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Abstract
Glioblastoma (GBM) is a malignant brain tumour with poor prognosis. The potential 
pathogenesis and therapeutic target are still need to be explored. Herein, TCGA ex-
pression profile data and clinical information were downloaded, and the WGCNA 
was conducted. Hub genes which closely related to poor prognosis of GBM were ob-
tained. Further, the relationship between the genes of interest and prognosis of GBM, 
and immune microenvironment were analysed. Patients from TCGA were divided into 
high- and low-risk group. WGCNA was applied to the high- and low-risk group and 
the black module with the lowest preservation was identified which could distinguish 
the prognosis level of these two groups. The top 10 hub genes which were closely re-
lated to poor prognosis of patients were obtained. GO analysis showed the biological 
process of these genes mainly enriched in: Cell cycle, Progesterone-mediated oocyte 
maturation and Oocyte meiosis. CDCA5 and CDCA8 were screened out as the genes 
of interest. We found that their expression levels were closely related to overall sur-
vival. The difference analysis resulted from the TCGA database proved both CDCA5 
and CDCA8 were highly expressed in GBM. After transfection of U87-MG cells with 
small interfering RNA, it revealed that knockdown of the CDCA5 and CDCA8 could 
influence the biological behaviours of proliferation, clonogenicity and apoptosis of 
GBM cells. Then, single-gene analysis was performed. CDCA5 and CDCA8 both had 
good correlations with genes that regulate cell cycle in the p53 signalling pathway. 
Moreover, it revealed that high amplification of CDCA5 was correlated with CD8+ T 
cells while CDCA8 with CD4+ T cells in GBM. These results might provide new mo-
lecular targets and intervention strategy for GBM.
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1  | INTRODUC TION

Glioblastoma (GBM) is the most common malignant tumour of the central 
nervous system (CNS) in adults.1,2 It comprises 45.2% of CNS tumours 
and 54% of all gliomas.3 Corresponding therapeutics, for instance, maxi-
mum surgical resection, comprehensive radiotherapy and chemotherapy 
have been applied to clinical practice. Yet the advances in treatment have 
not concomitant with prominent amelioration in outcomes until recently. 
The 5-year survival rate is still very low.4-6 Plenty of studies have been 
conducted to identify the underlying pathogenesis mechanisms, how-
ever, it's still not been illuminated.7-9 Particularly, there are few related 
studies on the expression modules of GBM, which has brought certain 
difficulties to the identification of key genes in the occurrence and recur-
rence of disease. The potential heterogeneities and complexities of GBM 
make it difficult to identify reliable factors for determining effective clini-
cal treatment. Hence, it is urgently needed to uncover efficient molecular 
targets which can clinically significance contribute to the personalized 
treatment and improve prognosis for GBM patients.

As a newly invented systematic biology approach, Weighted Gene Co-
expression Network Analysis (WGCNA), has been used to describe the 
connectivity of gene clusters inside the comprehensive network and as-
sess the correlations of gene modules with different clinical features.10,11 
Distinguished from other analysis method, WGCNA hierarchical clustering 
methods focused on the whole genome information instead of previous 
selected genes to overview of the signature of gene networks in pheno-
types which can avoid bias and subject judgement.12 Weighted Gene Co-
expression Network Analysis has been widely used in the study of multiple 
diseases.13–15 By constructing a co-expression network of genes and an 
identification module, WGCNA can investigate hub genes closely related 
to clinical phenotypes, which will provide us a beacon of hope for discov-
ering new molecular biomarkers and therapeutic targets in GBM.

In the present study, we acquired the clinical information of GBM 
patients from The Cancer Genome Atlas (TCGA) database. These 
patients were defined as high- and low-risk group respectively in 
accordance with the follow-up time and survival status. The gene 
co-expression networks of these two groups were constructed by 
WGCNA, then the modules related to prognosis were identified and 
the core genes in the modules were obtained. Through the screening 
and functional enrichment analysis of the hub genes in the progno-
sis-related specific modules, two genes, cell division cycle associated 5 
(CDCA5) and cell division cycle associated 8 (CDCA8), which are vital 
to the prognosis of GBM patients have been selected. Additionally, 
we performed a single-gene analysis of CDCA5 and CDCA8 to further 
validate our prediction. These findings may greatly help us develop 
new therapeutic targets and improve GBM patient's clinical outcomes.

2  | MATERIAL S AND METHODS

2.1 | Data acquisition and samples grouping

The Cancer Genome Atlas database (https://www.cancer.gov/about 
-nci/organ izati on/ccg/resea rch/struc tural -genom ics/tcga) is a landmark 

cancer genomics database, which mainly contains clinical data of various 
human cancers, such as genome variation, mRNA expression, miRNA 
expression, methylation and other data. Our study included a total of 
142 GBM patients with complete clinical information from TCGA data-
base. Patients were divided into high- and low-risk group according to 
the follow-up time and survival status. A total of 93 patients with a fol-
low-up of less than 60 months and the survival status of death were de-
fined as high-risk patients, while 49 patients of the rest were defined as 
low-risk patients. We downloaded and used TCGA level 3 FPKM RNA-
seq and clinical data for subsequent WGCNA network construction.

2.2 | WGCNA co-expression network 
construction and significant module identification

In our study, we constructed the gene co-expression network of high- 
and low-risk GBM patients respectively via the standard procedure of 
WGCNA.10 The WGCNA R package (http://www.r-proje ct.org/) was 
used for WGCNA installation, data reading and import. The data were 
obtained by removing genes with zero variance between groups and 
including the first 75% of gene sets with Median Absolute Deviation 
(MAD) for further analysis. The filtering principle of soft threshold was 
to make the constructed network more consistent with the charac-
teristics of scale-free network. The weighted adjacency matrix was 
transformed into a topological overlap matrix (TOM) to estimate its 
connectivity in the network. The hierarchical clustering method was 
used to construct the clustering tree structure of the TOM. Different 
branches of the cluster tree represented different gene modules, and 
different modules were represented by different colours.

Based on their weighted correlation coefficients, genes were 
classified on the grounds of their expression patterns. Finally, genes 
were divided into multiple modules according to gene expression 
patterns. Comparing the co-expression networks of the high- and 
low-risk GBM patients, the module with the minimum value of pres-
ervation Z-summary score was the specific module which could 
distinguish high- and low-risk group. We identified the hub gene of 
this non-preserved module by the degree of genes linkage and per-
formed functional enrichment analysis on them.

2.3 | Functional enrichment analysis of hub genes

The cluster Profiler package in R 16 was used to annotate hub genes 
to fully discover and explore their functional correlations. Gene on-
tology (GO) was used to assess the relevant functional categories. 
The P-value of <.05 and q-value of <.1 were set as the threshold.

2.4 | Validation of the interest genes with 
external database

We used external databases to verify the interested genes. The re-
lationship between the genes of interest and the prognosis of GBM 

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
http://www.r-project.org/
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patients was obtained through the PrognoScan database 17 (http://
dna00.bio.kyute ch.ac.jp/Progn oScan/ index.html) from the gene ex-
pression data of GSE 4412. Then we used the TCGA database to 
analyse the difference in expression of genes of interest.

2.5 | Transfection

All RNA duplexes were synthesized by Vigene Company (China). The 
corresponding sequences are listed as follows: si-CDCA5#1:sense,  
5′-GGCCAUGAAUGCCGAGUUUTT-3′ and antisense, 5′-AAACUC 
GGCAUUCAUGGCCTT-3′; si-CDCA5#2: sense, 5′-GCAGUUUGAUC 
UCCUGGUUTT-3′ and antisense, 5′-AACCAGGAGAUCAAACUG 
CTT-3′; si-CDCA5#3: sense, 5′-CGCAG GAGCCCUAGGAUUUTT-3′, 
and antisense, 5′-AAAUCCUAGGGCUCCUGCGTT-3′; si-CDCA8#1: 
sense, 5′-GUGGAAAUACGAAUCAAGCTT-3′, and antisense, 5′-GCU 
UGAUUCGUAUUUCCACTT-3′; si-CDCA8#2: sense, 5′-UUGACU 
CAAGGGUCUUCAATT-3′, and antisense, 5′-UUGAAGACCCUU 
GAGUCAATT-3′; si- CDCA8#3: sense, 5′-CCAAAACACGAAAGGU 
AAUAC-3′, and antisense, 5′-AUUACCUUUCGUGUUUUGGCA-3′; 
A negative control siRNA (si-NC) was also used: sense, 
5′-UUCUCCGAACGAGUCACGUTT-3′ and antisense, 5′-ACGUG 
ACUCGUUCGGAGAATT-3′. U87-MG GBM cells were transfected 
with si-NC, si-CDCA5, and si-CDCA8 using the Lipofectamine 2000 
according to the manufacturer's instructions.

2.6 | Quantitative real-time polymerase chain 
reaction (qRT-PCR)

The mRNA levels of CDCA5 and CDCA8 in U87-MG cells were ana-
lysed by qRT-PCR. After transfection, all cells were extracted total 
RNA by using TRIzol reagent. Then, reverse transcription was per-
formed with a reverse transcription assay kit following the manu-
facturer's instructions (Applied Biosystems). Amplification was 
performed using SYBR Green All-in-one qPCR Mix (GeneCopoeia). 
The following thermocycling protocol was used: pre-denatur-
ation at 95°C for 30 seconds, 40 cycles of 15 seconds at 95°C, 
30 seconds at 60°C, and melting was done at 65°C. The primers 
were: CDCA5 forward, 5′- AAATCTGGCCGAAGACACCC-3′ and  
reverse, 5′- CATGGG CCACGATCCTCTTT-3′; and CDCA8 forward,  
5′-CCTGACACCCAGGTTTGAC T-3′ and reverse, 5′- GCAATACTGT 
GCCTCTGCAA-3′; and GAPDH forward, 5′-GAGAAGGCTGG 
GGCTCATTT-3′ and reverse, 5′-TAAGCAGTTGGTGGTGCA GG-3′. 
Expression data were normalized to the expression of GAPDH with 
the 2−ΔΔCt method.

2.7 | Cell counting kit (CCK)-8 assay

Cells were seeded in 96-well plates. CCK-8 assay was performed 
at 24, 48, 72 and 96 hours according to the manufacturer's 

instructions. Absorbance was detected at 450 nm using microplate 
reader.

2.8 | Colony formation assay

Cells were seeded into six-well plates (500 cells/well) and incu-
bated in humidified air containing 5% CO2 at 37°C for 12 days. 
Culture medium was replaced every 2-3 days. The former colonies 
were washed with PBS, fixed with 4% paraformaldehyde and then 
stained with 0.01% crystal violet. The numbers of colonies were 
counted.

2.9 | Apoptosis analysis

Cells were seeded in a 6-well plate (2 × 105 cells/well). Cells were 
harvested by trypsin and washed twice with PBS. Apoptosis was an-
alysed using Annexin V-FITC Apoptosis Detection Kit according to 
the manufacturer's instructions. The apoptosis cells were measured 
by staining with Annexin V-FITC along with Propidium Iodide. After 
incubating for 15 minutes, the stained cells were detected.

2.10 | Further single-gene analysis of the interest 
genes in hub genes

This study intended to further tap the relationship between inter-
est genes in hub genes and GBM progression through single-gene 
analysis. Firstly, we analysed all RNA-seq data on GBM in the TCGA 
database. The correlation coefficient of >.4 and the P-value of <.001 
were set as the filtering condition. Then we obtained the genes 
co-expressed with the interested genes. After screening the genes 
related to the p53 signalling pathway, the ‘pheatmap’ and ‘gplot’ 
packages were used to draw the heatmap for the correlation analysis 
of the interested genes. At last, the relationship with immune micro-
environment was obtained by TIMER 18 (Tumour Immune Estimation 
Resource, https://cistr ome.shiny apps.io/timer/). All statistical analy-
ses were conducted using R 3.6.0 (https://www.r-proje ct.org/).

3  | RESULTS

3.1 | Data pre-processing and soft threshold 
screening

Considering the sensitivity of WGCNA to the effect of batch pro-
cessing. We first pre-processed the data sets of all 93 GBM patients 
in the high-risk group and 49 GBM patients in the low-risk group 
from the TCGA database. By removing genes with zero variance be-
tween groups and including the first 75% of gene sets with MAD, 
we obtained the gene sets for following analysis. Subsequently, we 

http://dna00.bio.kyutech.ac.jp/PrognoScan/index.html
http://dna00.bio.kyutech.ac.jp/PrognoScan/index.html
https://cistrome.shinyapps.io/timer/
https://www.r-project.org/
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used the hclust function to confirm the effect of batch removal from 
the dataset and to see if there were any outliers. The results showed 
that these datasets had not been corrected due to the batch removal 
effect, and the tree graph and samples were clustered in the correct 
random order (Figure 1A,B). Due to the premise of WGCNA algo-
rithm needs to assume that gene network is subject to scale-free 
distribution. Thus, we next needed to screen out appropriate soft 
threshold (power) to make the constructed network more consist-
ent with the characteristics of scale-free network. We set the soft 
threshold as 5 (high-risk group) and 10 (low-risk group), respectively 
to meet the selected criteria of power value (Figure 1C,D). By cal-
culating the scale-free topology fitting index, the value of R-square 

reached 0.9 (Figure 1E,F). This result further verified and illustrated 
the feasibility of WGCNA.

3.2 | Construction of co-expression networks and 
identification of modules

We constructed two co-expression networks of the high- and low-
risk GBM patients. Hierarchical clustering analysis was conducted 
based on weighted correlation, and the clustering results were seg-
mented according to the set criteria to obtain different gene mod-
ules (Figure 2A,B). The results showed that the module tags were 

F I G U R E  1   The detection of outlier samples, the selection and validation of optimal soft threshold power to construct gene co-expression 
networks. A, The clustering dendrogram of high-risk samples to detect outliers. B, The clustering dendrogram of low-risk samples to detect 
outliers. C, The scale independence and the mean connectivity of the WGCNA analysis of the high-risk samples. D, The scale independence 
and the mean connectivity of the WGCNA analysis of the low-risk samples. E, The histogram of k and the correlation coefficient between k 
and p (k) of the high-risk samples. F, The histogram of k and the correlation coefficient between k and p (k) of the low-risk samples



     |  1637ZHOU et al.

still clustered together in the high-risk group network, indicating that 
the preservation of this module was well. By using WGCNA for the 
low-risk group, we identified ten modules of different sizes, and used 
branches of the cluster tree and different colours to represent them. 
Then the high-risk group network was mapped to the low-risk group 
network modules. This approach helped us identify non-preserved 
modules. Non-preserved modules could explain the change of net-
work properties between low- and high-risk group networks. In addi-
tion, these non-preserved modules may be related to survival status 

of GBM patients and tumour progression. To validate the stability of 
WGCNA, we used the module preservation function to calculate the 
module preservation. The saved median and Z-summary score were 
showed for different colour modules (Figure 2C,D). The turquoise 
module had the highest Z-summary score, which indicated that it re-
tained the network characteristics of the high-risk group network. 
However, the black module with the lowest Z-summary score meant 
a low degree of preservation, indicating that the prognosis level could 
be distinguished between high- and low-risk patients.

F I G U R E  2   Co-expression modules identified and characterized by WGCNA. Clustering dendrograms of (A) High-risk samples and (B) 
Low-risk samples. (C) The preservation median rank of ten co-expression modules. (D) The preservation Z-summary score of ten co-
expression modules
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3.3 | Identification and functional enrichment 
analysis of hub genes

To identify key nodes associated with prognosis, we performed a 
more detailed analysis of the black module. Because it was minimally 
preserved between networks and could be used to distinguish be-
tween samples of high- and low-risk GBM patients. As a result, a 
heat map of 50 core genes was obtained (Figure 3A), which may play 
an important role in shortening the survival of GBM patients. Then 
the Cytoscape software was used to calculate the strength of the 
intramodule connectivity of each gene for the non-preserved mod-
ules. We sorted by score and finally obtained the top 10 hub genes 
(CDC20, NCAPH, CDCA5, BUB1, CDCA8, PBK, KIF2C, TPX2, TTK 
and TOP2A).

Gene ontology enrichment analysis was performed on the genes 
in the black module. The results demonstrated that the biological 
process of these 50 core genes mainly enriched in three aspects: 
Cell cycle, Progesterone-mediated oocyte maturation and Oocyte 

meiosis (Figure 3B). In addition, we showed in detail that each gene 
corresponded to a specific link in the cell cycle (Figure 3C). By fur-
ther enrichment analysis of genes and the interactions among the 
ten links in cell cycle, we found that these genes mainly played im-
portant roles in processes of chromosome segregation, organelle fis-
sion, nuclear division and mitotic nuclear division (Figure 3D).

3.4 | Validation of the interest genes with 
external databases

Through searching literature for the top 10 screened core genes, we 
found that there were few reports about the mechanism of CDCA5 
and CDCA8 with GBM. Thus, they were expected to be new bio-
logical targets for the treatment of GBM. Firstly, gene expression 
profiles of CDCA5 and CDCA8 were obtained from the NCBI GEO 
database (https://www.ncbi.nlm.nih.gov/geo/): GSE4412. GBM 
Patients were divided into high and low expression groups according 

F I G U R E  3   Drawing of the hub genes heat map and performing GO enrichment analysis in the black module. A, The heat map of 50 hub 
genes in the black module. B, The bubble plot showed the top enriched biological process of these genes. C, The scatter plot showed the 
distribution of hub genes involved in specific links in the cell cycle. D, The Up-Set plot showed the interactions among the ten links of cell 
cycle

https://www.ncbi.nlm.nih.gov/geo/


     |  1639ZHOU et al.

to the CDCA5 and CDCA8 gene expression levels. The PrognoScan 
database was used to analyse their relationship with the prognosis of 
GBM patients. The results showed a significant difference in overall 
survival (OS) between the two groups, the OS in both CDCA5 and 
CDCA8 high expression groups were dramatically shortened when 
compared with the low expression groups (Figure 4A). Secondly, we 
used the TCGA database to analyse the difference in expression of 
CDCA5 and CDCA8. Both were significantly overexpressed in the 
tumour group compared to the normal group (Figure 4B).

3.5 | Effect of CDCA5 and CDCA8 on proliferation, 
clonogenicity and apoptosis of GBM cells

To further study the function of CDCA5 and CDCA8 in GBM, cor-
responding siRNAs which targeted the CDCA5 and CDCA8 genes 
were specifically designed. qRT-PCR analysis showed that the rela-
tive mRNA expression of CDCA5 and CDCA8 in U87-MG cells in 
the si-gene group was lower than the si-NC group (Figure 4C). The 
most effective siRNAs (si-CDCA5#2 and si-CDCA8#3) were used 

for all subsequent experiments. After knockdown of CDCA5 and 
CDCA8 by siRNA, the cell viability of U87-MG cells was significantly 
decreased when compared with the NC group (Figure 4D). To as-
sess the long-term effects of CDCA5 and CDCA8 on U87-MG cells 
proliferation, the colony formation assay was performed. Figure 4E 
revealed that CDCA5 and CDCA8 genes knockdown markedly di-
minished the number of colonies. Further, we evaluated the effect 
of CDCA5 and CDCA8 on the apoptosis of U87-MG cells. The apop-
tosis of cells was detected by flow cytometry. As shown in Figure 4F, 
the apoptosis rates of cells in si-CDCA5 and si-CDCA8 groups were 
significantly higher than those in si-NC group. The above results in-
dicating that inhibiting CDCA5 and CDCA8 expression could inhibit 
proliferation, clonogenicity and promote the apoptosis of GBM cells.

3.6 | Single-gene analysis of CDCA5 and CDCA8

We further performed single-gene analysis on CDCA5 and CDCA8 at 
two aspects to explore their role in the occurrence and development 
of GBM. The co-expression analysis of CDCA5 and CDCA8 with the 

F I G U R E  4   Validation with external 
databases and functional analysis of 
CDCA5 and CDCA8 in GBM cells. A, The 
overall survival rate of high- and low-risk 
patients based on the expression levels 
of CDCA5 and CDCA8 in the GSE4412 
dataset. B, The difference in expression 
of CDCA5 and CDCA8 between normal 
and tumour group based on the TCGA 
database. C, qRT-PCR experiments were 
performed to detect the expression 
of CDCA5 and CDCA8 after siRNA 
transfection. D, Cell proliferation ability 
(E) clonogenicity and (F) apoptosis of U87-
MG cells after transfection by si-CDCA5 
and si-CDCA8 was determined. *P < .05, 
**P < .01 vs si-NC
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whole genome of TCGA database were conducted to screen the 
gene correlations related to cell cycle in the p53 signalling pathway. 
The correlation analysis heatmaps were made by the "pheatmap" 
and" gplot "packages (Figure 5A,B). We found that both of these two 
genes had good correlations with genes that regulate the cell cycle 
in the p53 signalling pathway: CCND1, CCNB1, CCNB2, CCNE1, 
CDK1, and CDK2 (Figure 5C:CDCA5 and Figure 5D:CDCA8). These 
results suggested that CDCA5 and CDCA8 may be involved in the 
signal regulation of p53 pathway by affecting relevant genes in the 
cell cycle. Then, the relationship between these two genes and the 
immune microenvironment of GBM was obtained by TIMER. We 
studied the differential expression of the CDCA5 and CDCA8 in tu-
mours and normal tissues of multiple cancer species, the relationship 
between expression levels and copy number variations of genes and 
the levels of infiltration of six immune cells (B cell, CD8+ T cell, CD4+ 
T cell, macrophage, neutrophil, dendritic cell). The results revealed 
that CDCA5 and CDCA8 were differentially expressed in tumour 
and normal tissues of multiple cancer species, showing a tendency 
of up-regulation (Figure 6A). Figure 6B showed that there was no 
significant correlation between the expression levels of CDCA5 
and CDCA8 and the six types of immune cells. However, the high 
amplification of CDCA5 was obviously correlated with CD8+ T cells 
in GBM (Figure 6C). Similarly, the high amplification of CDCA8 
had a significant correlation with CD4+ T cells in GBM (Figure 6D). 
It was indicated that CDCA5 and CDCA8 may affect the immune 

microenvironment of GBM through this mechanism, leading to the 
malignant progression of GBM.

4  | DISCUSSION

Glioblastoma is the most common primary malignant brain tumour 
in adults, with a poor prognosis and high mortality due to its highly 
aggressive characteristics.19-21 The advances in GBM therapy have 
not concomitant with prominent amelioration in outcomes until 
recently.22 Therefore, exploring molecular targets and therapeutic 
means are urged needed.23 Years of molecular studies have iden-
tified many key links that affect the development and progression 
of GBM.24 Especially with the progress of high-throughput genome 
technology make it possible to find more potential molecular mark-
ers by using bioinformatics methods.

In the present study, data of GBM patients with complete clin-
ical information were obtained from TCGA database. The patients 
were divided into high-risk and low-risk groups according to the 
follow-up time and survival status of the patients. Our study was 
the first to construct co-expression modules related to survival by 
WGCNA in the two groups of patients. Compared with other meth-
ods, WGCNA has many obvious advantages. Because its analysis 
focuses on the association between co-expression modules and 
clinical features of interest, the analytical results have better reli-
ability and biological significance.25 We analysed the preservation 

F I G U R E  5   Single-gene analysis to study the relationship between CDCA5 and CDCA8 and cell cycle related genes in the p53 pathway. A 
and B, The heatmaps of CDCA5 and CDCA8 and cell cycle related genes expression profiles in the p53 pathway. C, The scatter plot showed 
the correlation between CDCA5 and cell cycle related genes in the p53 pathway. D, The scatter plot showed the correlation between 
CDCA8 and cell cycle related genes in the p53 pathway
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of all modules in the high-risk group and low-risk group. Due to the 
low degree of preservation between the high- and low-risk group, 
the non- preserved module of the two co-expression networks 
(that was, the module with the minimum preservation Z-summary 
score) was able to distinguish the prognosis level between the two 
groups.

The preservation Z-summary score results from Figure 2D 
showed that the black module was identified to be the lowest con-
servative module due to its lowest Z-summary value. Therefore, we 
focused on the black module to explore the influencing factors re-
lated to survival of patients.

We identified 50 key genes from the black module and plotted a 
heat map. These genes were the key genes that affect the survival 

time and survival status of patients with GBM. Our further analy-
sis of these genes by GO showed that these prognostic genes were 
mainly related to cell cycle. In particular, it was most closely related 
to the key links: chromosome segregation, organelle fission and nu-
clear division. Therefore, we speculated that these genes may influ-
ence the cell cycle and accelerate the replication of cancer cells by 
regulating the cell cycle of cancer cells, resulting in the rapid spread 
of cancer cells. In order to explore the specific mechanism of the 
effect of these genes on survival, we screened the top 10 genes 
(CDC20, NCAPH, CDCA5, BUB1, CDCA8, PBK, KIF2C, TPX2, TTK 
and TOP2A). By retrieving related literature, we found that CDCA5 
and CDCA8, as important regulatory proteins in the cell cycle in 
cancer, were recognized as oncogenes.26-29 However, compared 

F I G U R E  6   Single-gene analysis to study the relationship between CDCA5 and CDCA8 and immune microenvironment. A, The 
differential expression of CDCA5 and CDCA8 in tumours and normal tissues of multiple cancer species. B, The relationship between the 
expression levels of CDCA5 and CDCA8 and the six types of immune cells. The relationship between expression levels and copy number 
variations of (C) CDCA5 and (D) CDCA8 and the levels of infiltration of six immune cells
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with other genes, there scarcely no reports about the mechanism of 
CDCA5 and CDCA8 with GBM. Thus, conduct study on the specific 
mechanism of CDCA5 and CDCA8 to GBM malignant progression 
might have vital clinical significance.

After verification of the two selected genes through external da-
tabases, we found that: the OS of patients with high expression of 
CDCA5 and CDCA8 in tumour tissues were significantly decreased 
from the chip data of GSE4412. Moreover, the difference analysis re-
sulted from the TCGA database discovered that CDCA5 and CDCA8 
were significantly highly expressed in GBM patients. These results 
were consistent with the two genes on the survival time of patients in 
other types of tumours.30-32 Further experimental data demonstrated 
that silencing the CDCA5 and CDCA8 would influence the biological 
behaviours of GBM cells. Then, we carried out single-gene analysis of 
CDCA5 and CDCA8, respectively to further explore their potential 
mechanism in the development of GBM. We tried to explain the ef-
fects from two aspects: molecular mechanism and tumour immunity. 
We analysed the correlation between the two and all genes involved in 
the p53 signalling pathway. p53, as a star tumour suppressor gene, can 
regulate cell cycle and prevent cell cancerization. It is referred to as the 
‘guardian of the genome’ by the scientific community. Generally, more 
than 50% of cancer patients have mutations and inactivation of p53 
gene.33,34 The p53 signalling pathway, as the most influential signalling 
pathway in the tumour field, has a significant impact on the incidence 
of different cancers.35 In particular, it plays an important role in reg-
ulating cell cycle. We were pleased to find that CDCA5 and CDCA8 
were significantly correlated with CCND1, CCNB1, CCNB2, CCNE1, 
CDK1 and CDK2 (correlation coefficient >.4, P < .05). These proteins 
were key proteins that regulating the cell cycle in the p53 signalling 
pathway. CCND1 is a protein encoded by the human CCND1 gene. It 
forms a complex with CDK4 or CDK6 and acts as a regulatory sub-
unit, which is essential for the transition from G1 to S phase of cells. 
Mutations, amplification or overexpression of the gene could change 
the cell cycle process. These phenomena often occurred in many tu-
mours and may cause tumorigenesis.36,37 CCNB1/2, as a vital member 
of the cyclin family, is an important cell cycle regulator related to G2/M 
detection points in cells. It regulates cyclin-dependent kinase 1 (CDK1) 
and forms a complex with it to phosphorylate the substrate, initiate 
cells from G1/S phase to G2/M phase, and promote mitosis. Plenty 
of evidence indicates that CCNB1/2 dysfunction is an early event in 
tumorigenesis, and its unregulated expression could be observed in 
many human tumours, including breast cancer, lung cancer and brain 
cancer.38,39 CCNE1 plays an important role in regulating the cell from 
G1 to S phase. It forms a complex by binding and activating CDK2, 
which plays a very important role in inducing the synchronization of 
DNA replication, centrosome replication and regulation, chromosome 
reconstruction and histone synthesis. It has been reported in the litera-
ture that the high expression of CCNE1 was closely related to the poor 
clinical prognosis of patients with various malignancies such as ovar-
ian, bladder and colon cancer.40,41 Therefore, we speculated that the 
effect of CDCA5 and CDCA8 on the prognosis of GBM patients may 
be achieved by participating in the regulation of cell cycle in the p53 

pathway. In particular, the co-expression of these key genes leaded 
to dysfunction at G1/S checkpoint and/or G2/M checkpoint through 
overexpression of these genes, leading to active replication of cancer 
cells and malignant tumour progression.

In recent years, tumour immunotherapy has become a novel focus 
in cancers. More and more studies have focused on the infiltration of 
immune cells in tumour tissues to explore the relationship between 
tumour microenvironment and clinical outcomes.42,43 By applying the 
online tool of TIMER, we attempted to explore the relationship be-
tween CDCA5 and CDCA8 and immune cells in GBM. This present 
study revealed that CDCA5 and CDCA8 with high amplification had 
significant effects on CD8+ T cell and CD4+ T cell, respectively in GBM 
patients under different gene copy states. Thus, both of these two 
genes may also influence the prognosis to some extent by regulating 
the immune microenvironment of GBM patients. However, the specific 
relationship between these two genes and immunity of GBM need to 
be further explored.

5  | CONCLUSION

Our study used WGCNA to construct co-expression modules related 
to the survival of GBM patients. We identified the non-preserved 
module and hub genes associated with poor prognosis in GBM pa-
tients. CDCA5 and CDCA8 were screened out as the genes of inter-
est and verified its roles in the GBM cells. We found the role of the 
CDCA5 and CDCA8 in regulating the cell cycle in the p53 pathway, 
and explain their potential pathways and molecular mechanisms. In 
addition, this study revealed the effects of CDCA5 and CDCA8 in the 
immune microenvironment of GBM. It provided new molecular tar-
gets and intervention strategy for improving the prognosis of GBM 
patients.
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