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In this paper we propose a web-based approach for quick visualization of big data from

brain magnetic resonance imaging (MRI) scans using a combination of an automated

image capture and processing system, nonlinear embedding, and interactive data

visualization tools. We draw upon thousands of MRI scans captured via the COllaborative

Imaging and Neuroinformatics Suite (COINS). We then interface the output of several

analysis pipelines based on structural and functional data to a t-distributed stochastic

neighbor embedding (t-SNE) algorithmwhich reduces the number of dimensions for each

scan in the input data set to two dimensions while preserving the local structure of data

sets. Finally, we interactively display the output of this approach via a web-page, based

on data driven documents (D3) JavaScript library. Two distinct approaches were used

to visualize the data. In the first approach, we computed multiple quality control (QC)

values from pre-processed data, which were used as inputs to the t-SNE algorithm. This

approach helps in assessing the quality of each data set relative to others. In the second

case, computed variables of interest (e.g., brain volume or voxel values from segmented

gray matter images) were used as inputs to the t-SNE algorithm. This approach helps

in identifying interesting patterns in the data sets. We demonstrate these approaches

using multiple examples from over 10,000 data sets including (1) quality control measures

calculated from phantom data over time, (2) quality control data from human functional

MRI data across various studies, scanners, sites, (3) volumetric and density measures

from human structural MRI data across various studies, scanners and sites. Results from

(1) and (2) show the potential of our approach to combine t-SNE data reduction with

interactive color coding of variables of interest to quickly identify visually unique clusters

of data (i.e., data sets with poor QC, clustering of data by site) quickly. Results from (3)

demonstrate interesting patterns of gray matter and volume, and evaluate how they map

onto variables including scanners, age, and gender. In sum, the proposed approach

allows researchers to rapidly identify and extract meaningful information from big data

sets. Such tools are becoming increasingly important as datasets grow larger.
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INTRODUCTION

Visualizing high-dimensional data in a quick and simple way
to produce meaningful information is a major challenge in the
field of big data. This is particularly true for the neuroimaging
community, where researchers commonly rely on the visual
inspection of individual images as their primary means of
quality control (QC). Although reasonable for smaller sample
sizes, inspection strategies are limited in their ability to identify
meaningful patterns in large data sets or to update their
strategies as new data are added. Additionally, as technological
innovations, such as multiband MRI pulse sequences (Van Essen
et al., 2012) increase the size and dimensions of the datasets
obtained, it becomes harder to extract meaningful information
due to the complexity and size of the data. Perhaps most
challenging, are data aggregation initiatives attempting to pool
data across multiple imaging sites—especially when the data is
heterogeneous (i.e., data collection protocols differ across sites;
Potkin and Ford, 2009; Van Horn and Toga, 2009; Consortium,
2012; Di Martino et al., 2013). These challenges working with
high dimensional data sets make simple and efficient quality
control and information extraction from brain imaging data quite
demanding.

Here, we propose a new web-based approach based on the
use of a nonlinear embedding algorithm called t-distributed
stochastic neighbor embedding (t-SNE; van der Maaten and
Hinton, 2008) and data driven documents (D3)1 JavaScript for
rapid visualization of large MRI datasets. The input dataset
is passed through the dimension reducing t-SNE algorithm to
create a 2-dimensional (2D) data set while preserving local
relationships. The resulting 2D plot is then visualized on a web
page as 2D interactive scatter plots using D3 JavaScript. Each
point in the plots represents a scan. D3 JavaScript allows us to
show relevant information about each scan on the plots in real
time to help identify the reason behind the grouping of the data.
This visualization tool provides a way for researchers to quickly
identify interesting patterns in the data with respect to differences
across scanners, sites, scanning protocols, scan collection times,
studies, demographic information, and more.

Note, we are not proposing an automated clustering/decision
making approach in this work, rather our goal is to demonstrate
the utility of combining a data reduction approach with
interactive visualization/color coding to provide a way for users
to identify interesting patterns within extremely large data sets.
Once these patterns are identified, a deeper investigation of the
respective data sets could reveal more detailed useful information
(as for example we show for some of the data sets in this paper).
Such an approach does not replace standard QC approaches, but
we contend that additional value is added by providing tools
to provide users with a high-level view of their data. As we
show, such a view can reveal information that is not detected
with standard QC and also provide a useful exploratory tool to
interactively identify how variables of interest are encoded within
the data or to assess how similar newly collected data are to
existing data sets.

1d3, http://d3js.org.

Amongst the existing dimensionality reduction algorithms,
t-SNE effectively minimizes the problem of cost function
optimization and also addresses the “crowding problem,” i.e.,
it produces significantly better visualizations by reducing the
tendency to crowd points together in the center of the map. T-
SNE enables us to create a single map that integrates structure
at many different scales. This is particularly important for
high-dimensional data that lie on several different, but related,
low-dimensional manifolds (or sets), such as images of objects
from multiple classes seen from multiple viewpoints, especially
human brain MRI scans (van der Maaten and Hinton, 2008).
This paper introduces the concept of interactive visualization
by using various types of datasets as shown in Table 1. These
data sets include phantom data, human structural data, and
human functional data from multiple sites and scanners. Next,
we highlight several use cases where this tool can be of use to
understand trends/patterns in the data. Finally, we discuss the
results and also some of the many possible extensions of this idea
(including other algorithms, different metrics, and more).

The t-SNE approach has been used successfully in previous
work to provide data visualization between patients and controls
(Ridgway et al., 2012) or in the context of structural MRI and
diffusion weighted imaging data to visualize males vs. females
(Mwangi et al., 2014). Both of these examples used data from
less than 100 subjects and were focused on a specific problem
which showed promise. In this work we expand to multiple
additional examples including phantom data and various levels
of preprocessing, including data from over 10,000 data sets
in addition to proposing an interactive visualization approach
which can be used to evaluate new data on the fly.

METHODS AND DATA

We demonstrate our approaches with the following use cases:
(1) quality control measures calculated from phantom data,
(2) quality control metrics computed from human functional
MRI data across various studies, scanners, sites, (3) volumetric
measures from human structural MRI data across various
studies, scanners and sites, (4) gray matter density values from
all brain voxels. We leverage thousands of datasets including
phantom, human brain structure, and human brain function
datasets captured via an existing neuroinformatics data capture
and management system called the COllaborative Imaging
and Neuroinformatics Suite (COINS; http://coins.mrn.org; Scott
et al., 2011; King et al., 2014; Wood et al., 2014) to demonstrate
the potential of the proposed visualization technique (more
details on COINS can be found in Appendix A). Written
consent was obtained from all subjects according to institutional
guidelines at the University of New Mexico Human Research
Protections Office or The Colorado University-Boulder’s IRB
Office and all data were anonymized prior to group analysis.
An automated analysis pipeline is run on the data, producing
a preprocessed data set, which is then processed via the t-
SNE algorithm. The t-SNE algorithm reduces the number
of dimensions for each scan in the input data set to two,
using principal component analysis (PCA) and a nonlinear
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TABLE 1 | Overview of various data and experiments.

Type of data Size of

input

dataset

t-SNE inputs Number of

dimensions of input

dataset

Number of

Dimensions after

running PCA

t-SNE

learning rate

t-SNE perplexity

Phantom 277 Pre-processed QC values 4 4 500 30

fMRI 3910 Pre-processed QC values 6 6 1000 30

sMRI-1 (Pre-processed data

from FreeSurfer pipeline)

2806 Free Surfer volumetric

measurements of various

brain regions

65 50 1000 30

sMRI-2 (Pre-processed gray

matter images from VBM

pipeline)

9963 Voxel values from gray

matter segmentation

images

9919 50 1000 20

ABIDE fMRI 1153 Pre-processed QC values 22 22 1000 30

Software Matlab Version 7.12.0.635 (R2011a) 64-bit (glnxa64)

Operating system Ubuntu Version 12.04

Processor Intel(R) Xeon(R) CPU E7-4870

Processor speed 2.4 GHz

Number of CPU cores 10

Number of Threads 20

Cache size 30 MB

RAM 512 GB

dimensionality reduction technique, while preserving the local
structure of data sets (van der Maaten and Hinton, 2008). Based
on the specific use case, different data can be provided as input.
The number of dimensions of the input dataset is the number of
inputs passed to the t-SNE, i.e., QC metrics, brain volumes, or
voxel values in the examples we provide.

Two distinct approaches were used to visualize the data. In
the first approach, we computed multiple summary QC values
from the data and used these as inputs to the t-SNE algorithm.
In the second case, computed variables of interest (e.g., brain
volume), and the voxel values from the pre-processed graymatter
images from complete brain were used as inputs to the t-SNE
algorithm. These approaches are by no means exhaustive; rather,
the metrics outlined in this paper are only a few of many possible
metrics, chosen to demonstrate the potential of the proposed
visualization technique. Nonetheless, the t-SNE inputs used in
the proposed technique have proven to be robust, in terms of
extracting meaningful information from data across various sites
and studies.

Table 1 shows the summary of various datasets used and the
respective experimental setup. We indicate the size of the input
dataset in subjects, while the t-SNE learning rate and t-SNE
perplexity are dimensionless. Note, that PCA was not run on
the phantom and fMRI QC datasets for our initial use cases
since the input dimension was small. ABIDE fMRI data sets
were evaluated with several PCA dimensions including 15 and
5, and the overall results were robust to the choice of PCA
dimension. These results are shown in Figure A4. The sMRI data
sets were reduced somewhat, and for these we also evaluated
higher PCA dimensions including 100 and 150 and found our
conclusions were similar regardless of the specific value (though
more testing could be done for this in future work). This is

also generally true of the other two parameters (perplexity and
learning rate). Learning rate controls the rate of change of the
algorithm parameters during the learning process. For learning
rate, the default parameter was 500, we increase this value for
the more complex data sets, but the results were similar. Some
of the results using various learning rate values on ABIDE fMRI
data set are shown in Figure A5. Perplexity is a measure for
information, defined as 2 to the power of the Shannon entropy.
The perplexity of a fair die with k sides is equal to k. In t-SNE, the
perplexity influences the number of effective nearest neighbors.
The performance of t-SNE is fairly robust under different settings
of the perplexity. Some of the results using various perplexity
values on sMRI-2 data set are shown in Figure A6. Typical values
for the perplexity range between 5 and 50. Other default values of
input parameters of t-SNE are outlined in Appendix B. Appendix
C shows detailed summary of the input datasets with respect to
scanner type and studies.

t-SNE Nonlinear Embedding
For the t-SNE algorithm each data set is first converted to a
matrix of N rows andM columns, where N is the number of
datasets andM is the number of dimensions of each dataset.
For example, if we have 10 scans and each scan has 60 QC
measures, then the size of the matrix is 10 rows and 60
columns. We first apply PCA on this dataset to reduce the
dimensionality of the data. This speeds up the computation
of pairwise distances between the data points and suppresses
noise without severely distorting the interpoint distances. Then a
nonlinear dimensionality reduction algorithm is used to convert
the PCA-reduced representation to a two-dimensional map. The
resulting map is displayed as a scatterplot. The X and Y axis in
all the scatterplots are the values of the two dimensions from
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the t-SNE output. Depending on the modality, the correlation
between dimensions of the input dataset and the type of data
(e.g., phantom data, structural MRI, functional MRI), the values
of various parameters in the t-SNE algorithm are manually tuned
but the specific value did not have a huge impact on the overall
pattern observed (see Table 1). The accuracy of the grouping
of datasets from results of this algorithm is verified by manual
examination of the scans.

We briefly review the t-SNE algorithm as follows: The
input data set is X = {x1, x2, x3, . . . , xn} and the
resulting low-dimensional data is represented as YT =

{y1, y2, y3, . . . , yn}. Stochastic neighbor embedding (SNE) first
converts the high-dimensional Euclidean distances between data
points into conditional probabilities that represent similarities.
The similarity of data point xj to datapoint xi can be computed
as a conditional probability, pj|i, such that xi would pick xj
as its neighbor if neighbors were picked in proportion to
their probability density under a Gaussian centered at xi with
standard deviation i. For nearby data points, pj|i is relatively
high, whereas for widely separated data points, pj|i will be almost
infinitesimal (for reasonable values of σ i). We can compute a
similar probability, qi, based on the output data. The perplexity is
defined as Perp (Pi) = 2H(Pi) whereH(Pi) is the Shannon entropy
of Pi. Based on the above, a cost function C, the Kullback-Leibler
divergence between P and the Student-t based joint probability
distribution Q, where P and Q represent the afore mentioned
conditional probabilities over all other data points or map points,
can be computed and optimized via a gradient descent method

as δC
δyi

= 4
∑

j

(

pij − qij
) (

yi − yj
)

(

1+
∥

∥yi − yj
∥

∥

2
)−1

. The basic

algorithm is as follows (van der Maaten and Hinton, 2008):

begin
compute pairwise affinities pj|i with perplexity Perp (as
defined above)
set pij = (pj|i + pi|j)/(2n)

sample initial solution y(0) =
{

y1, y2, . . . , yn
)

from N (0, 10−4I)
for t=1 to T do

compute low-dimensional affinities qij (as defined
above)
compute gradient δC/δy (as defined above)

set y(t) = y(t−1) + η

(

δC
δy

)

+ α(t)(y(t−1) − y(t−2))

end
end

There are multiple parameters that need to be selected including
the cost function parameter perplexity and the optimization
parameters the number of iterations T, the learning rate η, and
the momentum α(t). The optimization of these parameters for
a specific application domain is needed, though in our initial
evaluations the results were relatively robust to changes in the
parameters. It may be useful for the user to tweak these as another
aid in the visualization of the data, thus in our implementation
we provide access to these parameters for the user. Additional
information on the t-SNE algorithm can be found in van der

Maaten and Hinton (van der Maaten and Hinton, 2008). As

described in van der Maaten and Hinton (2008), the momentum
term is used to reduce the number of iterations required and
works best if the momentum term is small until the map points
have become moderately well organized.

Implementation
While the approach we mention is general and can be
implemented in a variety of ways, we have integrated the
proposed web-based t-SNE visualization into COINS to enable
easy access to tools for either prospective data currently being
captured or for retrospective data uploaded after the fact (e.g.,
consortia created from previously collected data). This also
enables us to take advantage of the large amount of data already
captured within COINS with a goal of both demonstrating the
feasibility of the approach and also offering such tools to existing
COINS users. In addition to the COINS implementation, we also
provide source code to enable implementation of the proposed
approach in other tools as well. The source code is implemented
in Matlab Version 7.12.0.635 (R2011a) 64-bit (glnxa64), which
is a modified version of Van der Maaten’s implementation freely
available at https://lvdmaaten.github.io/tsne/#implementations.
The block diagram shown in Figure 1 outlines the steps involved
in method and implementation of the proposed technique. The
questionnaire and assessment data will be used in the future
works. Next we introduce 5 key use cases starting with phantom
data.

Phantom Data
Phantom scans are typically collected at various sites to perform
quality control on the scanner. In certain scenarios (e.g., study
specific protocols or regular scanner QC protocols) phantom
scans are acquired using a study specific protocol. Figure 2 shows
the cross section of a standard phantom scan. We used phantom
data from a Siemens 3T TIM Trio scanner with the following
parameters: TR = 800ms, TE = 30ms, slice thickness = 5mm,
number of time points = 500. Numerous QC metrics can be
derived from phantom scans across multiple sites (Friedman and
Glover, 2006) and tracked in real time; in our case we use a
few simple metrics to demonstrate the concept of our proposed
approach.

Inputs to t-SNE

We computed the following temporal QC measures from the
preprocessed data to demonstrate the potential of the proposed
technique to identify inconsistencies in the phantom scan
collection from specific scanner and site. For each phantom
scan in the above dataset, we extract the mean 49 voxels from
central 7x7 neighborhood for each of the 500 time points
µmid(i) where i ∈ {1500} and compute the mean over
time µmid = 1

N6500
1 µmid(i), the temporal forward difference

(temporal derivative) of µmid(i), △µmid(i) where i ∈ {1499},
and the mean of the temporal forward difference △µmid =
1
N6499

1 △µmid(i). These were used to compute the four following
temporal QC parameters (which measure mean and maximum
stability over time, and mean and maximum stability of the
change in time over time).
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FIGURE 1 | Block diagram outlining methods and implementation. The arrows represent the next steps.

QC1 =

{

max
i

µmid (i)−min
i

µmid (i)

}

/µmid

QC2 =

√

√

√

√

1

N

500
∑

1

(µmid (i)−µmid)
2

QC3 = max
i

△µmid (i)−min
i

△µmid(i)

QC4 =

√

√

√

√

1

N

500
∑

1

(

△µmid (i)−△µmid

)2

QC1 is a measure of the range of intensity values normalized by
using the mean of the center neighborhood of the scan. QC2 is a
measure of range of intensity values, accounting for the changes
in the phantom scan from one time point to another. QC3 and
QC4 are the standard deviation of the center neighborhood and
the derivative of the same. The measures QC1 through QC4

were given as inputs to the t-SNE algorithm and interactive
scatter plots with color coding were created to visualize the
phantom datasets and identify distinct clusters of data in a visual
comparison to other clusters. Table 1 lists the values of the
parameters used in the t-SNE algorithm.

Human Brain Data: Functional MRI
The fMRI dataset included echo planar imaging data from
Table 1 using a variety of protocols across multiple sites and
studies. The data were automatically preprocessed including slice
time correction, motion correction, and spatial normalization
using the statistical parametric mapping (SPM5) toolbox
(Ashburner and Friston, 2000, 2005). The following QC values
are computed from these data and are given as inputs to t-SNE
algorithm.

• Spatial normalization diagnostics:

FIGURE 2 | Sample phantom scan.

◦ Pearson correlation of the normalized slice time-corrected
nifti image with the SPMMNI template.

◦ Spearman correlation value of the normalized slice
time-corrected nifti image with the SPM MNI
template.

The above correlationmetric that we use have been vetted on tens
of thousands of data sets collected across multiple scanners and
sites, and has been used in previously published work to identify
outliers (Segall et al., 2012).

• Motion diagnostics:

◦ Translational distance along x, y, z: S =
(

x2 + y2 + z2
)1/2

where x, y, and z are the movement (measured in
millimeters) of each time point with respect to the reference,
measured along the x, y, and z axis, respectively.

◦ Framewise displacement root mean squared: FDrms =

diff
[

pitch2 + roll2 + yaw2
)1/2

.

◦ pitch, roll, and yaw are the movement (measured in radians)
of each time point with respect to the reference, measured
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along pitch, roll, and yaw, respectively. Diff gives the
difference between movement of each time point to its
previous time point, starting from the second. The following
QC metrics are computed from the translational distance
and framewise displacement values calculated using the
above equations.

◦ mean (S).
◦ max (S).
◦ mean (FDrms).
◦ max (FDrms).

Human Brain Data: Freesurfer Volumes
The sMRI datasets include 3D T1-weighted scans across a
variety of studies in various stages of data collection and are
shown as SMRI-1 in Table 1. These data are preprocessed
using FreeSurfer v. 5.3 resulting in volumetric measurements
of various brain regions (Fischl, 2012). A standard FreeSurfer
pipeline for surface and volume based reconstruction is used
for preprocessing the data. FreeSurfer contains a fully automatic
structural imaging stream for processing cross sectional and
longitudinal data. It provides many anatomical analysis tools,
including: representation of the cortical surface between white
and gray matter, representation of the pial surface, segmentation
of white matter from the rest of the brain, skull stripping,
B1 bias field correction, nonlinear registration of the cortical
surface of an individual with a stereotaxic atlas, labeling of
regions of the cortical surface, statistical analysis of group
morphometry differences, and labeling of subcortical brain
structures. From this dataset, 65 volumetric measurements
from various brain regions (i.e., FreeSurfer aparc regions as
outlined in the Appendix D) were used as inputs to the t-
SNE algorithm. The labels for these regions are outlined in
Appendix C.

Human Brain Data: Voxel Based
Morphometry Gray Matter Maps
The sMRI scans from the SMRI-2 dataset, also including 3D T1-
weighted pulse sequences from a variety of studies in various
stages of data collection, are shown in Table 1. These data
are run through a voxel based morphometry (VBM) pipeline
using the SPM5 software. VBM is a neuroimaging analysis
technique that allows investigation of focal differences in brain
anatomy, using the statistical approach of statistical parametric
mapping (Ashburner and Friston, 2000, 2005). The unmodulated
gray matter concentration images from the VBM pipeline are
normalized to the SPM template. The use of modulated vs.
non-modulated is a choice which is made quite variably in
the literature and in some cases the non-modulated maps are
preferable (Meda et al., 2008). Our proposed approach can
be used on either or both depending on the goals. For each
scan, the voxel values at every location from all the brain
slices are first summed across slices to reduce computational
complexity and run time in the conceptual approach, resulting
in a matrix size of 91 × 109. All the voxel values from
this image from each scan are then used as inputs to t-SNE
algorithm.

RESULTS

We review results from each of the four use cases described in the
Methods Section. In addition, a demo of the t-SNE visualization
is available at http://portal.mrn.org/d3vis_demo.

Phantom Data
The phantom was scanned over 1868 days. t-SNE results color
coded by date are shown in Figure 3. The computation time
for running the t-SNE on 277 phantom scans of 4 dimensions
is ∼30 s. The plot shown in Figure 3B reveals that there was an
inconsistency in the indicated phantom scan which was collected
on September 27, 2010 at 8:56 p.m. The meta-information for
each scan including the scan date is found by hovering the mouse
over each scan in the plots. Figure 3 shows example time courses
for the extreme phantom (Figure 3B) scan relative to a more
central phantom scan (Figure 3A), which is picked arbitrarily to
show the difference in the scan collection. Two key observations
are that (1) the scale of change is much larger for example 2
and (2) there is clear evidence of an initial drift downward in
example 2. The proposed phantom visualization tool enabled a
quick summary of how any given phantom scan compares on a
number of QC measures in a single 2D plot. We only used four
of many possible QC measures in this plot; ideally one would
incorporate spatial, temporal, and other QC measures within the
analysis. Scans in the plots that are far from themajority of points
or on the edge provide a guide for further exploration that can
readily be followed up. Such an approach can help establish a
consistent data collection environment over a large period of time
across various scanners, sites, hardware upgrades and collection
protocols.

Human Brain Data: Functional MRI
The compilation time for running the t-SNE on 3910 datasets
of six dimensions each is ∼10min on a computer with the
configuration detailed in Table 1. Figures 4A,B depicts the
resulting plot color coded by scan date and site/scanner,
respectively. One of the advantages of our D3 implementation,
which helps enhance the usability of our proposed approach,
is the interactivity of the available information. For example,
Figure 4A (left) shows additional meta-data that are displayed
dynamically by the D3 JavaScript interface within the web
browser. Based on the provided input data, information about
each data point in the plot is displayed by hovering over the dots.
This helps in identifying the reason behind grouping of the data
with respect to study, scan date, type of scan and values of QC
measures and one can also use this to “drill down” to the input
data.

Figure 4B reveals that the scans are grouped well according
to their input QC measures. This was verified by checking the
QC values of various scans in real time on the web page. Four
somewhat visually distinct groups are identified in the Figure 4B
(right). Several interesting observations about these groups are
worth pointing out.

First, group 3 and 4 were farther away from the majority of
data points than the rest. Group 3 is comprised of scans which
had high motion relative to the scans outside of this group.
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FIGURE 3 | t-SNE output for the phantom data. Note, the X and Y coordinate on the plot are not labels as they are arbitrary and simply represent the two

dimensions of the t-SNE result, one can infer that if two points are closer together in the 2D graph their data are more similar to one another as quantified by the t-SNE

criteria mentioned above. Each point represents a single scan. Two representative points [(B) one from an extreme case representing a relatively poor QC result and

(A) one near the middle of the points] are marked in the figure. In this case it thus appears that the “worse” QC values are in the upper right corner of the plot.

These scans had relatively high value of maximum translation
distance and maximum framewise displacement, compared to
the scans in groups 1, 2, and 4. A majority of the scans in this
group were from the 1.5T scanner. A closer look at the scans
in group 4 revealed that they are also noticeably different (and
of poor quality) compared to scans outside these groups. The
majority of the scans in this group are from the second 3T
dataset from a specific study with a very different acquisition
protocol than the other studies. All the 120 scans from this
study (group 4) were acquired between July 17, 2012 and July
27, 2012. This type of information might be useful during data
collection of a new study, e.g., to adjust parameters or evaluate
consistency across various studies. Importantly, two groups (3
and 4) captured high motion and noticeably poor quality scans,
respectively. Groups 1 and 2 both appeared to be of good
quality. Likely with additional QC measures (incorporating both
spatial and temporal measures) the results will be even more
informative.

We also performed a similar analysis of the autism brain
imaging data exchange (ABIDE) resting fMRI data, which is
available via the COINS data exchange (http://coins.mrn.org/
dx). The ABIDE data has been pre-processed and multiple
spatial and temporal QCmeasures are provided at https://github.
com/preprocessed-connectomes-project/quality-assessment-pro
tocol/tree/master/normative_data. This dataset is labeled ABIDE

fMRI in Table 1. We incorporated both the spatial and temporal
QC measures into a t-SNE analysis. Results are reported in
Figure 5 and are color coded by site. In this case, the data were
collected in a heterogeneous (non-coordinated) manner and it
is clear that the QC measures are considerably more visually
distinct and highly correlated with the site of data collection
(though some of the sites do group together tightly). We also
evaluated results by scanner type and vendor, while this was
highly related to site, it was clear that it was not the scanner
type that was the primary driver in the similarity. We speculate
that the largest source of variation is likely due to the specific
instructions and data collection protocol that was followed for
the study. While we were not able to assess in this study, it would
be very interesting to understand what about the data collection
resulted in different sites being more or less similar. This could
aid in planning future studies.

These initial results provide a proof-of-concept that a lower
dimensional visualization approach like t-SNE has the potential
to provide useful groupings of fMRI data based on QC metrics.
Next we summarize results from two different sMRI use cases. In
both of these cases, instead of utilizing QC metrics we use values
based on volumetric measurements of various brain regions or
gray matter concentration, in order to demonstrate the potential
of our proposed approach to visualize these data along various
dimensions.
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FIGURE 4 | (A) FMRI t-SNE scatter plot-color coded by (left) date of scan, and (B) (right) scanner type. Groups 1 and 2 both appeared to include good quality scans

but were farther away from the majority of points than the other groups. Group 3 demonstrated high motion. Group 4 scans were noticeably different compared to

scans outside these groups (see example thumbnails in figure). Note, the X and Y coordinate on the plot are not labels as they are arbitrary and simply represent the

two dimensions of the t-SNE result, one can infer that if two points are closer together in the 2D graph their data are more similar to one another as quantified by the

t-SNE criteria mentioned above.

FIGURE 5 | ABIDE fMRI Data. Note, the X and Y coordinate on the plot are

not labels as they are arbitrary and simply represent the two dimensions of the

t-SNE result, one can infer that if two points are closer together in the 2D

graph their data are more similar to one another as quantified by the t-SNE

criteria mentioned above.

Human Brain Data: Freesurfer Volumes
The first sMRI use case involves t-SNE visualization of FreeSurfer
volumetric values. The compilation time for running t-SNE on
2806 datasets of 65 dimensions each is ∼20min. Using the
resulting t-SNE scatter plot, we color code along four different
categories (each of which is available in a dropdown box from
the browser) as shown in Figure 6. Figure 6A is color coded
by the three different scanners included in the data set. In the
scatter plot shown in Figure 6B, every day from the first scan

to the last scan in the dataset is given a color on the heat map
for easy visualization of scans that are collected in the similar
period of time. Note that most of the more recent scans are on
the “outside” rim of the partial circle of data. Figure 6C shows
that the males and females are grouped in different regions in the
plot. In Figure 6D results are presented as a function of subject
age. As shown in Figure 6D, the oldest subject in the dataset is 88
years old, the mean age is 32.81 years and the standard deviation
is 12.86. Results show a visible trend in the way, the younger to
older population are grouped in the plot; younger subjects are on
the periphery and older subjects toward the center (as indicated
by the pink arrows).

Human Brain Data: Voxel Based
Morphometry Gray Matter Maps
In the last use case, voxelwise (reduced) VBM results are analyzed
with t-SNE. Because running the t-SNE on 9963 datasets of 9919
dimensions each takes ∼7 h, real-time computation of the plots
is not practical. Nonetheless, it is still possible to calculate a new
plot daily. Color coding of various categories (as in the four
plots below) is not computationally expensive and can be done
dynamically within the browser based on user selection. The
plot in Figure 7A reveals that the structural scans collected from
the 1.5T scanner are systematically different compared to scans
collected on the 3T scanner. Both show a similar spiral-like shape,
but they are mostly not overlapping. Figure 7B is color coded
by time of day when the scan was collected (this was in part
done due to the recent finding that time of day was associated
with brain volume; Nakamura et al., 2015). In our cases, the
data did not obviously support such a conclusion. Figure 7C
shows that majority of the scans from the 1.5T data are from
males. Figure 7D shows the scans from a few selected studies.
Using the proposed visualization tool, the user can select specific
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FIGURE 6 | t-SNE plots color coded by (A) Scanner type (B) Day of scan (C) Gender, and (D) Age. Note, the X and Y coordinate on the plot are not labels as

they are arbitrary and simply represent the two dimensions of the t-SNE result, one can infer that if two points are closer together in the 2D graph their data are more

similar to one another as quantified by the t-SNE criteria mentioned above.

studies from a list and potentially identify interesting patterns
in the data across studies of interest. This information helps us
recognize and estimate the effect of the type of scanner, scanning
protocol, study, and other variables on the data. Note, we also
compared results for several PCA settings and they were similar
(see Figure A7).

In Figure 8 the data are colored by age, revealing some
interesting results. The oldest subject in the dataset is 89 years
old, the mean age is 30.95 years and the standard deviation
is 15.02 years. Four groups were visually identified in Figure 8

and several interesting patterns were found in those datasets.
First, this plot reveals an interesting trend in the scans collected
from older population to the younger population. This trend is
marked as 1 in Figure 8. Note that both the 1.5 and 3T data,
though mostly not overlapping, are showing the same trend from
old to young. We also see that the younger subjects have more
variability (scatter) in the plot than the older subjects. The scans
in group 2 are from an infant population and are grouped in a
tight group indicating that the t-SNE algorithm grouped similar
datasets efficiently. The scans in group 3 are the scans from the
same subject who appeared multiple times under the same or
different studies. Scans from the same subject scanned multiple

times have nearly identical location on the plot. Next, for group
4 we observed that the majority of the scans were collected more
recently relative to the scans collected outside of this group. After
examining the scans, it was noted that the gray matter maps of
these scans deviated significantly from the data outside group 4
in a way that suggested a problematic segmentation (see example
insets in the figure). Finally, we noticed that some scans from
younger population are grouped with the scans of the older
population and vice versa. Some of these scans are shown in
Figure 8, highlighting the fact that their scans deviated from the
other data and suggest a problematic segmentation or input data.
These populations could be interesting to study as they indicate
a unique structural pattern in the brain visually compared to the
population in their age demographics, such as older individuals
who show less or greater reductions in brain volume compared
to their age-specific cohort.

DISCUSSION

Using a novel visualization technique, we extracted meaningful
information from large, neuroimaging data sets. This technique
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FIGURE 7 | t-SNE plots color coded by (A) Scanner type (B) Scan acquisition time (C) Gender, and (D) Studies. Note, the X and Y coordinate on the plot are

not labels as they are arbitrary and simply represent the two dimensions of the t-SNE result, one can infer that if two points are closer together in the 2D graph their

data are more similar to one another as quantified by the t-SNE criteria mentioned above.

has great potential in enhancing quality control for large data
sets and enables enhanced pattern identification across data sets
coming from a diverse set of sites, scanners, and participant
demographics. It can be used to help identify “low quality” data
sets or to identify data sets that require additional processing.
In addition, it can be used to identify interesting patterns with
variables of interest such as age, gender, or diagnosis.

These methods build on previous work in large-scale
neuroimaging developments, including comparisons across
scanners and equipment, and quality assurancemetrics for multi-
scanner studies (Gunter et al., 2009; Glover et al., 2012; Chen
et al., 2014; Turner, 2014). This platform now leverages those
approaches and resulting large datasets for a more dynamic
look at trends across various neuroimaging measures. As large
neuroinformatics resources become more common, the ability
to quickly perform these large comparisons becomes a valuable
tool to assist with identification of outliers in the data sets.
The availability of large datasets has led to recommendations of
different methods for what qualifies a data set as unusable. For
example, Yan et al. (2013), who used large, publicly available

resting state fMRI datasets to compare different movement
correction techniques within different analyses. By examining the
commonalities and differences across these methods they were
able to developmore general and also nuanced recommendations
(Yan et al., 2013). Currently, the threshold beyond which data
are not usable depends on the analysis being done and the
comparability of the remaining data. Being able to rapidly visually
compare datasets across a range of QC measures enables more
targeted identification of unusable data, by identifying datapoints
that are outliers not on any single QC measure but across a
number of them.

A related project includes INVIZIAN (Bowman et al.,
2012), which clusters large samples of brain measures based
on similarity, and allowed visualization for a more informed,
detailed comparison of a given subject’s data against the
others. Existing approaches can be found at qc.loni.usc.edu and
www.neugrid4you.eu, though these are primarily designed as
QC feedback approaches rather than interactive visualization
and comparison. The COINS visualization platform is intended
for large data visualization at a glance, rather than more
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FIGURE 8 | t-SNE plot color coded by age. Groups 1–4 were visually identified and highlighted based on interesting observation and are discussed in the text.

Note, the X and Y coordinate on the plot are not labels as they are arbitrary and simply represent the two dimensions of the t-SNE result, one can infer that if two

points are closer together in the 2D graph their data are more similar to one another as quantified by the t-SNE criteria mentioned above.

detailed inter-subject comparisons. Our approach, and those
enabling finer-grained comparisons would work well in tandem,
with the combination of multiple visualizations at different
scales affording both rapid subtyping, and detailed comparisons
for more specific hypotheses. Another recent project found
meaningful clusters using multimodal imaging data (Mwangi
et al., 2014). Another recent example showed a relationship of
measures based on gray matter segmentation with Huntington’s
disease severity in which the output of a deep learning analysis
was visualized using tSNE (Plis et al., 2014). This approach,
combined with the multiple examples in the current study,
suggest a promising future for such visualization of patterns
of regularities related to brain data. Future studies should
examine whether diagnostic categories can be meaningfully
captured (or refined into subcategories by using the multi-
dimensional dimension reduction approach employed here). A
More generally neurophenotyping efforts may benefit from such
approaches.

Limitations and Future Work
There are several limitations of the current work. First, we
have incorporated only a limited number of QC metrics in
order to demonstrate the utility and feasibility of the approach.
Certainly for large-scale use, the number of metrics should be
increased, and the impact of the incorporated metrics should

be systematically evaluated. In addition, the t-SNE approach we
use is only one possible approach to visualization. The choice
of t-SNE parameters is data dependent, and thus more work
needs to be done to determine these parameters, however in
our experience, the overall patterns were robust on a range of
parameter choices. In general, we suggest providing a tunable
interface so end users can adjust the parameters as desired.
Future iterations could further optimize the code and potentially
increase the computational capacity to reduce the run time
of the t-SNE algorithm. And finally, the relationship between
the number of subjects and the number of input parameters
should be further explored to identify the potentially limitations.
There is a growing need for approaches like the one we present,
as large shared datasets and multi-site studies are increasing.
The current study clearly shows the potential for such an
approach. There are numerous other applications, including
comparison of different processing pipelines, or visualization
of data that was processed differently. Many studies currently
include visualization for specific project or goal (Fox et al.,
2011; Romano et al., 2014). What we are proposing is a general
visualization tool that can provide information about the data
“as it arrives” with a goal of bringing the investigator closer
to the data to capture unanticipated patterns. Our visualization
approach can also be applied to questionnaire or clinical data
as well. Decentralized processing approaches, including those
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that incorporate additional privacy protection, can also benefit
greatly from such tools (Sarwate et al., 2014; Carter et al., 2015).
Automated approaches for identifying relevant clusters will also
be important going forward, but are not the focus of this work.
In conclusion, we believe this work shows a promising future
directly that needs to expand dramatically going forward.

CONCLUSIONS

The results from the proposed technique show the
potential benefit of using 2D visualization to explore high-
dimensional brain imaging QC metrics or variables of
interest. As neuroimaging data collection methods expand
and standardization becomes difficult, this visualization
technique provides an easy way to perform quality control and
find interesting patterns in datasets across multiple sites, studies,
and other variables of interest. In future work, we plan to apply
this technique to larger datasets and datasets outside the field of
neuroscience as well as evaluate the utility of 3D visualization
approaches for improving the grouping of datasets. In addition,

it may have utility in identifying “biomarkers” of different
neurological or psychiatric disorders.
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APPENDIX A: COINS IMPLEMENTATION

The core infrastructure onto which we demonstrate the proposed
QC approach is built is COINS (http://coins.mrn.org; Scott
et al., 2011), a mature end-to-end system for data capture and
study management (King et al., 2014), archiving, and sharing
(Wood et al., 2014), with a large variety of available features (see
Figure A1). COINS currently serves multiple investigators and
imaging centers world-wide (see Figure A2; Bockholt et al., 2009;
Scott et al., 2011; King et al., 2014; Wood et al., 2014). COINS

includes a set of tools that enables study specific automated and
manual capture and archiving of phantom or human DICOM
data in an organized manner in addition to an extensive suite
of non-imaging data visualization tools. The COINS system
also provide a dashboard tool to visualize summary metrics on
demand. COINS can handle a variety of imaging modalities and
analysis tools, and includes data capture and archival services that
automate the transfer, organization, backup and processing of

FIGURE A1 | A high-level overview of COINS Features. COINS provides a full suite of tools including image and assessment capture, study management,

security, offline data capture, and data export and reporting. For more information about COINS, see http://coins.mrn.org and previous publications (Scott et al.,

2011; King et al., 2014; Wood et al., 2014)2.

2Collaborative informatics and neuroimaging suite (COINS), http://coins.mrn.org.
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FIGURE A2 | COINS data consumers and providers (34 states and 42

countries).

imaging data directly from the MRI scanner. COINS was used
to upload/share data for the CoRR consortium consisting of
over 4000 rest fMRI datasets (Zuo et al., 2014) as well as
the enhanced NKI Rockland dataset (1000 participants with
extensive phenotyping)3. COINS fully integrates offline and
online handling of multi-site study management, radiology

reading, assessments including advanced question types (King
et al., 2014), DICOM image capture, and automated processing
(Wood et al., 2014). COINS is also a fully hardened multi-site
tool, with site-specific management tools, a range of secure user
roles and encryption. Containing over 40,000+ imaging sessions
from 33,000+ participants and 440,000+ assessments, COINS
has undergone substantial testing and continues to grow. COINS
tools assimilate and validate data automatically and incorporate
tools for automated range checking and scoring (Scott et al., 2011;
King et al., 2012).
One key aspect of COINS is the incorporation of multiple quality
assurance (QA) and QC tools. One example of this is for non-
imaging data including tools such as range-checking of question
responses, automated queuing of questionnaires, and automated
scoring (King et al., 2014). Regarding imaging data examples of
such tools include automated DICOM archiving by study, and
the DICOM QC tool which enables instant checking of DICOM
parameters to identify deviations in a given protocol as soon as
possible (see Figure A3).

3NKI-Rockland Sample, http://fcon_1000.projects.nitrc.org/indi/enhanced/.

FIGURE A3 | DICOM QC tool enables selection of one or more dicom parameters for tracking.

Frontiers in Neuroinformatics | www.frontiersin.org 15 March 2016 | Volume 10 | Article 9

http://fcon_1000.projects.nitrc.org/indi/enhanced/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Panta et al. Visualization of High-Dimensional Brain Imaging Data

APPENDIX B: PARAMETERS USED FOR
TSNE

Maximum number of Iterations 2000
Initial momentum 0.5
Final momentum 0.8
Iteration at which momentum is changed 250

APPENDIX C: SUMMARY OF DATA

FMRI dataset

Site Scanner # Studies # Scans

1 Siemens 3T Triotim 37 2183
1 1.5T 3 1022
2 Siemens 3T Triotim 22 705

Total=3910

sMRI dataset from FreeSurfer v. 5.3

Site Scanner # Studies # Scans

1 Siemens 3T Triotim 26 1443
1 Siemens 1.5T Avanto 8 1143
2 Siemens 3T Triotim 12 220

Total=2806

sMRI Gray matter images whole brain dataset

Site Scanner # Studies # Scans

Mind
Research
Network

Siemens 3T Triotim 121 7232

Mind
Research
Network

Siemens 1.5T Avanto 9 2731

Total=9963

APPENDIX D: FREESURFER LABELS USED
FOR SMRI DATA

Left-Lateral-Ventricle
Left-Inf-Lat-Vent
Left-Cerebellum-White-Matter
Left-Cerebellum-Cortex
Left-Thalamus-Proper
Left-Caudate
Left-Putamen
Left-Pallidum
3rd-Ventricle
4th-Ventricle

Brain-Stem
Left-Hippocampus
Left-Amygdala
Cerebrospinal Fluid
Left-Accumbens-area
Left-VentralDC
Left-vessel
Left-choroid-plexus
Right-Lateral-Ventricle
Right-Inf-Lat-Vent
Right-Cerebellum-White-Matter
Right-Cerebellum-Cortex
Right-Thalamus-Proper
Right-Caudate
Right-Putamen
Right-Pallidum
Right-Hippocampus
Right-Amygdala
Right-Accumbens-area
Right-VentralDC
Right-vessel
Right-choroid-plexus
5th-Ventricle
WM-hypointensities
Left-WM-hypointensities
Right-WM-hypointensities
non-WM-hypointensities
Left-non-WM-hypointensities
Right-non-WM-hypointensities
Optic-Chiasm
CC_Posterior
CC_Mid_Posterior
CC_Central
CC_Mid_Anterior
CC_Anterior
BrainSegVol
BrainSegVolNotVent
BrainSegVolNotVentSurf
lhCortexVol
rhCortexVol
CortexVol
lhCorticalWhiteMatterVol
rhCorticalWhiteMatterVol
CorticalWhiteMatterVol
SubCortGrayVol
TotalGrayVol
SupraTentorialVol
SupraTentorialVolNotVent
SupraTentorialVolNotVentVox
MaskVol
BrainSegVol-to-eTIV
MaskVol-to-eTIV
lhSurfaceHoles
rhSurfaceHoles
SurfaceHoles
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APPENDIX E: T-SNE EXPERIMENTS

FIGURE A4 | ABIDE fMRI PCA experiments. Plots are color coded by site. Note, the X and Y coordinate on the plot are not labels as they are arbitrary and simply

represent the two dimensions of the t-SNE result, one can infer that if two points are closer together in the 2D graph their data are more similar to one another as

quantified by the t-SNE criteria mentioned above.
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FIGURE A5 | ABIDE fMRI Learning rate experiments. Plots are color coded by site. Note, the X and Y coordinate on the plot are not labels as they are arbitrary

and simply represent the two dimensions of the t-SNE result, one can infer that if two points are closer together in the 2D graph their data are more similar to one

another as quantified by the t-SNE criteria mentioned above.
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FIGURE A6 | sMRI-2 perplexity experiments. Plots are color coded by age. Note, the X and Y coordinate on the plot are not labels as they are arbitrary and simply

represent the two dimensions of the t-SNE result, one can infer that if two points are closer together in the 2D graph their data are more similar to one another as

quantified by the t-SNE criteria mentioned above.

FIGURE A7 | sMRI-2 PCA experiments. Single gray matter slice from each subject in the data set was used in these experiments. Plots are color coded by age.

Note, the X and Y coordinate on the plot are not labels as they are arbitrary and simply represent the two dimensions of the t-SNE result, one can infer that if two

points are closer together in the 2D graph their data are more similar to one another as quantified by the t-SNE criteria mentioned above.
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