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Abstract
Glioblastoma Multiforme is a malignant brain tumor with poor prognosis. There have
been numerous attempts to model the invasion of tumorous glioma cells via partial
differential equations in the form of advection–diffusion–reaction equations. The
patient-wise parametrization of these models, and their validation via experimental
data has been found to be difficult, as time sequencemeasurements aremostlymissing.
Also the clinical interest lies in the actual (invisible) tumor extent for a particular
MRI/DTI scan and not in a predictive estimate. Therefore we propose a stationalized
approach to estimate the extent of glioblastoma (GBM) invasion at the time of a
given MRI/DTI scan. The underlying dynamics can be derived from an instationary
GBM model, falling into the wide class of advection-diffusion-reaction equations.
The stationalization is introduced via an analytic solution of the Fisher-KPP equation,
the simplest model in the considered model class. We investigate the applicability in
1D and 2D, in the presence of inhomogeneous diffusion coefficients and on a real 3D
DTI-dataset.
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1 Introduction

Treatment of glioblastoma multiforme (GBM) turmors usually consists of a combina-
tion of tumor resection (operation), radio- and chemotherapy (Sathornsumetee et al.
2007). The treatment planning for this type of tumor is particularly challenging, as
the medical images do not show a clear boundary and cancerous glia cells infiltrate
seemingly healthy tissue far away from the visible center, leading to a diffusive front.
Tumor cells have been histologically cultivated from healthy appearing tissue as far
as 4 cm away from the bulk of the tumor (Silbergeld and Chicoine 1997). The non
invasive medical imaging modalities may only detect the tumor upwards of a finite
density threshold of about 16% of tumor volume percentage (Swanson et al. 2008;
Patel and Hathout 2017), so that tissues are segmented as healty, although they still
contain a significant number of tumor cells.

In clinical practice an average extent of this invisible infiltration of 2 cm normal
to the visible tumor is assumed (Chang et al. 2007). One goal of the mathematical
modeling of GBM is to estimate the extent of resection and radiotherapy to be applied
outside of the tumorous regions visible on the medical images.
Modelling: Many efforts have been made to mathematically describe the behavior of
the tumorous glia cells within the brain. In their review article Alfonso et al. (2017)
discuss the evolution of the mathematical modeling of GBM. They present different
mathematical approaches which include, but are not limited to monte carlo methods,
evolutionary game theory, cellular automata and agent based models. One prominent
mathematical approach has been to describe the proliferation and movement of the
tumor cells by macroscopic partial differential equations (PDE). These PDE’s are
often in the form of diffusion–reaction–advection equations.

The PDE models range from simple reaction-diffusion equations with exponential
growth ( ∂c

∂t = ∇(D∇c) + ρc) (Tracqui et al. 1995) to more involved formulations
(Jbabdi et al. 2005; Swanson et al. 2011; Engwer et al. 2015, 2016; Hunt and Surulescu
2017; Jan Kelkel 2011; Corbin et al. 2018; Conte et al. 2020).

The PDE forward models strive to describe the full temporal and spatial dynamics
of uninterrupted tumor growth. If one wants to use these forward PDE models to
predict the tumor invasion in any particular patient, then the parametrization and the
initial condition have to be known.
Parameters: For all mathematical models a major challenge is the derivation of model
parameters from medical data or experiments. The large number of free parameters in
some of the forward models can not be met with experimental data to estimate them
with reasonable accuracy. In medical practice the diagnosis of high grade GBM is
often rapidly followed by a combination of tumor resection, radio- and chemotherapy,
thereby severely altering the growth characteristics of the tumor (Sathornsumetee et al.
2007). In Figs. 1 and 2 we illustrate the discrepancy between an ideal dataset situation
for research and the realisitc dataset availability in clinical practice. As an exception to
the rule we shouldmention (Stensjøen et al. 2015) where theywere able tomeasure the
growth characteristic (volume increase) of untreated GBM. There have been studies
of lower grade gliomas which were left without treatment Mandonnet et al. (2003).

There have been approaches to assess the growth characteristics and parameters in
in-vitro experiments, e.g. (Oraiopoulou et al. 2018), but it is an open question whether
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Fig. 1 Schematic time line of ideal datasets for the validation of GBM forward models

Fig. 2 Schematic time line of a realistic sequence of measurements. The initial DTI scan after diagnosis
is rapidly followed by a combination of gross tumor resection (OP), radio- and chemotherapy (RT, CT).
During treatment, there may be follow-up MRI’s

the information gathered in these experiments is transferable to in-vivo situations.
Caragher et al. investigated treatments using novel 3D cell culturing methods in the
context of GBM therapy development, but they also remain skeptic of the transfer-
ability (Caragher et al. 2019).

Even if in-vitro experiments may prove essential in understanding the involved bio-
chemistry and qualitative effects, their use for the parametrization problem is limited.
In order to improve our ability to accurately describe GBM invasion in patients the
interlinked problems of parametrization and availability of data have to be addressed.
On a patient by patient level, this is a serious challenge.
Validation: In order to validate any given forward GBM-model given in the form
of advection-diffusion-reaction equations, one would need many time-series of
DTI/MR/CT scans of untreated patients. That setup would allow for direct comparison
of the in-silico experiments and the medical images of the progressing tumors. One
also preferably had these datasets from a large number of representative patients. In
order to retrieve such a dataset, one needed to deprive a high number of patients of
live prolonging treatment while undergoing regular medical scans. The ethical impos-
sibility is obvious.

The DTI-datasets obtained from a patient with GBM at time of diagnosis are not
representative of the healthy state of the subject, as the tumor actively degrades the
structure of the brain. Thus guessing initial conditions, i.e., the position of carciogene-
sis within the degraded DTI-dataset, and running forward simulations can not produce
reliable information.

Even inmore accessible subjects like rodents, it proved difficult to determine a good
parametrization for numerical models. Rutter et al. studied tumor growth in five mice
which were injected with tumorous glia cells under controlled conditions. Even with
a reportedly careful experimental setup, the resulting tumor sizes varied significantly
and fitting parameters of a simple Fisher-KPP tumor model proved difficult (Rutter
et al. 2017). Given the goal of improving the ability to accurately describe the tumor
invasion in real patients, the problem of validation/falsification has to be addressed.
Stationary modeling of the tumor invasion may thus be more appropriate in current
situation of missing time series datasets than the full forward modeling.
StationaryModels:There have been been approaches to statically estimate the tumor’s
invasive profile. Notably Konukoglu et al. formulated traveling-time formulations for
the tumor invasion problem in the form of eikonal equations that only rely on the
imaging data at the time of diagnosis (Konukolu et al. 2006; Konukoglu et al. 2007;
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E et al. 2010). The results are very promising, as they are perfectly aligned with the
imaging information available at diagnosis. It is however not clear how modeling
efforts from the forward PDE formulations could be transitioned into the form of
eikonal equations.
Contribution: We present a stationalization approach, that opens the possibility to
estimate the invisible tumor extent at measurement time, building upon existing insta-
tionary tumor growth models. By stationalization we refer to the act of deriving
approximate stationary formulations for the forward models. The presented method
assumes that the tumors growth and diffusive parameters can be estimated from other
sources. It may alleviate only part of the parametrization problem by only being sen-
sitive to the relative strength of physical effects and not on their absolute quantitative
parametrization. The presented method makes maximum use of the available imaging
data.Wewill first state the class of considered partial differential equations in Sect. 2.1.
In Sect. 2.2 we derive a stationalizing term, which allows the reformulation of the for-
ward tumormodel into a stationary form.We do this by deriving an analytic expression
for the advective term in in the limit of the co-moving 1D Fisher-KPP equation. We
present how this stationary formulation, which determines the traveling waves front
shape, can be localized to the visible tumor border via the available medical imaging
data. We also explain how the analytically derived stationalization term may be used
to approximate the tumor density for models that go beyond the Fisher-KPP limit.
We numerically verify that the stationalization can be used for any parameter range in
one dimension in Sect. 4 via nondimensionalization. We also investigate whether this
stationalization approach is viable in the presence inhomogeneous material properties.
Finally the advantages and shortcomings of the proposed procedure will be critically
discussed in Sect. 5.

2 Modeling

2.1 Governing equations

The time-dependent GBM invasion is often modelled by parabolic partial differential
equations. We describe the time dependent tumor density with the function u(x, t) :
Ω × T �→ R, with the d-dimensional domain Ω ⊂ Rd and a time range T = [t0, te].
Here, t0, te ∈ R denote the start and the end times. The solution u(x, t) describes the
volume percentage of cancerous cells at time t and therefore 0 ≤ u(x, t) ≤ 1. The
dynamic of the density profile is given in the form of a macroscopic partial differential
equation. For stationary tumor density distributions we will describe the tumor density
with us(x).

2.1.1 Fully anisotropic advection–diffusion–reaction equation

In this document we focus on two equations. Firstly, the time-dependent fully
anisotropic advection–diffusion–reaction equation:
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Definition 1 Fully anisotropic advection-diffusion-reaction equation

∂u(x, t)

∂t
= ∇(D(x)∇u(x, t)) + ∇((∇ · D(x))u(x, t))

+ ρu(x, t)(1 − u(x, t)) in Ω × T , (1a)

u(x, t0) = g(x) in Ω, (1b)

∇u(x, t) = 0 on ∂Ω × T . (1c)

In (1) the diffusion parameter D(x) is a symmetric positive definite matrix D(x) ∈
Rd×d and varies, depending on the spatial coordinate x ∈ Rd , i.e., the diffusivity
can be inhomogeneous and anisotropic. The parameter ρ ∈ R is the logistic growth
parameter. In order to do any numerical simulations based on (1), a global initial
tumor density distribution g(x) ∈ R has to be stated, i.e., estimated from medical
data. Equation (1 is a prototype model for the invasion of GBM in the sense that many
models differ from it merely in the reconstruction of the tumor diffusion matrix D(x)
from DTI data, or the addition of other chemotaxis terms (Painter and Hillen 2013).
In the following we use (1a) as a prototype tumor model and present how a stationary
problemmay be formulated whose solution should be very close to that of the forward
solution at the time of medical imaging.

2.1.2 Limit case: Fisher-KPP equation

In one dimension and for isotropic and homogeneous diffusive properties, Eq. (1)
degenerates to the classical Fisher-KPP equation (Kolmogoroff et al. 1988; Fischer
1937).

Definition 2 Fisher-KPP equation

∂u(x, t)

∂t
= DΔu(x, t) + ρu(x, t)(1 − u(x, t)), (2)

again with x, t ∈ R as spatial and temporal coordinates. The diffusion term may
be interpreted as the passive diffusive spread of the cells due to a random walk, the
rightmost term as a logistic proliferation term, as often encountered in biological
contexts. For the initial conditions:

lim
x→−∞ u(x, t0) = 1, lim

x→∞ u(x, t0) = 0,

the fisher equation allows travelling wave solutions (Kolmogoroff et al. 1988). These
solutions converge over asymptotically long timescales to a wave-front which is con-
stant in shape, moving laterally with a globally constant velocity v ∈ R. This means,
that temporal dynamics are dominatedby lateral advection, andnot somuchby changes
of the invasion profiles shape. We will make use of precisely this property.

In higher spatial dimensions, the Fisher-KPP equation has related sigmoid-like trav-
elingwave solutionswith circular- or ball-shaped expansion. There aremore additional
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stable wave front patterns in higher dimensions. One of them describes a v-shaped
waveformpropagating through the two-dimensionalmedium,which can be interpreted
as two straight wave fronts collapsing into each other at a certain angle. Observed in
the direction of a bisecting line, this combined wave front is indeed stationary at cer-
tain speeds. There also exist spatially oscillating front shapes, but these profiles are
only possible for the extension of u(x, t) out of the relevant range u(x, t) ∈ [0, 1]
(Brazhnik and Tyson 1999). We focus on cases where the wave propagation occurs as
a radial expansion from a centered mass.

2.1.3 Nondimensionalizations

Since the long term behavior of the 1D fisher equation is that of simple lateral move-
ment, we can state Eq. (2) in equivalent form by introducing new dimensionless
variables:

t̃ = ρt (3)

ṽ = 1√
ρD

v (4)

x̃ =
√

ρ

D
x − ṽt̃ (5)

The transformation of the spatial coordinate can be understood as a scaled co-moving
reference frame, where v is the limit propagation speed. Seen from this co-moving ref-
erence frame, the wavefront will not move laterally. As time increases, the wave front
will converge to it’s limit shape, which we are seeking to reconstruct. After insertion
of the new parameters, we find the nondimensionalized co-moving formulation

Definition 3 Dimensionless co-moving Fisher-KPP equation

∂u(x̃, t̃)

∂ t̃
= Δu(x̃, t̃) + u(x̃, t̃)(1 − u(x̃, t̃)) + v · ∇u(x̃, t̃). (6)

The advective term v · ∇u(x̃, t̃) results from the coordinate transformation into the
co-moving frame and can be understood as simply counteracting the lateral movement
of the propagating front (Ablowitz and Zeppetella 1979; Kolmogoroff et al. 1988).
For long times t̃ the rate of change ∂u(x̃,t̃)

∂ t̃
will tend to zero, and the solution of (6)

will be effectively stationary. Any laterally shifted limit solution is equally a solution
to (6). Therefore, without further side conditions, we do not expect the limit solutions
to (6) be unique. The minimum speed v ∈ R of the traveling wave solutions has been
derived to be v = 2

√
ρD. Kolomogorov also states that there are solutions for speeds

higher than v. This fact is due to the reaction term acting independently of the local
environment. For the limit of diminishing diffusion, the reaction term will induce very
high traveling wave speeds for initial conditions which are close to horizontal. For
initial conditions with compact support, which is the relevant case here, the speed
tends to 2

√
Dρ as time goes to infinity (Kolmogoroff et al. 1988). In the context of
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glioma invasion only the very rapid spatial decay of tumor density is relevant and we
expect no extended density distributions as initial conditions.

2.2 Stationalization of the Fisher-KPP equation

Based on the comoving formulation of the Fisher-KPP equation and its long term
solution, we will derive an approximative problem description in the physical domain.
Wemake use of the fact that in the infinite time limit, we are able to derive the reaction
term necessary to calculate the comoving limit solution directly. We then use this
reaction term also for stationary problem formulations in the physical domain.

We first derive an alternative form of the advection term in (6), which is exact
only in the infinite time limit. We use the limit solution U (x̃) : R → R to the co-
moving Fisher equation (6). WithU (x̃), we can calculate an analytical expression for
∇U (x̃). Also, we may express this gradient in terms of the amplitude of U (x̃) since
the solution is invertible in the relevant range U (x̃) ∈ (0, 1). The result is essentially
a mapping from the amplitude ofU (x̃) to its gradient. With this analytical expression
p(·) = ṽ(∇U (x̃))(·), we may express the problem of finding the limit solution in a
stationary way. We use the subscript s for solutions us(x̃) : Ω �→ R to the stationary
problem formulations.

0 = Δus(x̃) + us(x̃)(1 − us(x̃)) −p(us(x̃))︸ ︷︷ ︸
stationalization

,

Wewill now present how this penalty term can be derived from the analytical solution.
For t̃ → ∞, no boundary conditions, and the special wave-speed of ṽ = 5√

6
, the limit

solution is given by

Definition 4 Fisher co-moving limit solution

U (x̃) = 1

(1 + exp( x̃√
6
))2

. (7)

We call that profile the co-moving limit solution (Ablowitz and Zeppetella 1979). The
gradient of this limit solution is given by

∇U (x̃) =
−

√
2
3 exp(

x̃√
6
)

(1 + exp( x̃√
6
))3

. (8)

The inverse of the analytical solution is given by

x̃(U ) = √
6 ln

( 1√
U

− 1
)
, (9)

and represents themapping from a given amplitudeU (x̃) to the corresponding position
x̃ within the limit solutions profile (7). Substituting the inverse (9) into the gradient
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expression (8) yields an analytical term for (∇U )(x̃(U )), i.e., a term which is only U-
dependent providing the gradient of the wave fronts profile upon evaluation. Thereby
we can state a closed form for the stationalization term

p(U ) = |ṽ|
√
2

3
(1 − √

U )U .

We have essentially calculated a penalty term, which is only dependent on the local
amplitude, and not the local gradient. The penalty parameter |ṽ| should be chosen to
the same approximate amplitude of the limit speed of the propagation front.

Remark 1 The strict equivalence between p(u(x̃, t̃)) and −|ṽ|∇u(x̃, t̃) only holds in
the limit case t̃ → ∞, for which the analytical solution is known and only in the
absence of boundary conditions, i.e., Ω ≡ R. Although this formulation is only
strictly equivalent in case of a completely equilibrated wave form, we will use the
derived penalty term as an approximation of |v|∇u(x, t) at finite times allowing us
to define stationalized wave-pinning type models. We present a thorough numerical
investigation of the quality this approximation in 4.

Definition 5 Stationary Fisher-KPP model

0 = Δus(x̃) + us(x̃)(1 − us(x̃)︸ ︷︷ ︸
tumor model prototype

− |ṽ|
√
2

3
(1 −

√
us(x̃))us(x̃)︸ ︷︷ ︸

stationalization

in Ω, (10a)

∇us(x̃) = 0 at ∂Ω, (10b)

us(x̃) = 0.16 at ∂Ωi . (10c)

Within the encompassing domain Ω we define a smaller enclosed domain Ωi ⊂ Ω

representing the border of the visible tumor on the medical images. At this border we
impose an internalDirichlet boundary condition, assuming that the visibility threshold
of the tumor is at 16% volumetric tumor density (Swanson et al. 2008; Patel and
Hathout 2017). For real datasets this threshold is given by the outer surface of the
medical segmentation, for numerical tests we use a solution to the forward problems
(2,1a). The additional internal boundary condition on ∂Ωi is used to localize the
stationalized solutions.

The Fisher equation is one example out of a family of KPP-type equations which
combine a diffusive term with a nonlinear reaction term f (k) : R → R. In the case
of the Fisher Equation the term is f (k) = ρk(1 − k) with ρ, k ∈ R. The reaction
term is often chosen in a manner so that it dynamically connects two fixed points
of amplitude: f (0) = 0, f (1) = 0, f (k) > 0 for k ∈ (0, 1). Although an exact
analytical description of the stablewave fronts proves difficult, the rough characteristic
of propagating fronts found in nature (combustion, bacteria growth etc.) is often similar
to a sigmoid function. The gradient distribution of any sigmoid-like traveling wave
front will have a similar shape as p(·), derived earlier. For any sigmoidal wave-form
the gradient amplitude |∇u| will be zero for u = 0 and u = 1 and of higher amplitude
for 0 < u < 1.
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The underlying idea of the stationalization procedure is, that this gradient distri-
bution, and therefore the penalty term necessary to calculate the traveling wave form
stationally, may possibly be approximated to a good degree of accuracy and even for
those cases where the analytical solution is not at hand.

2.3 Stationalization of the fully anisotropic advection–diffusion–reaction
equation

Returning to the general model in the form of (1), we now define a corresponding
stationalized version in dimensional form, using the penalty term derived for the fisher
equation in 2.2. The stationalized problem can now be stated as: Find us(x) such that

Definition 6 Stationary anisotropic advection-diffusion-reaction equation

0 = ∇(D(x))∇us(x)) + ∇((∇ · D(x)))us(x))

+ ρus(x)(1 − us(x)) − |v|
√
2

3
(1 − √

us(x))us(x), in Ω, (11a)

∇us(x) = 0 at ∂Ω, (11b)

us(x) = 0.16 at ∂Ωi . (11c)

The above problem retains similarity with the general model (1a). It is merely aug-
mentedwith the penalty term p(us(x)) andwith internalDirichlet boundary conditions
providing the information accessible at imaging time. ThematrixD(x) is a reconstruc-
tion of the tumor diffusivity from the DTI datasets, ρ is a growth parameter and v the
penalty parameter. In the limit of homogeneous isotropic diffusionwith ρ = 1, D = 1,
the above model degenerates to the stationary formulation (10a).

3 Numerical methods and error measures

In this section we present the methods used in our numerical experiments to quantify
the modeling error of the proposed stationalization. In Sect. 4 we will use the meth-
ods to investigate the validity of our approach in a series of problems with growing
complexity.

3.1 Numerical scheme

For the time dependent formulations, we follow the method of lines approach to split
temporal and spatial operators. For the spatial discretization of both the forward and
the stationary formulations we use, for simplicity, a standard first-order finite element
discretization on cubic grids with multi-linear trial- and test-functions. We therefore
use the same spatial discretization for the comparison between the forward and the
stationary formulation. The temporal discretization is an implicit-euler scheme, which
is unconditionally stable.The stationalization procedure is largely independent of the
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chosen numerical discretization. The largest source of error does not lie in the numer-
ical treatment, but in the approximations made in the parametrization, the modeling
and in the estimation of the internal Dirichlet constraints. The matrix divergences are
pre-calculated by a first order finite difference approximation within each grid cell.
The inhomogeneous diffusionmatrices at the quadrature points are estimated by taking
the value of the nearest neighboring data point.
Positivity of our solution might be violated in finite precision calculations. Let ω ∈ R

be a tumor density solution to either the forward or the stationary solutions. Then,
whenever the numerical iteration leaves the physically sensible range of ω ∈ [0, 1],
we disregard the reaction term of any given forward- or stationalizedmodel and instead
employ the following artificial numerical penalty term

n(ω) =
{

−ρω if ω < 0

ρ(1 − ω) if ω > 1.
(12)

This is done, because a logistic reaction term f (ω) ∝ ρω(1 − ω) may otherwise
amplify numerical fluctuations which produce a slightly negative amplitude.

3.2 Implementation

The implementation was realized within DUNE software framework (Bastian et al.
2008b, a; Blatt et al. 2016). The finite element discretization was implemented within
dune-pdelab (Bastian et al. 2010). The non-linear system is solved with a classical
Newton–Krylov method, using linear search. The linear systems are solved with an
AMG-preconditioned BiCGSTAB solver, using the dune-istl module (van der Vorst
1992; Blatt and Bastian 2007). The release version for all DUNE modules was 2.7.

For the realistic headmodel the diffusionmatriceswere reconstructed by the camino
software package (Cook et al. 2006).

3.3 Error measure

In Sect. 4.3 we will investigate the impact of the stationalization error on the observed
tumor front. In this course we will compare the reconstructed tumor front of a fully
instationary simulation with the reconstructed tumor front using the stationalization
approach.

Given a reference density distribution ua(x, t) : Ω × T �→ R, and a stationary
approximation ub(x) : Ω �→ R and a threshold value θ ∈ R we define two domains
A and B as

A = {x |Ua(x) ≥ θ}, B = {x |Ub(x) ≥ θ}.

The medically relevant information is the spatial discrepancy between two level-set
surfaces (∂A, ∂B) of these density profiles. An absolute measure for this error is
the symmetric difference |A ⊕ B|, as depicted in Fig. 3. It describes those volumes,
which are either included A but not in B, or vice versa. That way, both over- and
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Fig. 3 left: Symmetric difference region between the two level-sets |A⊕ B|: gray regions. right: localized
sketch of the symmetric difference region, the surface of the level-set volume |∂A| and the distance between
the two level-sets LB

underestimations of the approximation ub are represented. The symmetric difference
is however not comparable between 1D, 2D and 3D simulations.

The most expressive information in the medical context is the average distance
between the two level-sets. We therefore introduce the global characteristic level-set
distance.

Definition 7 (Global characteristic level-set distance) For a given level-set value θ ,
we define the characteristic level-set distance between ∂A and ∂B as

LB := |A ⊕ B|
|∂A| .

It quantifies the average distance between the two level-sets. Assuming a spherical
reference geometry for A we can approximate this expression in the following way.
Given the radius rA, LB simplifies to

L1d
B = |A ⊕ B|

2
, L2d

B = |A ⊕ B|
2πrA

and L3d
B = |A ⊕ B|

4πr2A
. (13)

3.4 Artificial imhomogeneous diffusion

We introduce several test cases with randomly perturbed diffusion coefficients. We
define the diffusion matrices as

Dβ = 1d (δ)
1
d , (14)

with δ being a uniformly distributed random value: δ = unif(1−β, 1+β). Here, d is
the spatial dimension. The exponent of δ is chosen to allow comparisons between the
isotropic homogeneous case and the randomized case, by assuring that the average of
the determinants of the diffusive medium are close to 1.0 for every realisation of the
random field:

|D̄β | = ¯(δ) ≈ 1. (15)

We only compare homogeneous and inhomogeneous cases with the same grid resolu-
tion. We evaluate the random inhomogeneous diffusion on the dual grid and assume it
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to be piecewise constant therein. The diffusivity within one dual grid cell is therefore
statistically independent from any neighbor. The effect of statistical scattering of the
diffusive properties on the macroscopic front speed is non-trivial. Since the global
front speed appears as a linear factor in the analytic derivation of the stationaliza-
tion term, we may not expect perfect convergence to the analytically derived gradient
distribution. The results however give an indication of the effect of realistic datasets.

3.5 Notes on uniqueness

The limit solutions to the Fisher Eq. (2) allow for traveling wave solutions moving in
both the positive and negative direction. In the stationalized (co-moving) formulation
we find a similar situation. Since we will later use an internal Dirichlet condition in the
form of u(x̃c, t̃e) = 0.16 with x̃c ∈ ∂Ωi , we may also expect two possible solutions
to the comoving formulation (10a). The first stationary solution corresponds to the
traveling wave which moves outwards from the tumor center, at that point in time
where it satisfies the Dirichlet constraint and is the relevant one in the given setting.
We call this the outwardsmoving solution branch (OMS). The second possible solution
corresponds to a traveling wave moving into the constrained region, i.e., the inwards
moving solution (IMS). This solution branch is irrelevant to tumor growth modeling.
Two stationary solutions of the two branches are sketched in Fig. 4.

When considering the effective reaction term consisting of the logistic growth
combined with the penalty term, we find that it has a penalizing regime for 0 <

us(x̃) < 4
9 and a growth regime for 4

9 < us(x̃) < 1 (Fig. 4). The diffusive process
transports mass from high amplitudes to lower amplitudes. The combined reaction
term counteracts this process. The visibility threshold, and therefore the constraints,
lie within the penalizing regime. In order to select the relevant OMS solution branch
in the stationary formulation, we use initial guesses us(x̃) � 1 which are well within
the purely penalizing regime, so that the newton iteration converges to the outward
moving solution reliably.
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Fig. 4 Left: Schematic of outward and inward moving solution (OMS, IMS) branches of solutions to 10a,
both fulfilling the internal Dirichlet constraints (black dots) at the visibility threshold at u(x̃c, t̃e) = 0.16.
Right: Plot of effective reaction term consisting of the logistic growth and the penalty term. The penalizing
regime is indicated in gray. The visibility threshold is within the penalizing regime
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4 Numerical results

We present the results of the numerical validation studies of the stationalization proce-
dure in 1D and 2D.We use the nondimensional formulations only in the homogeneous
case, and explicitly state the models we used and the parameters chosen for the test
cases with inhomogeneous diffusion. We first compare 1D forward simulations of the
homogeneous Fisher-KPP equation with their stationary counterparts and explain the
intended procedeure and the numerical setup. After that we compare the gradient dis-
tributions in 1D and 2D of forward simulations with the analytical expression derived
in Sect. 2. We present an easily reproducible 2D example in 4.3.1. Finally we present
the applicability via simulations with a real 3D DTI dataset in 4.4.

4.1 1D front reconstruction

We first show results for a 1D case. We compare two forward solutions of the models
defined in Eqs. (2) and (1) with the solutions of their respective stationalized problem
formulations (10a) and (11a). In the nondimensionalized case, we chose the penalty
parameter ṽ, which is the limit speed of from the analytical solution (7). A penalty
parameter higher or lower than that would result in steeper or flatter reconstructed
profiles. We use the end times t̃e, te = 20. In the homogeneous case we compare both
the stationalized, and the forward simulations in nondimensionalized form (10a). This
implies that the stationalization method can be used for all sensible magnitudes and
combinations of ρ and D. We start the simulations from a small centered gaussian
initial condition, and at te compare the two solution profiles against each other. The
internal boundary condition within the stationary problem (10c) is set at those points,
where the forward solution reaches amplitudes higher than0.16at te, i.e., at those points
where the tumor border would be visible on an imaging machine with that threshold.
Similarly, we show the comparison of a solution to the forward model incorporating
inhomogeneous diffusion coefficients (1a) with the now inhomogeneous stationalized
formulation (11a). By introducing inhomogeneous diffusive coefficients, the myopic
drift term will produce small contributions to the equation.

Figure 5 shows the direct comparison of forward simulations with their stational-
ized counterparts. This numerical setup shall illustrate how the stationalization can
be used to extrapolate the tumor density outside of the known region. Here, the for-
ward simulations represent a fictional gold standard, of which we assume knowledge
only above the visibility threshold. By knowledge of these locations, we may provide
pinning information in the form of internal Dirichlet conditions to the stationalized
formulations and solve for the most likely density distribution on the outside.

In the homogeneous case, the snapshots at different times of the forward solu-
tion suggest, that the rough form of the advancing front is formed rapidly. If the
forward solution converges rapidly towards the form of the analytical solution, with
only diminishingly small corrections to the wave fronts shape at larger times, then
correspondingly the approximation of the gradient will perform well even early in
the simulation. The direct comparisons in Fig. 5 show that the stationalization pro-
duces a reasonable approximation to the full forward solutions. The inhomogeneous
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Fig. 5 Direct comparison of 1D forward simulations of the nondimensionalized Fisher-KPP equation with
its stationalization (10a) and an example with inhomogeneous coefficients (1) and its stationalization (11a).
The black dots indicate the internal Dirichlet constraints (10c,11c) given by the simulated imaging threshold
(16%) on the forward simulations. The domain was discretized into 1000 equidistant elements. Top left.:
Initial condition, and states of the (nondimensionalized, homogeneous) forward simulation. Top right.:
Zoom of the forward solution and the corresponding stationalization. Bottom left.: Initial condition, and
states of the forward simulation (inhomogeneous). Bottom right.: Zoom of the forward solution and the
corresponding stationalization (inhomogeneous). Both the forward and the stationalized solutions show
slight deviations from a smooth decay in the inhomogeneous case

coefficients induce small deviations from a smooth front shape, which are present in
both the forward simulations profile as well as in the stationalized solution. It is to be
expected that wherever the internal constraint results from thresholding of an under-
lying smooth distribution, the stationalization will perform well since the real density
distribution is close to the equilibrated wave-form. The one dimensional setup is not
very realistic, but practical to illustrate the procedure.

4.2 Investigation of modeling error

Wewill numerically investigate the effect of inhomogeneous diffusion on the gradient
distribution, and by this the applicability of the chosen stationalization term. As the
analytic formulation of (∇U )(U ) is only valid in the homgeneous 1D limit case, we
expect a modeling error, which we will assess in different test cases.

4.2.1 1D gradient distributions

We consider a one dimensional forward simulation of Eq. (1) starting from a Gaussian
initial condition in the center of a one dimensional domain x ′ ∈ [0, 200]. We first
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Fig. 6 Scatter plot of 1Dgradient distributions:magnitude of gradient of 1Dwave-front profile. The gradient
profile of the homogeneous numerical solution approaches the analytic expression only at asymptotically
large time-scales. The underlying characteristic is not destroyed by the introduced inhomogeneities

simulate the homogeneous case with D = 1, ρ = 1 where we expect perfect conver-
gence of the gradient distribution to the analytical expression (∇u(x, t))(u(x, t)) =
p(u(x, t))/|v| as derived in (10). In the homogeneous case there are no advective
terms active, as ∇ · D(x) is zero. Upon start of the simulation, two traveling waves
form and move away from the center of the domain. After a short initial phase, the
wave-fronts in the homogeneous medium asymptotically approach the front shape
of the analytical solution (7) and its symmetric counterpart. The fronts speed and its
shape within the inhomogeneous material are slightly perturbed. Similarly the relation
(∇u)(u) is disturbed.

In Fig. 6 we investigate how the gradient distributions approach the analytical
expression for the homogeneous and inhomogeneous case and how strongly it differs
from the analytical expression in the case of heterogeneous coefficients.

4.2.2 2D gradient distributions

We consider a square domain (Lx = Ly = 200) in 2D with a Gaussian initial con-
dition in the center. We again simulate a forward solution to (1). After the start of
the simulation, the wave-front circularly propagates outward from the central point.
Slow convergence of the gradient distribution to the analytic expression (10) can be
replicated in the 2D homogeneous case. In the inhomogeneous case we observe analog
deviations from the predicted distribution.

Contrary to the one dimensional case, there is an effect of curvature in higher
dimensions slowing the convergence towards the 1D gradient distribution. However
in the limit case the wave propagation still reduces to a 1D dynamic in the propagation
direction (JDMurray 2007). It is obvious that the introduction of random material
properties breaks the strict applicability of the stationalization term. However Fig. 7
suggest that also in 2D the underlying polynomial relation between the wave-fronts
amplitude and its gradient is merely perturbed by the material properties. Compared
to the usual parameter uncertainties, we consider this modeling error small and thus a
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Fig. 7 Gradient distribution of a 2D simulation with different inhomogeneous diffusive properties (β =
0.0, 0.1, 0.8), see (14)

stationalized solution, making use of the analytical gradient distribution, should still
provide reasonable estimates on the density profile. Since the global propagation speed
v appears as a linear factor, any process that alters the propagation speed away from
the analytical value should have a linear effect on the gradient distribution.

4.3 Effect on estimation of the tumor front

The stationalization includes a modeling error due to the imperfect approximation of
∇u. The numerical observation in Sect. 4.2 suggests that the average behavior is still
well described by our analytic reformulation 10a. In the following we will investigate
the impact of this stationalization error on the actual tumor front. We will use test
cases with growing complexity.

We try to mimic the situation observed in the medical application and present the
procedure of estimating the tumor extent at the time of diagnosis. To generate artificial
datasets in controlled scenarios,we simulate the carciogenesis byfirst assuming a small
Gaussian initial condition. Secondly, we propagate the density profile for a certain time
simulating the uninterrupted tumor growth. Finally, at the time of diagnosis, we use a
level-set on the forward solution of 16% to represent the thresholded medical imaging
modalities. Other choices of threshold value are possible. We then use the thresholded
volume as an internal Dirichlet constraint and solve the stationary problem (11a). In
this numerical setup both the solution to the forward problem u(x, t) and the solution
to the stationalized problem (11a), us(x) are calculated and compared. In any real
world situation only the thresholded image information would be accessible.

4.3.1 2D butterfly test case

In order to assess the viability of the stationalization for more realistic tumor models
we nowmove to two dimensions with inhomogeneous coefficients (Eq. (11a)). We set
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up an inhomogeneous but isotropic field for the diffusion matrix by scaling the unit
matrix according to its x ′

1 position

D(x ′) = 12 (1.0 + sin
(3π
Lx

x ′
1

)
0.9). (16)

This effectively separates the domain in three distinct regions, with the left- and right-
most third of the domain having higher diffusivity and the middle strip having reduced
diffusivity. The changes in diffusivity may represent gray and white matter regions in
a primitive way. In this example there is more long-range deviation of the diffusive
properties than in the 1D examples in Sect. 4.1. We again chose the penalty parameter
v = 5√

6
and ρ = 1. In a medical situation the task is to estimate the region and inten-

sity of radiotherapy to be applied and the area of resection from only the thresholded
information visible at the time of diagnosis.

Figure 8 compares predictions of the forward simulation of Eq. (1) with the station-
ary solutions of Eq. (11a). The stationalization greatly benefits from the localization
provided by internally constrained region. Since most of the tumor mass is above the
visibility threshold, the stationalization only has to provide the estimation on the sur-
rounding region. Similar to the 1D constrained situation, the stationalization captures
the profile quite well, but slightly overestimates the invasion extent in low density
regions.

4.4 3D stationalization for a realistic dataset

To show the applicability on real patient data, we use the publicly accessible DTI-
dataset provided by the camino1 software project (Cook et al. 2006). We relate the
tumor diffusion to the water diffusion by a simple scalar factor:

D(x) = αDw(x). (17)

More advanced reconstructions are possible, but not central to this example. A vari-
ety of different tumor diffusion models has been proposed in the literature, see e.g.
(Hunt 2018; Painter and Hillen 2013; Conte et al. 2020). We use the forward model
(1) and the corresponding stationary problem (11a), with the parameters in Table 1
to scale the equations to a realistic range. Here α is a dimensionless parameter, v the
penalty parameter, and ρ is the growthrate.We again follow the procedure described in
Sect. 4.3 and start a forward simulation from a small Gaussian at t0 = 0 until te = 90d,
and use a level-set (u(x, te) = 0.16) as the constrained region for the stationary for-
mulation. Figure 9 shows the direct comparison of the forward simulation and the
stationalization. All local extentions or reductions induced by the local increase or
decrease of the underlying diffusivity are present in both the forward and the station-
alized solution. For this particular example, we measured the characteristic level-set
distance LB as given in (13) for a series of small level-set values. Figure 10 indicates
that the average distance error is between 1 − 2.5mm for the level-sets chosen in our

1 http://camino.cs.ucl.ac.uk/index.php?n=Tutorials.DTI.
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Fig. 8 Numerical simulation of (1a) in an inhomogeneous isotropic test case. Top left: level-sets (white)
(outside to inside: 1e-3,1e-2,0.16) on the forward solution at t=20. The innermost level-set at u=0.16 serves
as the internal Dirichlet constraint (11c) for the stationary simulation. Top right: amplitude of the identical
diagonal entries Dii of the diffusivity matrix as given in (16) and horizontal cut through the Gaussian
initial condition at x = (50, 50). Bottom left: level-sets (white) (outside to inside: 1e-3,1e-2,0.16) on the
stationary solution, the solution is constrained beginning from the level-set u=0.16. Bottom right: Error
field indicating regions and the amplitudes of over- and underestimation

Table 1 Parameters used to
scale the terms in (1) and (11a)
to realistic ranges

Parameter Value

α 5e-12

ρ 1e-6 [1/s]

v 2.04e-6 [m/s]

numerical example. These level-sets were chosen to replicate the current treatment
radius of about 2cm Chang et al. (2007).
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Fig. 9 Horizontal slice of the 3D results and dataset. The black dot indicates the position of the small
Gaussian initial condition at x = (0.09m, 0.12m, 0.05m). Top left: level-sets (white) (outside to inside:
1e-4,1e-3,0.16) on the forward solution at 90 days. The innermost level-set at u(x, te) = 0.16 serves as
the internal Dirichlet constraint (11c) for the stationary simulation. Top right: Fractional Anisotropy of
the reconstructed tumor diffusion matrix D(x) from the camino dataset (Cook et al. 2006). Bottom left:
Identical level-sets on us (x).Bottom right:Regions of over- and underestimation by the stationary solution

Fig. 10 Characteristic length errors LB for given level-set values for the 3D example camino dataset , see
(13). The gray region indicates the errors between the level-sets used in Figure 9
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5 Discussion

We presented a stationalization approach for the estimation of the glioblastoma
invasion extent. The stationalization approach partially addresses the problems of
parametrization and data availability. The stationary simulations do not depend on the
complete knowledge of the initial condition to produce reasonable tumor invasion esti-
mates. The thresholded information provided by the medical images, i.e., the medical
segmentation, might be fully utilized with the limited information it provides. Typi-
cally the segmentation provides a classification of tissue into a number of categories,
i.e., gray matter, white matter, edema, necrotic etc. The segmented border between
tissue categorized as healthy, and that which is categorized as tumorous can be directly
used to provide the internal Dirichlet constraints as in 11c. The stationalization only
requires datasets from one point in time, i.e., one DTI scan and amedical segmentation
of the tumorous region. This is the data that is routinely gathered in medical practice,
as it is used for planning the radiation therapy and resection. Stationary simulations,
as presented here, may provide an additional tool in this regard without altering the
imaging practices.

The problem of quantifying model parameters is also partly alleviated by the fact
that in the stationary formulation the solution depends merely on the strength of the
parameters with respect to each other, and not their absolute values. It may be easier
to experimentally determine ratio values between the three important parameterized
terms: D, v and ρ than the full set of parameters needed for a forward simulation.
Forward models which fit into the form of Eq. (1) may only produce reliable results
if the correct initial condition g(x) is known and the parameters are determined to a
reasonable degree of accuracy. In themedical setting the only information at hand is the
medical imaging at time of diagnosis. For the forward models to produce reasonable
estimates on the tumor invasion profile we would firstly need information on the
location and time of the carciogenesis, secondly the information on the non-degraded
diffusive properties of the tissue surrounding it and lastly the correct parametrization
on a per-patient basis. We want to emphasize that the temporal dynamics of the tumor
growth, although scientifically interesting, are not necessarily relevant in the medical
treatment planning. The information needed for treatment with the current techniques
is an accurate description of the tumor density field at time of diagnosis.

The derivation of the stationalization term for the one dimensional Fisher equa-
tion is not strictly transferable to tumor models which incorporate medical data or
have additional advection terms, but the results from Sect. 4.4 indicate that they may
still produce reasonable predictions. If the underlying diffusion matrix field included
strong inhomogeneities inducing strong advective terms, the procedure might lose its
validity, however an investigation of the given 3D DTI dataset shows that the Péclet
number relating the drift and diffusion strength as given in (11a), τ = |b L|

|D| , stays
mostly below 0.3 when D is derived from the DTI data by simple scaling (17). Here,
b is the local advective magnitude, L is the cell spacing and |D| is the Frobenius
norm of the local diffusivity. Most tumor models show traveling wave characteristics,
where the main physical effects include diffusion and nonlinear growth. We recom-
mend close inspection of both the gradient distributions and the Péclet numbers if the
stationalized model should be extended. The stationalization procedure should retain
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Table 2 Runtimes for the test cases in two- and three dimensions on different hardware

Simulation type Hardware Run time

2D, 90 days Intel i5-7200U ( 4x2.50GHz ) 42 s

2D, stationary Intel i5-7200U ( 4x2.50GHz ) 0.4 s

3D, 90 days Intel i5-7200U ( 4x2.50GHz ) 1:31 h

3D, stationary Intel i5-7200U ( 4x2.50GHz ) 76 s

3D, 90 days AMD EPYC 7501 (32x 2.0GHz) 18 min

3D, stationary AMD EPYC 7501 (32x 2.0GHz) 9 s

its applicability as long as the gradient distribution retains its underlying characteristic
as visible in Fig. (7), and the distance between medical segmentation and the border
induced by the level-sets is not chosen too large. In the case that the presented approx-
imation fails, it may also be possible to introduce more elaborate numerical ways to
fit the necessary penalty term locally.

We compared the level-sets of the forward simulation with those of the stationary
simulation and found characteristic distances between them of about LB ≈ 1.0 −
2.5 mm (Fig. 10). Compared to a fixed-size radius of 2cm around the visible tumor
(Chang et al. 2007), these errors seem justifiable. It should, of course be possible to
find an optimal penalty parameter v for a given set of forward model parameters. A
medical practitioner might choose the actual level-set value to replicate the current
practice of treating a 2 cm radius around the bulk tumor and then use qualitative
information in the form of locally recommending an extension or retraction of the
treatment radius. The stationary model will correctly capture the effect of the material
properties, as presented in Fig. 8. Where the tissue is more diffusive, the level-set on
us(x) will overextend the 2 cm radius and where the diffusivity is small, more brain
tissue might be left untreated. If the underlying tumor model should be extended, all
effects increasing- or diminishing the spread of glia cells will be reflected accordingly
in the stationalized solution.

Should time-series datasets become available, then the stationalization may be used
to estimate the initial condition g(x) for a forward simulation from the first dataset.
An initial condition calculated in this way should be closer to a presumably smooth
real density profile than using a stepped profile with steep gradients.

Naturally the computation of solutions to the stationary problem take less time than
a full forward simulation. While compute servers are usually available in academic
institutions, the possibility to calculate the results on a regular consumer pc with only
short computation times is important in order to transfer such methods into clinical
application. The stationary simulation allows for the computation of sets of solutions
for varying parameters within a short time frame. We present exemplary run times for
the camino dataset on recent hardware for the two cases in Table 2.
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5.1 Outlook

There might be further improvements to the stationalisaton approach. Altering the
stationalization term, which currently assumes a globally constant wave-propagation
speed, to be sensitive to the local material properties might further improve the results.
The proportionality of the wave speed (v ≥ 2

√
Dρ) in the one dimensional Fisher-

KPP equation may be an indicator for how a localized penalty parameter could be
improved. Instead of choosing a constant v globally, it might be possible to set a
penalty factor linearly combined with local information. Thereby incorporating the
local increases and decreases in diffusivity into the stationalization.

The formulation presented here is based on the solution stated in Ablowitz and
Zeppetella (1979). It might also be possible to find analytical expressions for approx-
imate solutions like the perturbation solution stated in JDMurray (2007). Including
only leading order does not lead to reasonable penalty terms, but inclusion of higher
orders might be possible.

In Sect. 4.4 we used a real dataset, but a comparatively primitive tumor model. It
should be possible to extend the stationalization procedure to incorporate additional
effects like chemo- or haptotaxis as long as the dynamic of producing traveling wave
solutions of sigmoidal shape is not altered by the additions. In the example in Sect. 4.4,
we used a level-set on the forward simulation as the internalDirichlet constraints for the
stationalization. In a medical setting one would directly use the medical segmentation
from the DTI/MRI modalities. There are promising advances in generating tumor
segmentations in an automated fashion, e.g. BraTumIA2 (Porz et al. 2014).

Automating the process of the segmentation opens up the possibility to use a fully
automated process to advise the treatment planning in real patients.

We showed how well a stationalized formulation would perform compared to a for-
ward simulation if all the necessary information were present. The fact that time-series
datasets are largely unavailable and therefore no parameterizations can be derived from
them, makes direct comparisons between existing tumor models difficult. It is, how-
ever possible to compare the stationalized versions of existing models with only the
datasets from the time of diagnosis. One could then compare these level-sets to the
clinical target volume (CTV) regularly produced in medical practice. This offers an
attractive approach to perform a model comparison for a wide range of tumor models
proposed in the literature.
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