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Simple Summary: Within a multicentric clinical trial context for the treatment of recurrent high-
grade brain tumors, the aim of our study was to assess the potential added value of multiparametric
MRI harmonization to improve a classification problem based on radiomics analysis. We confirmed
that harmonization reduced the so-called “scanner effect” related to the variability of multiparametric
MRI protocol settings between the participating centers and improved the predictive performance
of radiomics-based classification model. Radiomics features extracted from MRI perfusion gave the
best accuracy for the classification between radionecrosis and tumor progression. Interestingly, our
study revealed that radiomics features extracted from T1-weigthed MRI alone, before any injection of
contrast product reached accuracies close to the perfusion model.

Abstract: In this study, a radiomics analysis was conducted to provide insights into the differentiation
of radionecrosis and tumor progression in multiparametric MRI in the context of a multicentric
clinical trial. First, the sensitivity of radiomic features to the unwanted variability caused by different
protocol settings was assessed for each modality. Then, the ability of image normalization and
ComBat-based harmonization to reduce the scanner-related variability was evaluated. Finally, the
performances of several radiomic models dedicated to the classification of MRI examinations were
measured. Our results showed that using radiomic models trained on harmonized data achieved
better predictive performance for the investigated clinical outcome (balanced accuracy of 0.61 with
the model based on raw data and 0.72 with ComBat harmonization). A comparison of several models
based on information extracted from different MR modalities showed that the best classification
accuracy was achieved with a model based on MR perfusion features in conjunction with clinical
observation (balanced accuracy of 0.76 using LASSO feature selection and a Random Forest classifier).
Although multimodality did not provide additional benefit in predictive power, the model based
on T1-weighted MRI before injection provided an accuracy close to the performance achieved
with perfusion.

Keywords: radiomics analysis; multicenter harmonization; multiparametric MRI; radiation-
induced necrosis
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1. Introduction

Glioblastoma is the most frequent and aggressive primary brain tumor in adults. The
conventional treatment for de novo glioblastoma (GBM) consists of surgery, as complete
as possible, followed by radiotherapy with concomitant and adjuvant chemotherapy [1].
Despite treatments, relapse always occurs, leading to a poor outcome for the patient. No
consensus on the course of salvage treatment has yet emerged, but whenever the patient’s
clinical condition and tumoral extension allow it, local therapies such as second surgery are
favored [2]. Among new treatments, hypofractionated stereotactic radiotherapy (hFSRT)
presents a solid potential for treating a radio-resistant brain tumor. On recurrent GBM,
several regimens of stereotactic radiotherapy showed promising results with acceptable
toxicity [3]. However, a possible side-effect of hFSRT is the appearance of radiation-induced
brain necrosis sometimes associated with neurological deficiencies [4]. It has also been
pointed out that the risk of radionecrosis increases with low fractionation, high dose
gradient, and in cases of re-irradiation [5].

In the context of the follow-up of GBMs, radiologists use conventional anatomical MR
images (T1w, contrast-enhancement T1w (CE-T1w), T2w, and FLAIR) in addition to more
advanced images among which are the perfusion (cerebral blood volume, CBV) and the
diffusion (apparent coefficient of diffusion of water, ADC). Such a multiparametric MRI
protocol is the technique of choice to evaluate treatment response. While several studies
have demonstrated that MR perfusion images are useful for differentiating the radiation-
induced necrosis sometimes occurring after radiotherapy or re-irradiation, and all the more
so with stereotactic RT, visual appraisal, even by an expert, remains unreliable [6–9]. The
development of an automatic tool to differentiate radiation-induced images from tumor
progression has become more important, especially for patients accumulating the risk of
brain radionecrosis from both hFSRT and re-irradiation.

Recently, radiomics analysis has been shown to provide useful insights for decision-
making in patients bearing GBM under therapies [10–13]. While neuroradiologists routinely
use perfusion and diffusion images to identify radionecrosis, none of these studies inves-
tigated such sequences, instead using anatomical images only (CE-T1w and/or FLAIR
images) to detect radionecrosis automatically. Most relied on either small cohorts and/or
monocentric data, which is one of the main causes of the lack of generalizability of ra-
diomics models. Generalizability refers to the ability of a model trained on a given dataset
to be successfully applied to a different population. A possible approach to tackling this
shortcoming and therefore increasing the sensitivity of the study is to feed the radiomics
model with features extracted from a multicentric dataset. Unfortunately, pooling data
acquired from different centers induces variability related to the scanner’s properties or
settings (imaging protocol, reconstruction algorithm), which in turn affects the robustness
of the radiomics feature. This phenomenon, also called the “scanner effect”, creates a bias
independent of the biological properties [14] that may lower the efficiency of predictive
models [15]. To overcome this effect, multicenter harmonization algorithms have been
developed to remove the “scanner effect” while preserving the biological properties of
images. In recent research, a Bayesian method called ComBat [16] was successfully applied
to remove the variability from imaging features extracted from different modalities [17].
ComBat has been studied on both phantom and clinical data to demonstrate its effectiveness
in counterbalancing the scanner effect on the radiomic features extracted from images [15].
However, to the best of our knowledge, no study has been done to evaluate the impact of
multicenter harmonization on a classification task such as the detection of radionecrosis.

The aim of this study was two-fold: first, the sensitivity of radiomic features extracted
from multiparametric MRI to scanner-related effects was identified and characterized.
Moreover, the ability of ComBat harmonization to remove these non-biological variations
was evaluated. In a second phase, the problem of differentiating radionecrosis from tumor
recurrence via radiomics analysis was investigated. In particular, the performances of
models trained with raw versus harmonized features were compared. Finally, the added
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value of incorporating diffusion and perfusion MRI into radiomics models was assessed
and compared with the use of anatomical images only.

2. Materials and Methods
2.1. Patient Population

The study was conducted according to the guidelines of the Declaration of Helsinki
and approved by the Institutional Review Board of Comité de Protection des Person-
nes Sud-Ouest et Outre-Mer III (CPP SOOM III) under the number 2016/62 on 27 July
2016. Data were collected as part of the ongoing multicentric clinical trial STERIMGLI
(NCT02866747) [18]. For this study, the patient population was composed of 28 subjects
divided into two arms: the patients in arm A (n = 5) had hFSRT alone, while the subjects
included in arm B received both hFSRT and anti-PDL1 immunotherapy (Table 1). The
multiparametric MRI protocol included the acquisition of anatomical images (T1w, CE-T1w,
T2w, and FLAIR), diffusion (DWI), and perfusion (DSC) MRI. This protocol was applied to
each patient during the screening phase and every eight weeks until a local progression was
observed. A total of 102 multiparametric MRI examinations acquired in five centers using
seven different scanners were used in this study. Radionecrosis was established based on
RANO and iRANO criteria [19] for each longitudinal conventional MRI acquisition by the
local radiologist of the participating center. In addition, a centralized expert review by two
specialists, a radiation oncologist (L.P.) and a neuro-radiologist (U.S.) included advanced
techniques such as perfusion and diffusion for the quantitative analysis, to identify or
exclude the presence of radionecrosis for each MRI session.

Table 1. Clinical characteristics of the patient population in the dataset.

Patient Characteristics Phase I
Phase II

Arm A Arm B

Total 6 6 16
Age (mean = 56)

Sex
Male 3 4 12

Female 3 2 4

Surgery
Biopsy 2 1 3

Near-complete resection 3 4 7
Complete resection 2 1 9

MGMT Status
Methylated 3 3 11

Unmethylated 3 3 5

Radionecrosis status
Positive 2 1 9

Negative 4 5 7
Arm A refers to patients treated with radiotherapy alone and arm B to patients treated with radiotherapy and
immunotherapy.

2.2. Images Preprocessing

Anatomic images were preprocessed according to the pipeline provided by the BraTS
toolkit [20] (https://github.com/neuronflow/BraTS-Toolkit, last accessed on 4 Decem-
ber 2021). Briefly, all anatomical modalities were first co-registered to the T1 space of
the patient. The brain mask was extracted with HD-BET [21], and a registration to a
space common to all patients (BraTS space) was finally performed. The registration steps
were carried out using the Advanced Normalization Tools (ANTs). Apparent diffusion
coefficient (ADC) maps were derived from diffusion-weighted MR images (DWI) using
MRtrix [22]. We applied the function dwi2adc, implemented in MRtrix, directly on the
DWI images, then the resulting ADC images were registered to the BraTS space using
ANTs. The relative cerebral blood volume maps were computed from the DSC-MRI ex-
amination using Olea Sphere version 3.0 SP7 (Olea Medical). The pipeline implemented
for CBV analysis included motion correction, deconvolution with block-circulant singular
value decomposition, and permeability correction. For the sake of clarity, in the rest of
the document, apparent diffusion coefficient maps and relative cerebral blood volume

https://github.com/neuronflow/BraTS-Toolkit
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maps will be called diffusion and perfusion maps, respectively. Diffusion and perfusion
maps were then co-registered to anatomical images in the BraTS space with ANTs. In-
tensity normalization was performed for all anatomical images (T1w, CE-T1w, T2w, and
FLAIR) using the WhiteStripe (WS) method [23] implemented in the Python library found
at https://github.com/jcreinhold/intensity-normalization (last accessed on 4 December
2021) [24]. The normalization was performed on the preprocessed images, i.e., on the
images co-registered in the BraTS space. To identify and characterize the scanner effect on
radiomic features, we drew a spherical region-of-interest (ROI) in the center of the brain
called the healthy ROI. This region, common to all patients, was chosen so that the tissue
appeared homogeneous across patients (i.e., outside the pathological area and with low
biological variation) to quantify the variation caused by the multicenter effect. Then, for
the radionecrosis detection, we defined a pathological ROI consisting of enhanced lesions
on CE-T1w images. For this purpose, we first performed a multiclass segmentation of
the tumor using the BraTS toolkit [20]. Then, the pathological ROI was revised by two
clinicians (a junior radiation-oncologist and a senior neuro-radiologist) and, if necessary,
manually corrected [25].

2.3. Feature Processing

Radiomic features of the pathological ROI were extracted from each MR image (T1w,
CE-T1w, T2w, FLAIR, diffusion, and perfusion) using the pyRadiomics framework [26].
A total of 600 features corresponding to 100 features/MR images were computed, corre-
sponding to the first-order statistics, texture, and shape-based features. To ensure a better
reproducibility of features, gray-level discretization was performed with a fixed bin width.
No other preprocessing was executed during feature extraction as images had already been
resampled and normalized earlier in the pipeline. To take into account the imbalanced
distribution across classes, minority class oversampling was applied using the synthetic
minority oversampling technique (SMOTE, as found at https://imbalanced-learn.org, last
accessed on 4 December 2021). The multicenter harmonization was performed using the
ComBat algorithm, a batch-effect correction tool initially developed for genomics data [17].
The Python implementation found at https://github.com/Jfortin1/ComBatHarmonization
(last accessed on 4 December 2021) was used with the parametric prior method in the empir-
ical Bayes procedure. The harmonization was performed at the feature level, and radiomics
vectors corresponding to each radiomic extracted from one MR image were harmonized
independently. The radionecrosis status was used as a covariate to be preserved during the
harmonization process.

2.4. Radiomics Modeling

The classification problem evaluated in this work consisted in the detection of ra-
dionecrosis in multiparametric MRI. The clinical outcome was extracted from the case
report form (CRF) used to collect data from each participating hospital. Two sets of experi-
ments were considered to assess the impact of harmonization on the predictive power of
radiomics modeling. First, radiomic models were trained on raw features without harmo-
nization and compared to models based on features harmonized with ComBat. Second,
feature selection was carried out using the least absolute shrinkage and selection operator
(LASSO) method [27]. All features with non-zero importance coefficients were retained
for model building. The classification problem was solved with four algorithms: Logistic
Regression (LR), Support Vector Machine (SVC), Random Forest (RF), and AdaBoost (AD).
Performance metrics (balanced accuracy, sensitivity, and specificity) were computed using
a bootstrap approach where the original dataset was resampled with replacement 500 times
into training and testing sets with ratios of 2/3 and 1/3 respectively. SMOTE [28] was
applied to the training set only, to compensate for the imbalanced dataset. A Wilcoxon
signed-rank test was performed to determine if there was a statistically significant differ-
ence in the balanced accuracy before and after ComBat. The null hypothesis that the two

https://github.com/jcreinhold/intensity-normalization
https://imbalanced-learn.org
https://github.com/Jfortin1/ComBatHarmonization
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distributions had no difference was rejected for p-values < 0.001. The whole process is
illustrated in Figure 1.

ANATOMICAL IMAGES EXTRACTION 
(pyRadiomics)
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CLASSIFICATION 
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SHAPE

SKULL-STRIP 
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Figure 1. Radiomics pipeline.

3. Results

Our results are divided into two parts. The first part is devoted to heterogeneity
characterization and correction: we characterized the presence of variability in MR acqui-
sition parameters and radiomic features from the healthy ROI. The second part aims to
assess the added value of perfusion and diffusion to differentiate radionecrosis from tumor
progression and the impact of heterogeneity correction on the prediction.

3.1. Characterization and Correction of the “Scanner Effects”

Although the dataset originated from a coordinated clinical trial, several protocols
were used by the different participating centers, leading to significant variability in MRI
acquisition parameters (Table 2). For example, in anatomical T1w images, the echo time
ranged from 2.4 to 8.5 ms, and the repetition time was between 7.6 and 2080 ms. This
variability in T1w acquisition parameters (TE, TR, flip angle, slice thickness, and pixel
spacing) is illustrated as UMAP clusters in Figure 2. Thus, one can observe several groups
of acquisition parameters corresponding roughly to different participants’ MRI scanners.
Interestingly, the same clusters are observed when applying UMAP dimensionality reduc-
tion to the radiomics features extracted from the healthy ROIs (cf. Figure 2). These results
demonstrate the sensitivity of radiomic features to the variability in MRI acquisition protocols.
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Table 2. Characteristics of each MRI protocol.

A B C D E F G

MRI examination 20 10 24 22 23 3 3
Radionecrosis 5 1 10 11 9 1 1

MRI Model Siemens
Aera

GE
Optima

Siemens
Skyra

Siemens
Aera

Siemens
Skyra

GE
Optima

GE
Signa

Magnetic Field 1.5 1.5 3 1.5 3 1.5 3

T1w
TE (ms) 11.0 7.6 220 11.0 2200 7.63 600
TR (ms) 5.37 3.16 2.49 5.37 2.48 3.1 10.4
FA (◦) 15 15 70 15 8 15 90

T2w
TE (ms) 7540 6000 800 8250 5300 81 58
TR (ms) 115 100 20 115 111 48.5 30
FA (◦) 170 160 20 170 150 30 15

FLAIR
TE (ms) 7000 12,000 8000 7000 6600 8000 9800
TR (ms) 124 131.3 140 124 349 123.3 141
FA (◦) 180 160 150 180 120 90 90

DWI
TE (ms) 7800 8000 6430 7800 7110 4500 11,700
TR (ms) 70 72.4 71 107 64 69.9 72.7
FA (◦) 180 90 180 90 180 90 90

DSC
TE (ms) 1880 1800 1980 1970 1770 2000 1770
TR (ms) 30 65 30 30 25 60 25
FA (◦) 90 90 90 90 90 90 90

Echo time (TE) and repetition time (TR) are given in milliseconds (ms) and flip angle (FA) in degrees (◦). A
to G refer to the identification letters assigned to the different MRI scanners in this study. Anatomical images:
T1-weighted (T1w), T2-weighted (T2w) and Fluid-attenuated Inversion Recovery (FLAIR); diffusion: Diffusion
Weighted Imaging (DWI); perfusion: Dynamic Susceptibility Contrast (DSC).
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 Figure 2. Dimensionality reduction of acquisition parameters TE, TR, flip angle, slice thickness and
pixel spacing (left) and radiomics features extracted from the healthy ROIs in T1w images (right)
with UMAP showing the sensitivity of radiomic features to the scanner effects.

To compensate for the “scanner effects” observed in our dataset, we evaluated the
impact of image normalization using WS combined with ComBat harmonization. One can
observe the impact of this method at the feature scale using histogram-based representations
on one representative feature (Figure 3) and for all radiomic features using the UMAP
representations (Figure 4).
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Figure 3A,B shows the contribution of the normalization of anatomical images fol-
lowed by the harmonization of the metrics extracted to the homogeneity of our cohort (here
illustrated using T1w). Indeed, it is observed that the histograms of a texture radiomics
feature (namely glcm-Correlation) are found to be superimposed after these two stages of
compensation, compared to the raw data (Figure 3). In addition to the classical anatomical
MR protocol, our protocol included diffusion and perfusion images, which are known to be
more quantitative than anatomical MRI. As the intensity normalization is already included
in the calculation of the diffusion and perfusion maps, we only investigated the impact of
ComBat harmonization on these scans. Here, too, although still imperfect, a beneficial effect
on the harmonization of the perfusion and diffusion images using the Combat algorithm
was observed (Figure 3C,D).
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harmonization (B,D).

3.2. Prediction of the Radionecrosis

First, we observed that all classification scores were improved when the “scanner
effects” were compensated, except for the model using FLAIR features only (balanced
accuracy of 0.66 vs. 0.63, sensitivity of 0.65 vs. 0.64, and specificity of 0.66 vs. 0.62,
respectively, without harmonization, and 0.63 with ComBat harmonization). The most
significant increase in the radionecrosis prediction was observed for the model based
on perfusion features only (balanced accuracy 0.61 vs. 0.73, sensitivity 0.6 vs. 0.75, and
specificity 0.61 vs. 0.78, respectively) (Figure 5).
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Interestingly, our results show that classification models trained on multiparametric
radiomic features do not necessarily outperform simpler models based on a single MR
modality such as perfusion.

Table 3 presents the balanced accuracy of each classifier obtained with two models
(perfusion-based and T1w-based models) with or without “scanner effects” correction.
These results show that the investigated models are robust with respect to the choice of
classification method.

Table 3. Classification scores (balanced accuracy, sensitivity, and specificity) before and after harmo-
nization for the two reference models (perfusion-based and T1w-based models).

Classification Score
Perfusion T1w

Non-ComBat ComBat Non-ComBat ComBat

Logistic
Regression

B. Accuracy 0.61 ± 0.05 0.73 ± 0.059 (*) 0.61 ± 0.059 0.67 ± 0.058 (*)
Sensitivity 0.6 ± 0.109 0.75 ± 0.09 0.6 ± 0.11 0.65 ± 0.108
Specificity 0.61 ± 0.105 0.7 ± 0.101 0.63 ± 0.117 0.68 ± 0.097

Support
Vector

Classifier

B. Accuracy 0.6 ± 0.057 0.72 ± 0.057 (*) 0.61 ± 0.059 0.66 ± 0.062 (*)
Sensitivity 0.62 ± 0.126 0.73 ± 0.094 0.61 ± 0.109 0.65 ± 0.12
Specificity 0.59 ± 0.115 0.71 ± 0.107 0.62 ± 0.118 0.67 ± 0.106

Random
Forest

B. Accuracy 0.63 ± 0.052 0.75 ± 0.06 (*) 0.6 ± 0.059 0.64 ± 0.056 (*)
Sensitivity 0.63 ± 0.126 0.75 ± 0.107 0.57 ± 0.13 0.63 ± 0.127
Specificity 0.64 ± 0.121 0.76 ± 0.109 0.62 ± 0.142 0.65 ± 0.124

AdaBoost
B. Accuracy 0.6 ± 0.059 0.76 ± 0.063 (*) 0.58 ± 0.062 0.61 ± 0.063 (*)
Sensitivity 0.6 ± 0.112 0.76 ± 0.102 0.57 ± 0.13 0.61 ± 0.114
Specificity 0.6 ± 0.115 0.76 ± 0.102 0.59 ± 0.116 0.62 ± 0.119

(*) refers to significant differences in balanced accuracies. B. accuracy refers to balanced accuracy.

3.3. Radiomics Signature

A radiomics signature was extracted from the radiomic models based on T1w and
perfusion images. These signatures are based on the importance coefficients of the LASSO
feature selection step. For each model, the mean value of the importance coefficients
above the bootstrap runs was computed. All radiomics features with a mean impor-
tance above 1% are shown in Figure 6. For the perfusion model, the most important
feature in the signature is based on the gray level size zone texture matrix (namely
glszm_LargeAreaLowGrayLevelEmphasis). In this model, minimum and maximum inten-
sity and intensity range are also considered relevant to discriminating between radionecro-
sis and tumor progression.
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Regarding the T1w-based model, the most important selected features were the first
order skewness metric, a shape feature, closely followed by several textural features.

4. Discussion

This study aimed to describe the “scanner effect” in the different modalities acquired
in a multiparametric and multicenter study. We evaluated the impact of the radiomic
features harmonization on a multicentric MRI dataset to differentiate radionecrosis from
tumor recurrence. This evaluation was performed using a conventional anatomical MR
protocol and more advanced MR images such as perfusion and diffusion maps.

Our study provides interesting insights into the research topics investigated. First, our
results provided additional evidence regarding the sensitivity of radiomic features to the
variability of imaging protocols in multicentric MRI studies. This non-biological variability
was observed on radiomics features extracted from each MR modality (T1w, T2w, FLAIR,
diffusion, and perfusion) investigated in this study. Previous work has already reported
such sensitivity for anatomical MRI [15] and diffusion [19] maps but, to the best of our
knowledge, it is the first time that the multicenter variability has been described for data
derived from perfusion MRI (CBV).

Secondly, we have shown the ability of ComBat harmonization to remove non-
biological variability in radiomic features extracted from MR images. Our results strengthen
other findings, as the benefits of feature harmonization have already been pointed out
in [15,19]. In particular, Orlhac et al. demonstrated that multicenter harmonization using a
combination of image standardization (with WhiteStripe) and ComBat realignment could
remove protocol-based variations in structural MR images (T1w and FLAIR images) ac-
quired in two different centers. Our study used MRI data originating from five centers and
acquired on seven different machines, thus expanding the scope of the considered methods
to the scale of a real-world clinical trial. Additionally, the presence of a scanner effect and
the impact of ComBat harmonization on radiomic features extracted from diffusion and
perfusion MRI were also assessed. In both cases, the use of ComBat harmonization allowed
us to compensate the non-biological variability in radiomic features.

Finally, with unharmonized radiomic features, the best classification performance
was obtained with the FLAIR model. This result is difficult to interpret as radiological
properties in FLAIR MRI are supposed to be similar for recurrent tumor and radiation
necrosis. After harmonization, however, the best model stemmed from the perfusion
radiomics feature, as expected. Indeed, radionecrosis lesions include vascular injury,
translating into a hypoperfusion, as opposed to tumor recurrence which is associated with
a neoangiogenesis and therefore hyperperfusion. In Barajas et al., the authors showed that
perfusion MRI was significantly higher within the recurrent GBM patients than within the
radionecrosis group [9]. The results presented in [7] also show that perfusion MRI maps
(both absolute and relative CBV) were efficient in the differentiation of radionecrosis and
tumor recurrence after irradiation.

Other studies also showed the ability of MRI-based radiomics analysis to discriminate
between true tumor progression and radiation-induced necrosis. In [19], the authors used
radiomic features extracted from CE-T1w images to distinguish between radionecrosis
and progression with an accuracy of 0.75. In [12], CE-T1w and FLAIR MRI features were
extracted for differentiating between treatment effect and true progression, with a sensitivity
of 0.65. In our study, radiomic models based on CE-T1w and FLAIR features were not the
best performing, especially after ComBat harmonization. This result seems more consistent
with clinical observations since conventional radiological features based on CE-T1w and
FLAIR MRI have been shown to have low sensitivity in discriminating radionecrosis from
recurrence [29,30]. In [13], several radiomic models based on CE-T1w, T2, and diffusion
images were investigated to differentiate radionecrosis from tumor progression in patients
treated with radiotherapy. In the study by Park et al., the model with the best discriminating
performance was based on diffusion images. Combining both anatomical and diffusion-
based radiomic features into the same model improved the performance. However, in our
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study, the diffusion-based model produced the worst performance. Another study pointed
out that the ComBat method showed some limits for multi-site diffusion MRI [31], and
further investigation should be carried out to clarify this point.

Another interesting result is the good accuracy reached by the T1w-based model
(without contrast agent). Our study found that T1w images provided a better classification
score than T1 post-contrast images. This result could be explained by the heterogeneity ob-
served at low signal intensity for T1w MRI that are rarely interpreted by neuro-radiologists.
The classification model trained with perfusion radiomic features showed improved per-
formance when used with ComBat harmonization. This result is consistent with other
results found in the literature [7,9,32]. Perfusion can improve the accuracy of differentiating
necrosis from a recurrent tumor in patients with brain tumors.

This study has several limitations. First, the small number of patients included in the
experiments may appear insufficient for model validation. We aim to pursue and validate
the analysis with the rest of the patients’ data from the ongoing and still recruiting clinical
trial. Second, to increase the dataset size, we considered the different sessions of the same
patient as independent samples. However, this procedure may insert redundancies and
alter the robustness of the performance metrics. Furthermore, although the evaluation of
radiomics models was carried out with a bootstrap procedure, no external validation was
performed due to the lack of data. In future work, model validation should be considered
on an external dataset to improve the study’s statistical power. Moreover, increasing
the dataset size would allow a radiomics signature for discriminating radionecrosis from
another treatment effect to be validated more robustly.

5. Conclusions

This work aimed to perform a radiomics analysis on multiparametric MRI in the
context of a multicentric clinical trial. The main objective was to evaluate the added value
of diffusion and perfusion MRI for the computer-aided differentiation of radionecrosis
and tumor progression in patients treated with radiotherapy. The identification and char-
acterization of scanner-related variability on radiomic features were performed. This
non-biological heterogeneity affected the radiomic features extracted from the different
MRI modalities included in the imaging protocol (anatomical, perfusion, and diffusion).
Image normalization and feature harmonization with ComBat were found to reduce the
scanner effects successfully. These results confirm the results of previous studies, while
extending the scope to new modalities such as perfusion MRI.

Moreover, radiomic models based on harmonized features showed improved perfor-
mance when compared to unharmonized models. In particular, the detection of radionecro-
sis using radiomics analysis was best achieved with perfusion-based models. A good
accuracy approaching the perfusion model performance was achieved with T1w images,
allowing the diagnosis of radionecrosis in clinical routine, even when perfusion images are
lacking, and therefore improving the evaluation of treatment effects for patients treated
with radiotherapy.
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MRI Magnetic Resonance Imaging
GBM Glioblastoma
hFSRT Hypofractionated Stereotactic Radiotherapy
CE-T1w Contrast-Enhancement T1w
CBV Cerebral Blood Volume
ADC Apparent Diffusion Coefficient
DWI Diffusion-Weighted Imaging
DSC Dynamic Susceptibility Contrast
ROI Region of Interest
SMOTE Synthetic Minority Oversampling Technique
CRF Case Report Form
LASSO Least Absolute Shrinkage and Selection Operator
LR Logistic Regression
SVC Support Vector Classifier
RF Random Forest
AD AdaBoost
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