negatives, which are the cases in which the model accurately 
predicted that the ICD code would not be present. The top right cell represents false positives, indicating the instances where the 
model incorrectly predicted the presence of the ICD code. The bottom left cell represents false negatives, showing the instances 
where the model failed to predict the ICD code when it was actually present. The bottom right cell represents true positives, which 
means the instances where the model correctly predicted the presence of the ICD code. When these matrices are examined, although 
numerical data-based methods on a class basis are not very successful, if these data are used with the help of the ensemble method, 
there has been a noticeable improvement in many classes. At this point, the most improving classes are Thrombocytopenia (2875) 
9

and Hyposmolality (2761). The number of true positives for thrombocytopenia was 17 in the numerical data-based model and only 
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Fig. 4. Confusion Matrix for Numerical Data Based GRU Model.
10
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Fig. 5. Confusion Matrix for Text Data Based Clinical Longformer Model.
11



Heliyon 10 (2024) e25960M.A. Ayden, M.E. Yuksel and S.E. Yuksel Erdem

Fig. 6. Confusion Matrix for Both Numerical & Text Data Based Ensemble Model.
12
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1 in the text-based model, while the ensemble model reached 18 true positives. Roughly, it can be said that some patients who 
cannot be identified from text data can be detected when numerical data are added to the ensemble model. Also, in addition to 
this improvement, almost no loss in true negative values was observed. Similar results can be obtained from confusion matrices for 
Hyposmolality and some other diseases. An important inference can be made as follows: text-based data and numeric data have a 
structure that compensates for each other’s deficiencies in ICD estimation, instead of giving results that repeat each other.

6. Discussion

ICD code prediction is a complex task due to the vast number of classes, but it can greatly benefit doctors by automating the 
process. The advantages of automatic ICD code prediction include disease detection, providing suggestions to doctors when entering 
their own procedure’s ICD codes, and giving reminders to healthcare professionals regarding which tests to administer based on 
tests given to similar patients. However, this task is challenging due to the extensive number of ICD classes, the vast array of tests 
conducted at hospitals with missing data where not all tests are available for all patients, and the possibility of multiple diseases 
within a single patient.

This study introduces a novel two-stream method for ICD-9 code prediction, but there are notable limitations: reliance on the 
specific MIMIC-III dataset may limit generalizability, the model’s performance could vary in more complex medical scenarios, and 
the method demands substantial computational resources. While a significant advancement, these limitations emphasize the need for 
future research to enhance its applicability and accuracy in diverse healthcare settings.

7. Conclusion

In this study, we analyzed a substantial dataset of adults in an intensive care unit and proposed preprocessing methods, as well 
as natural language and machine learning models, to predict the ICD-9 codes of patients based on this data. The primary objective of 
this research is to enhance the performance of NLP methods using text-based data by incorporating numerical data in a two-stream 
network. To achieve this, we proposed both text and numerical-based methods and combined them to create a model that achieved 
the best results. For the two-stream models, a ratio of 0.75 with GRU and KEPT-based models yielded the best micro F1 score.

As a result, our study provides an effective and comprehensive approach for achieving improved results in the multi-class classifi-

cation task of ICD code prediction. This research holds significant potential in assisting medical professionals with accurate ICD code 
predictions, ultimately leading to better patient care and outcomes; however, its potential should still be investigated across other 
ICU units and even other countries.
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