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In order to identify reasons for treatment failures when using targeted therapies, we have

analyzed the comprehensive molecular profiles of three relapsed, poor-prognosis Burkitt

lymphoma cases. All three cases had resembling clinical presentation and histology and

all three patients relapsed, but their outcomes differed significantly. The samples of their

tumor tissue were analyzed using whole-exome sequencing, gene expression profiling,

phosphoproteomic assays, and single-cell phosphoflow cytometry. These results explain

different treatment responses of the three histologically identical but molecularly different

tumors. Our findings support a personalized approach for patient with high risk,

refractory, and rare diseases and may contribute to personalized and customized

treatment efforts for patients with limited treatment options like relapsed/refractory

Burkitt lymphoma.

SUMMARY

The main aim of this study is to analyze three relapsed Burkitt lymphoma patients

using a comprehensive molecular profiling, in order to explain their different outcomes
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and to propose a biomarker-based targeted treatment. In cases 1 and 3, the tumor

tissue and the host were analyzed prospectively and appropriate target for the treatment

was successfully implemented; however, in case 2, analyses become available only

retrospectively and his empirically based rescue treatment did not hit the right target

of his disease.
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INTRODUCTION

Burkitt lymphoma is a highly aggressive mature B-cell lymphoma
commonly associated with translocation of MYC gene. The
disease is classified as sporadic, endemic, or immunodeficiency
related. In pediatric oncology, current standard intensive
chemotherapy with anti-CD20 antibody regimens achieve long-
term, disease-free survival in almost 95% of patients (1).
However, a subset of patients who do not respond to the
first-line chemotherapy and who experience relapse have very
poor prognosis despite high-dose chemotherapy followed by
stem cell transplantation (2). This subset of patients, for whom
further chemotherapy-based therapies are futile, is recently
often considered for therapies based on molecular analysis of
their tumor tissue. We present three cases of relapsed Burkitt
lymphoma. Cases 1 and 3 were treated with a therapy that
reflected the molecular signature of the child’s tumor, but in case
2, the therapy “missed” the target because his molecular signature
was not known at the time retrieval therapy was initiated. The
findings suggest that molecular signatures are unique, and a
tissue biomarker-based customized therapy may be the better
approach to address these poor prognosis patients than just
another biomarker agnostic randomized trial.

METHODS

A comprehensive molecular profiling consisted of whole-exome,
gene expression profiling and a profile of phosphorylated
proteins and single-cell phosphoflow cytometry of three cases
of relapsed pediatric Burkitt lymphoma searching for biological
rationale for different responses to the therapy and different
clinical outcomes.

Whole-Exome Sequencing
Whole-exome sequencing (WES) using the TruSeq DNA Exome
Kit, the NextSeq 500/550 Mid Output Kit v2.5, and a NextSeq
500 sequencing device (all Illumina, CA, USA) was done in all
three cases. Input material was 400 ng of DNA obtained from
the peripheral blood (for germline exome) and formalin-fixed,
paraffin-embedded (FFPE) tumor sample with ≥20% cancer cell
count measured in the surface area of tissue slides for somatic
exome. WES was done with high coverage where at least 90% of
targeted regions were covered 20 times.

Gene Expression Profiling (Transcriptome
Examination)
Gene expression profiling using the Affymetrix GeneChip
Human Gene 1.0. ST Array (Applied Biosystems, CA, USA)

was done in all three cases. Input material was 250 ng of
RNA obtained from frozen tumor tissue. Samples were prepared
using the GeneChip WT PLUS Reagent Kit (Affymetrix, CA,
USA) according to the manufacturer’s protocol. Subsequently,
chips were hybridized using the GeneChip Hybridization Oven,
washed using the GeneChip Fluidics Station, and scanned on the
GeneChip Scanner (all Affymetrix, CA, USA), and CEL files were
generated. Data were processed using R software version 3.3.3
(3). Gene expressions of 220 selected genes were subsequently
compared to accumulated normal tissue samples as described
previously (4), utilizing two comparator sets: one consisting
of 408 normal tissue samples of different diagnoses (main
general comparator) and one consisting of 5 samples of normal
germinal center B cells (complementary-specific comparator).
Samples were downloaded from Gene Expression Omnibus and
ArrayExpress databases, and names of the database samples
are listed in Supplementary Material 1. Expression data were
calculated as Robust Multichip Average (RMA) with background
correction and quantile normalization implemented in rma
function in oligo package (5). Difference of expression of each
gene was calculated as fold change (FC) from the mean of
the comparator set and tested using a two-sided one-sample
t-test, with false discovery rate (FDR) adjustment applied. An
FC value of 0.5 and more was considered important. No
specific p-value was considered limiting the discrimination of
differently expressed genes with FC > 0.5. Utilizing the general
comparator consisting of 408 samples offers highly significant
results corresponding to the power of 10 to −25 for the FDR-
adjusted p-values for most of the evaluated genes with FC of
0.5 or more, and rising to the power of 10 to −100 for the
FDR-adjusted p-values for genes with FC > 2.

RNA transcription data from the tumor tissues were analyzed
as well using Biogrid (http://thebiogrid.org), and http://www.
genome.jp/kegg/pathway.html and mathematical simulations of
protein–protein interactions as described before (6).

Profile of Phosphorylated Proteins
Human Phospho-RTK Array Kit (R&D Systems) was used to
determine the relative levels of tyrosine phosphorylation of
49 different RTKs. Human Phospho-MAPK Array Kit (R&D
Systems) was employed for the detection of phosphorylation
status of 26 MAPKs, serine/threonine kinases, and other
signaling proteins. Both arrays were performed as previously
described (7).

Single-Cell Phosphoflow Cytometry
Peripheral blood mononuclear cells (PBMCs) were separated on
Ficoll-Paque (GE Healthcare) according to the manufacturer’s
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instructions. PBMCs were reconstituted in a culture medium
consisting of RPMI 1640 with 25mM HEPES, L-glutamine, 100
U/ml penicillin, and 100 mg/ml streptomycin (Lonza, Basel,
Switzerland) to a final concentration of 2 million cells per
milliliter. After a 1-h rest at 37◦C in a 5% CO2 atmosphere,
the cells were stimulated on 96-well plate containing coated
anti-CD3 (10µg/ml, Exbio Praha) and free costimulatory
anti-CD28/CD49d antibodies (1µg/ml, BD Biosciences) for
5, 15, and 30min. The cells were fixed with 4% formaldehyde
for 10min and permeabilized with ice-cold methanol for
30min. The following fluorochrome conjugates were used
for cytometric detection: phospho-Akt (Ser473)-Alexa Fluor
488, phospho-S6 (Ser235/236)-Pacific Blue (Cell Signaling
Technologies), phospho-mTOR (Ser2448)-PE (eBioscience,
Thermo Fisher), CD45-Pacific Orange, CD45RA-APC (Exbio),
CD8-PE-Cy7 (Beckman Coulter), CD4-PerCP-Cy5.5, and
CD3-APC-H7 (BD Biosciences). The samples were acquired on
Canto II flow cytometer and analyzed using FlowJo software
(BD Biosciences).

RESULTS

Case 1
A 7-year-old previously healthy boy presented with t(8;14)
positive abdominal stage III Burkitt lymphoma (St. Jude staging
system). The boy was initially treated as per the standard BFM
B-NHL Registry 2012 protocol with the addition of rituximab
according to the most recent published literature (1). He
responded well to the therapy and achieved a very good partial
response after two cycles. His clinical course was complicated
by an episode of duodenal obstruction/intussusception
requiring surgical intervention. The histology from this
resection revealed sclerosing mesenteritis with no evidence of
lymphoma, congruent with the conclusion of a study using 18F-
fluorodeoxyglucose positron emission tomography/computed
tomography (FDG PET/CT) that revealed a very small residual
tumor with only borderline FDG PET avidity. Unfortunately, the
patient had disease progression 6 weeks following the completion
of protocol therapy (and 3 months from the second surgery)
with a new lesion within the tumor resection margin and a new
mediastinal mass. A biopsy of the abdominal lesion confirmed
the recurrence of Burkitt lymphoma with persistent areas of
sclerosing mesenteritis.

As sclerosing mesenteritis has been associated in the literature
not only with B-cell lymphomas but also with activation of the
PI3K-delta pathway and immunodeficiency (8, 9), a candidate
testing for this specific mutation was performed.

In the tumor, there was proven disruption of MYCC and IgH
in 97% of cells according to fluorescence in situ hybridization
(FISH). Karyotype of the tumor showed 46 chromosomes with
complex changes. A germline variant of c.935C>G (p.S312C)
in the PI3K-delta subunit was found both in the child and
in the father. The patient’s older sister and mother were
negative for this variant. We tested the intracellular signaling
downstream of PI3K using flow cytometry assessment of
phosphorylation of Akt, mTOR, and S6 proteins in the patient’s
peripheral blood T-lymphocytes and detected increased basal and
T-cell receptor (TCR)-induced activation (Figure 1A). Similarly,

increased levels of PI3K were confirmed by RNA transcriptome
analysis of the tumor tissue with Affymetrix GeneChipST 1.0.
This analysis also revealed an increased expression of HR23B, a
predictor of response to histone deacetylase (HDAC) inhibitors.
Immunohistochemistry revealed a strong expression of PD-1L.
The variant p.S312C has been described previously as mutation
in brain cancer cell line and prostate cancer cell line (10) but has
been classified as benign for development of immunodeficiency
according to the ClinVar database. The allele frequency ranges
between 0.008 and 0.030 in population databases (gnomAD 0.02,
ExAc 0.0217, 1000G/ALL 0.008, 1000G/EUR 0.029) and was
found to be 0.018 in our cohort of 508 cord blood samples (not
published). Thus, this variant cannot be considered pathogenic.
However, it may predispose the PI3K pathway to be activated, if
other genetic and/or non-genetic factors are present.

Interestingly, even though the biopsy at the time of initial
diagnosis had been tested for TP53 and no alteration of the gene
was found, in the biopsy obtained from the relapse, a new TP53
R273C somatic mutation was identified in the tumor.

Retrieval therapy was administered with obinutuzumab 550
mg/m2, ibrutinib 140 mg/m2, and two cycles of ifosfamide,
carboplatin, and etoposide (ICE) chemotherapy. The patient
had further progression on this therapy, and a more molecular
biomarker-driven theranostic approach was discussed. The
therapy was changed to a single-agent window using a specific
inhibitor of PI3K idelalisib 200 mg/m2/d. In 2 weeks, we were
able to document a markedly decreased PI3K pathway activation
in the patient’s peripheral blood T-lymphocytes (Figure 1B), but
the disease was still showing further radiological progression.
Therapy with idelalisib was not discontinued, and ibrutinib
140 mg/m2 daily was reintroduced. Based on the transcriptome
analysis, valproic acid for HDAC inhibition aiming for serum
levels of 80–100µg/ml was added, and nivolumab at 3 mg/kg
every second week and metronomic cyclophosphamide at 25
mg/m2/7 days on/7 days off were introduced for immune
modulation. To support local disease management and support
the tumor antigen presentation, the patient received 21-Gy
radiation to the site of the abdominal relapse. There was evidence
of partial remission on FDG PET/CT 3 months later and stable
disease 6 months later. Due to persistence of a viable tumor on
FDG PET/CT and high toxicity of allogenic stem cell transplant
reported in nivolumab-treated patients (11), this approach
was not considered as treatment of choice. Consequently,
personalized immunotherapy with dendritic cell-based vaccine
was preferred to support the antitumor immunity, and treatment
with dendritic cells loaded with whole tumor lysate according
to phase I/II protocol (EudraCT No. 2014-003388-39) (12) was
initiated. The residual tumor resected after 11 months of such
therapy consisted of mainly necrotic tissue with lymphocytic
infiltration with no evidence of viable tumor. Considering
that the child had achieved complete remission, valproic acid,
ibrutinib, and idelalisib were gradually discontinued and the
patient is continuing to take biweekly intradermal applications
of autologous dendritic cell vaccine and nivolumab until May
2018 when all his 37 manufactured doses of dendritic cell-based
vaccine were used up.

The progression-free survival (PFS) of 46 months following a
customized, tumor tissue molecular analysis-guided regimen was
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FIGURE 1 | Phosphorylation patterns in the PI3K pathway in peripheral blood T-lymphocytes before (A) and after (B) therapy in case 1. Case 2 patient had a germline

variant of PIK3CD, which was present in the tumor as well. Peripheral blood T-lymphocytes (patient 1’s lymphocytes contained only T cells at the time of testing) were

tested for activation of the PI3K signaling pathway [reflected as a phosphorylation of Akt (Ser473), mTOR (Ser2448), and S6 ribosomal protein (Ser235/236)] before

and following therapy. (A) Patient T-lymphocytes showed increased basal phosphorylation of Akt as well as increased phosphorylation of Akt and S6 upon T-cell

receptor (TCR) stimulation before treatment compared to an independent healthy control (the result is representative of three independent tests). (B) A week following

the addition of idelalisib (a PI3K inhibitor), to the patient’s therapy, the phosphorylation of Akt, mTOR, and S6 dropped down. CD3+ T-lymphocytes are shown in basal

state (tinted histograms) and 15min upon anti-CD3/CD28/CD49d stimulation (blank histograms). Red, patient 1; black, healthy control.

the longest PFS this child had achieved. The comparison of his
earlier therapies reveals that he had achieved PFS1 6 months on
the initial standard BFM protocol, and PFS2 only 1 month on
the intensive retrieval therapy using anti-CD20 (obinutuzumab),
ICE, and ibrutinib. His individualized therapy was outpatient
based, associated with minimal treatment-related toxicities and
allowed the child to return to school and perform all activities of
daily living.

Case 2
A 3-year-old boy diagnosed abroad with widely disseminated
Burkitt lymphoma (abdomen, bone marrow, and both kidneys)
was initially treated with the same standard BFM-based
chemotherapy, but without rituximab. Before the completion
of the fifth cycle, the patient had disease progression with a
biopsy-positive new lesion in the right cheek. He continued
with a relapse ALL protocol/ALL-REZ BFM 2002 in his
home country outside the Czech Republic. As no therapeutic
response was achieved, he was referred to our institution for
a second opinion and management. He received two cycles
of R-ICE (rituximab, ifosfamide, carboplatin, etoposide) given

as per the ANHL0121 protocol achieving partial response, but
the treatment was accompanied with severe life-threatening
toxicities. He underwent surgery to obtain specimen for
theranostic testing; however, the amount of the tumor tissue was
not sufficient for all molecular studies. Based on our previous
success in case 1 and as bridging to high-dose chemotherapy,
he therefore continued with ibrutinib 140 mg/m2 daily, idelalisib
100 mg/m2 daily, and cyclophosphamide 1.5 mg/kg daily week
on/week off for 6 weeks. Due to toxicities of intensive therapies
and a clinical need for further therapy as bridging to stem
cell transplant, the targeted agents were in this case based
on our previous experience and a literature review. Despite a
high-dose carmustine, etoposide, cytarabine, melphalan (BEAM)
chemotherapy as per the AHOD0121 protocol (13) and
autologous stem cell transplant being performed, he continued
to do poorly. The patient had disease progression 3 weeks after
BEAM conditioning and autologous stem cell transplant with
a new lesion in the abdomen and continued to progress with
massive L3 blast presence in the cerebrospinal fluid. He died due
to disease progression 11 months from the initial diagnosis and 6
months after his first progression.
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Case 3
A 12-year-old boy was diagnosed with bulky abdominal Burkitt
lymphoma. The patient was initially treated as per the standard
BFM B-NHL Registry 2012 protocol with the addition of
rituximab, but he achieved only partial response after two cycles,
and assessment after four cycles revealed residual tumor with
still increased FDG PET avidity. Three months later, the FDG
PET/CT showed radiological progression of the primary tumor
and dissemination in the right retromandibular area and anterior
mediastinum. The relapse of Burkitt lymphoma was confirmed
by biopsy. However, WES from the relapsed tumor sample
revealed high tumor mutation burden−31 mutations/Mb;
moreover, gene expression profiling detected strong expression of
PD1, and the overall expression patterns of the case 3 were very
similar to case 2 patient with very high fibronectin expression.
First, participation in the randomized ibrutinib retrieval trial was
planned here; however, based on molecular profiling and our
previous experience from case 2, we have prioritized immune
therapy here. He achieved radiological partial remission after
third R-ICE cycle and then continued with nivolumab single
agent only. After 12 weeks of nivolumab, he achieved first
complete remission. His first PFS on standard intensive protocol
was 7 months, but the second PFS with using immunotherapy is
14 months.

Analyses
Somatic exome analysis of relapse samples revealed variants in
the TP53 gene in cases 1 and 2 (p.R273C in case 1 and p.R248L
in case 2, NM_000546). p.R273C and p.R248L in TP53 have
been previously described as loss of function mutations based on
in vitro functional analyses (14–19). Somatic exome analysis in
case 1 detected a number of variants; the selected ones are shown
in Supplementary Material 2. Germline exome analysis in case
1 also confirmed p.S312C (NM_005026) variant in the PIK3CD
gene in the heterozygous form. Somatic exomes of cases 2 and 3
revealed a number of variants; the selected ones are also available
in Supplementary Material 2.

Gene expression profiles of all three cases proved to be
very similar; the highest expressions showed genes involved in
immune system (BTK, CD79A, CD79B, and KLHL6). In cases
1 and 2, increased expression also showed genes involved in
DNA damage response (BRCA1, BRCA2, FANCA, and FANCD2).
In case 1, CSF1R and PDGFRA genes were also found to
be increasingly expressed, while no genes coding tyrosine
kinases showed to be overexpressed in case 2. In case 3,
increased expressions showed genes involved in fibroblast growth
factor signaling. In comparison to other pediatric oncology
patients analyzed at our institute, transcriptome analysis in
cases 1 and 2 revealed significantly increased expression of the
MYC proto-oncogene.

In case 1, two samples of the tumor tissue were also analyzed
for activity of cell signaling pathways using phosphoprotein
arrays for detection of RTKs, MAPKs, serine/threonine kinases,
and other signaling protein as specified above: tumor tissue
sample after the first line of treatment (Figure 2: case 1a) and
second sample taken during the treatment of relapsed disease
(Figure 2: case 1b). Phosphorylation profiles showed high

relative activities of EGFR, PDGFRβ, ROR2, CREB, ERK1/2,
and HSP27 in both samples. Furthermore, a very high level
of phosphorylation was detected for p53 protein on Ser46 in
the second sample in comparison to the first sample from this
patient. This finding is in full accordance with the previous
proapoptotic treatment including etoposide administration
(20). In case 2, nevertheless, phospho-RTK analysis (Figure 2:
case 2) revealed high phosphorylation of EGFR and PDGFRβ,
and the phosphorylation profile of MAPKs, serine/threonine
kinases, and other signaling proteins showed high activities
of CREB, ERK1/2, and HSP27 in ascending order of
density value.

Serology of Epstein–Barr virus (EBV) revealed the IgG
positivity of EBV nuclear antigen (EBNA)-1 and the IgG
positivity of viral capsid antigen (VCA) as well case 1 and case 2.

DISCUSSION

The introduction of highly intensive multiagent chemotherapy
has dramatically improved the survival rates of primary
childhood Burkitt lymphoma. While the initial treatment
can have an over 90% success rate using standard intensive
chemotherapy with rituximab, the outcome of children with
relapsed Burkitt lymphoma is still very poor. The difficulties
with treating chemotherapy-resistant relapsed tumors suggest an
evolution of a more complex and more resistant disease (21), as
could be documented by a new TP53 mutation in our case 1 at
relapse, which was suggested by phosphoproteomic assay as well.
The overview of our three cases reveals children with some very
similar characteristics of their diseases, with alike pattern of cell
signaling in tumor tissue, treated with identical agents in the first
part of their relapse treatment, who experienced very dissimilar
outcomes after the first relapse. It suggests that the tumors with
similar histological features may harbor chemotherapy-resistant,
genetically and biologically distinct subclones that become more
dominant after intensive chemotherapy (21). At presentation, a
fraction of these chemotherapy-resistant subpopulations may be
small but, following intensive maximum tolerated dose-based
chemotherapy, probably increases, and the tumor residuum is
subsequently populated by resistant subclones. This evolution
was furthermore evident on the evolution of molecular findings
in the first patient and supports the need for a careful theranostic
analysis and repeated biopsies whenever clinically indicated.
Treatment of relapsed disease should be based on a detailed
molecular analysis of the most recent available sample, i.e.,
at the time of relapse or progression rather than on original
tumor biopsy only. The choice of drug combinations reflecting
a broader molecular profile was based on reports that customized
combinatorial therapies may produce more sustained responses
(22, 23). Furthermore, as many biological agents are in fact
chemotherapy sensitizers, their proper dosage should carefully
be titrated to avoid severe systemic toxicity. In case 1, we have
started with a single-agent idelalisib to target what was thought to
be the driver mutation and gradually added additional targeted
agents but at doses about 50% of those recommended in the
Summary of Product Characteristics to avoid severe toxicity.
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FIGURE 2 | The relative phosphorylation analysis of tumor tissue samples. Human Phospho-MAPK Array Kit (R&D Systems) was employed for the detection of

phosphorylation status of 49 RTKs, 26 MAPKs, serin/threonin kinases, and other signaling proteins, which performed using phosphoprotein arrays.
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To successfully apply precision oncology principles into
clinical practice, a requisite testing for molecular targets for
each patient needs to be completed. As pointed above, while
all three patients had histologically identical disease and were
given the same combination of agents in the first- and two of
them as second-line treatments, in case 2, we did not have a
representative tumor sample timely available and his therapy was
based only on detailed literature review and not the theranostic
concept (24–26). The biology of the relapsed disease of case
3 reflected by transcriptome was similar to that of case 2, so
a different approach could be undertaken, and while reflecting
high mutational burden and increased expression of the PD-1L
detected by immunohistochemistry and transcriptome, anti-PD-
1 antibody was successfully used here.

While analyzing the transcriptomic results including
considerations of gene and network interactions using https://
string-db.org/ and http://www.genome.jp/kegg/pathway.
html databases (6, 21), we were able to distinguish different
patterns of tumor biology among our patients. Case 1 suggested
neurotrophic receptor tyrosine kinase 1 (NTRK1) as a signaling
protein and one of the best targets. In case 2 and case 3, in
contrast, despite being clinically and histologically similar,
transcriptomic results suggest an entirely different network,
where fibronectin 1 (FN1) has a very complex downstream
impact. Because FN1 is not a signaling protein and a druggable
target, it is likely that we missed the putatively most important
pathway in case 2. One may speculate that integrin inhibitors like
cilengitide could be a better therapeutic option here. For case 3,
FN1 seemed to be the key molecular hub as well, and it was one
of the reasons for clinical decision to rely on tumor mutational
burden and PD-1 ligand expression and treat the patient with
immune therapies, rather than small molecules.

The localization of MYC proto-oncogene on q24 of the
human chromosome 8 and its translocation to chromosome 14
is considered pathogenic in most cases of Burkitt lymphoma.
In our cases, the RNA transcription analyses as described
above indicate the activations of different sets of genes. These
patients were almost identical in their clinical presentation,
histology, MYC status, and initial clinical response to standard
chemotherapy. Early clinical testing initiatives are beginning
to employ individual profiles/fingerprint analyses to compile
patients into histologically or biologically similar series (27),
and as these efforts continue, new clinical trial designs will
emerge (28, 29).

The research that has emerged over the last 40 years
disproves the concept that cancer is a consequence of a single
oncogenic change. It is widely accepted that an initiating
oncogenic change such as translocation involving MYC is
interpreted within the patient’s genome, and further genomic
alterations lead to the oncogenic inducers hijacking host-specific
physiological responses such as angiogenesis, inflammation, and
immune evasion. These normal physiological responses are not
detected by DNA mutational analysis because they represent
reactivation of developmentally silent pathways. We advocate
the use of combinations of biological agents addressing not

only the DNA mutations but also the normal physiological
responses of the host as they are reflected in the individual’s
molecular signature reflected on transcriptomic and proteomic
levels. In case 3, we successfully used immunotherapy reflecting
the molecular profile of the tumor. In cases 1 and 2, we
used a combination of ibrutinib (inhibitor of BCR signaling),
idelalisib (direct PI3Kdelta inhibitor), valproate (HDAC inhibitor
with potential to enhance responsiveness to immune therapies),
and nivolumab (a host immune response modulator). Both
patients were intended to receive an immune-supportive therapy
using autologous dendritic cell vaccination with non-immune-
suppressive maintenance agents such as checkpoint inhibitors,
but only case 1 patient had achieved sufficient duration of the
clinical response to live long enough to enable the preparation of
his vaccine. Unfortunately, because we did not have the benefit
of molecular information on genome or transcriptome in case 2,
the therapy could not be customized enough to provide a more
effective therapeutic combination. Our results revealing highly
phosphorylated EGFR, PDGFRβ, ROR2, ERK1/2, or Hsp27 in all
samples are also in accordance with previously published findings
on Burkitt lymphoma (30, 31). Interestingly, activation of EGFR
and ERK signaling via EBV oncoprotein LMP1 was also reported
(32, 33) and our results thus concur with the latent EBV infection
as suggested by serological analysis.

One of the most interesting observations was the discordance
between laboratory and clinical responses to biomarker-
based targeted therapy in case 1. Even though there was
evidence of normalization of PI3K pathway activity, the
evidence of radiological response was significantly delayed
and gave an impression that the patient continued to
progress. As has been frequently observed with biological
therapies, the biomarker response may be more informative
and preceded in this case the radiological response. While
using biological therapies, we must allow sufficient time
to pass before the patient is evaluated using present
radiomorphological methods.

As we show, in cases where individualization of treatment
protocols can be based on the recent molecular information,
the likelihood of successful therapy may be increased, but
the use of a targeted agent without laboratory evidence of
contemporary target activation may not only lack benefit—
it may even be harmful. Similarly, while treating sepsis, we
are not using several-month-old microbiology results to guide
antimicrobial treatment. Considering that there are presently
numerous initiatives intending to study the addition of idelalisib
and/or ibrutinib to existing retrieval therapies for relapsed and
refractory mature B-cell lymphomas, it may be of value to
collect enough samples for tumor tissue analysis and enable
similar retrospective comparisons of patients who either failed
or responded to therapy. An attractive concept inspired by our
cases may be the successful sequence of different treatment
modalities, such as intensive chemotherapy to debulk the initial
tumor volume, followed by targeted biomarker-based treatment
and stimulation of autologous immune response later on to
consolidate the response.
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CONCLUSION

Precision medicine has significantly altered the practice of
clinical oncology, but no standardized approach to the choice of
these therapies exists. The three cases presented here emphasize
that despite similarities in the presentation, histology, age, tumor
site, and initial treatment response, the biology of tumors may
differ significantly between cases andmay change over time. Case
2 patient had an entirely different molecular signature and thus
biology, without underlying relevant germlinemutation, but such
differences inmolecular profile could be appreciated in retrospect
only.We conclude that considering the dire outcomes of relapsed
Burkitt lymphoma, theranostic testing may identify the most
frequentmolecular profiles that lead to therapeutic resistance and
may help to improve frontline therapies sufficiently to prevent
relapses and 1 day to replace our decade-old and toxic drugs like
anthracyclines and alkylating agents.
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