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Abstract

ARIMA model.

Background: Establishing epidemiological models and conducting predictions seems to be useful for the prevention
and control of human brucellosis. Autoregressive integrated moving average (ARIMA) models can capture the long-
term trends and the periodic variations in time series. However, these models cannot handle the nonlinear trends
correctly. Recurrent neural networks can address problems that involve nonlinear time series data. In this study, we
intended to build prediction models for human brucellosis in mainland China with Elman and Jordan neural networks.
The fitting and forecasting accuracy of the neural networks were compared with a traditional seasonal ARIMA model.

Methods: The reported human brucellosis cases were obtained from the website of the National Health and Family
Planning Commission of China. The human brucellosis cases from January 2004 to December 2017 were assembled as
monthly counts. The training set observed from January 2004 to December 2016 was used to build the seasonal
ARIMA model, EiIman and Jordan neural networks. The test set from January 2017 to December 2017 was used to test
the forecast results. The root mean squared error (RMSE), mean absolute error (MAE) and mean absolute percentage
error (MAPE) were used to assess the fitting and forecasting accuracy of the three models.

Results: There were 52,868 cases of human brucellosis in Mainland China from January 2004 to December 2017. We
observed a long-term upward trend and seasonal variance in the original time series. In the training set, the RMSE and
MAE of Elman and Jordan neural networks were lower than those in the ARIMA model, whereas the MAPE of Elman
and Jordan neural networks was slightly higher than that in the ARIMA model. In the test set, the RMSE, MAE and
MAPE of Elman and Jordan neural networks were far lower than those in the ARIMA model.

Conclusions: The Elman and Jordan recurrent neural networks achieved much higher forecasting accuracy. These
models are more suitable for forecasting nonlinear time series data, such as human brucellosis than the traditional
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Background

Brucellosis is an anthropozoonosis caused by Brucella
melitensis bacteria [1]. The occurrence of human brucel-
losis results from eating undercooked meat or drinking
the unpasteurized milk of infected animals or coming in
contact with their secretions. The epidemiological char-
acteristics of brucellosis in industrialized countries have
undergone dramatic changes over the past few decades.
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Brucellosis is previously endemic in these countries but
is now primarily related to returning travelers [2]. Huge
economic losses can still be caused by brucellosis in
developing countries [3]. Although the mortality of
brucellosis in humans is less than 1%, it can still cause
severe debilitation and disability [4]. Brucellosis is listed
as a class II infectious disease by the Chinese Disease
Prevention and Control of Livestock and Poultry and as
a class II reportable infectious disease by the Chinese
Centers for Disease Control and Prevention (CDC) [5].
Currently, human brucellosis is still a main public
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health problem that endangers the life and health of
people in China.

Surveillance and early warning are critical for the detec-
tion of infectious disease outbreaks. Therefore, establish-
ing epidemiological models and conducting predictions
are useful for the prevention and control of human bru-
cellosis. Autoregressive Integrated Moving Average
(ARIMA) models are time domain methods in time series
analysis and have been widely used in infectious diseases
forecasting [6-10]. ARIMA models can capture the
long-term trends and the periodic variations in time series
[6]. However, the models cannot handle the nonlinear
trends correctly [11, 12]. In contrast, neural networks are
flexible and nonlinear tools capable of approximating any
kind of arbitrary function [13—15]. Recurrent neural net-
works (RNNs) can address problems that involve time
series data. These models have been mainly used in adap-
tive control, system identification, and most famously in
speech recognition. Elman and Jordan neural networks
are two popular recurrent neural networks that have deliv-
ered outstanding performances in a wide range of applica-
tions [16—-20]. Currently, no researchers have used these
two neural networks to forecast the time series data of
human brucellosis.

In this study, we build prediction models for human
brucellosis in mainland China by using Elman and Jordan
neural networks. In addition, the fitting and forecasting
accuracy of the neural networks were compared with an
Autoregressive Integrated Moving Average model.

Methods

Data sources

The reported human brucellosis cases were obtained
from the website of the National Health and Family
Planning Commission (NHFPC) of China (http://www.
nhc.gov.cn). All of the human brucellosis cases were di-
agnosed according to clinical symptoms such as undu-
lant fevers, sweating, nausea, vomiting, myalgia,
arthralgia, an enlarged liver, and an enlarged spleen [21].
Additionally, the human brucellosis cases were also con-
firmed by a serologic test in terms of the case definition
of the World Health Organization (WHO). The human
brucellosis cases from January 2004 to December 2017
were assembled as monthly counts. The dataset analyzed
during the study is included in Additional file 1. The
dataset was split into two sections: a training set and a
test set. The training set observed from January 2004 to
December 2016 was used to build models, and the test
set observed from January 2017 to December 2017 was
used to test the forecast results.

Decomposition of the time series
We first plotted the time series of human brucellosis
cases and looked for trend and seasonal variations. One
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of the assumptions of an ARIMA model is that the time
series should be stationary. The mean, variance, and
autocorrelation of a stationary time series are constant
over time. Logarithm and square root transformation of
the original series were performed to stabilize the vari-
ance. A first-order difference and a seasonal difference
were used to stabilize the long-term trend and seasonal
variance, respectively. An augmented Dickey-Fuller
(ADF) test was performed to check the stationary of the
transformed time series.

We used an additive model to decompose the time
series. An additive decomposition model was used as
follows:

X =mg+ S+ 2

where at time t, x, is the observed series, m, is the trend,
s¢ is the seasonal effect, and z, is an error term. The
smooth algorithm used in this study is loess [22]. A
locally weighted regression technique is used in this
method.

The seasonal ARIMA model construction

In the early 1970s, ARIMA models were proposed by
statisticians Box and Jenkins and have been considered
to be one of the most widely used models for time series
analysis [23]. Autoregressive and moving average terms
at lag s are included in a seasonal ARIMA model. The
seasonal ARIMA(p, d, q) (B, D, Q); model is written with
the backward shift operator as follows:

®p(B*)0,(B)(1-B°)"(1-B)"x, = ©(B*) ¢, (B)w,

where ®p 6, ©g, and ¢, are polynomials of orders P, p,
Q, and ¢, respectively. After a time series has been trans-
formed to be stationary, the figures of the autocorrel-
ation function (ACF) and partial autocorrelation
function (PACF) are used to give a rough guide of reason-
able models to try. Once the model order has been identi-
fied, a parameter test is necessary. We need to estimate
the coefficients of autoregressive and moving average
terms. The maximum likelihood estimation (MLE) is used
to perform the parameter test. A best-fitting model is
chosen with an appropriate criterion after trying out a
wide range of models. A Ljung-Box Q statistic of the re-
siduals is always used to judge whether the residuals are
white noise. This statistic is a one-tailed statistical test. If
the p value is greater than the significance level, then the
time series is regarded as white noise. A Brock-Dechert-
Scheinkman (BDS) test is applied to the residuals of the
best-fitting seasonal ARIMA model to detect the nonline-
arity of the original time series. A BDS test can test non-
linearity, provided that any linear dependence has been
removed from the data. In this study, we wrote a function
with R language that could fit a range of likely candidate
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ARIMA models automatically. The R script of the func-
tion is included in Additional file 2. The conditional sum
of squares (CSS) method which was more robust was used
in the arima function. The consistent Akaike Information
Criteria (CAIC) [24] was used to select the best-fitting
model. The formula of CAIC is written as follows:

CAIC = -2LL + [ In (n) + 1]K

where LL is the model log likelihood estimate, K is the
number of model parameters, and n is the sample size.
Good models are obtained by minimizing the CAIC.

Building Elman and Jordan recurrent neural networks
Normalization is an important procedure in building a
neural network, as it avoids unnecessary results or diffi-
cult training processes resulting in algorithm conver-
gence problems. We used the min-max method to
obtain all the scaled data between zero and one. The
formula for the min-max method is the following:

X—Xmin

Kscaled =
max ~Xmin

Since the time series data of human brucellosis cases

had strong seasonality characteristics that appeared to
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depend on the month, we created twelve time-lagged
variables as input features. Therefore, we selected twelve
as the number of input neurons. There was one output
neuron representing the forecast value of the cases of
the next month. Supposing that x, represents the human
brucellosis cases at time t, then the input matrix and the
output matrix of the modeling dataset used in this study
are written as follows:

X1 X2 X12
input matrix = 273 13
......... X14

Xe-12 Xp-11"""X¢-1

X13
. X
output matrix = 1

Xt

The structure of Elman and Jordan neural networks is
illustrated in Fig. 1. Elman and Jordan neural networks
consist of an input layer, a hidden layer, a delay layer,
and an output layer. The delay neurons of an Elman
neural network are fed from the hidden layer, while the
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Fig. 1 Structure of the Elman and Jordan neural networks
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delay neurons of a Jordan neural network are fed from
the output layer.

There are several parameters, such as the number of
units in the hidden layer, the maximum number of itera-
tions to learn, the initialization function, the learning
function, and the update function, which should be set
when we build an Elman or Jordan neural network. In
this study, the maximum number of iterations was set to
5000. If the learning rate is too large, then the neural
network will converge to local minima. Therefore, the
learning rate is usually between 0 and 1. By trial and
error, the learning rates of Elman and Jordan neural
networks were set to 0.75 and 0.55, respectively. One
hidden layer was sulfficient for this study. To avoid over
fitting during the training process, we adopted the
approach of leave-one-out-cross-validation (LOOCYV) in
the original training set for selecting the optimal number
of units in the hidden layer. A single observation was
used for the validation set, and the remaining observa-
tions made up the new training set. Then, we trained the
neural network on the remaining ones and computed
the mean squared error (MSE) for the selected single
network. We repeated the procedure until every obser-
vation had been selected once in the original training
set. The number of units in the hidden layer was
attempted from 5 to 25. The optimal number of units in
the hidden layer had the lowest mean MSE. The parallel
computation was used to accelerate the LOOCV proced-
ure on a Dell PowerEdge server T430 with 12 threads.
The remaining parameters of the two models were set to
default. The R script to conduct the neural network
models is included in Additional file 3.

Model comparison

Three performance indexes, root mean squared error
(RMSE), mean absolute error (MAE) and mean absolute
percentage error (MAPE), were used to assess the fitting
and forecasting accuracy of the three models. MAE is
the simplest measure of fitting and forecasting accuracy.
We can calculate the absolute error with the absolute
value of the difference between the actual value and the
predicted value. MAE determines how large of an error
we can expect from the forecast on average. To address
the problem of telling a large error from a small error,
we can find the mean absolute error in percentage
terms. MAPE is calculated as the average of the un-
signed percentage error. The MAPE is scale sensitive
and should not be used when working with low-volume
data. Since MAE and MAPE are based on the mean
error, they may understate the impact of large rare
errors. RMSE is calculated to adjust for large rare errors.
We first square the errors, then calculate the mean of
errors and take the square root of the mean. We can
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obtain a measure of the size of the error that gives more
weight to the large rare errors. We can also compare
RMSE and MAE to judge whether the forecast contains
large rare errors. Generally, the larger the difference
between RMSE and MAE, the more inconsistent the
error size is.

Data analysis

All data analyses were conducted by using R software
version 3.5.1 on an Ubuntu 18.04 operating system. The
decomposition of the time series was performed with
the function stl in package stats. Seasonal ARIMA
models were built with the function arima in package
stats. Elman and Jordan recurrent neural networks were
built with the functions elman and jordan in the RSNNS
package, respectively. In this study, the statistical signifi-
cance level was set at 0.05.

Results

Characteristics of human brucellosis cases in mainland
China

There were 52,868 cases of human brucellosis in Main-
land China from January 2004 to December 2017. As
shown in Fig. 2, we can observe a general upward trend
and seasonal variance in the original time series. The
number of human brucellosis cases was higher in sum-
mer and lower in winter (Fig. 3). As shown in Fig. 2,
the variance seemed to increase with the level of the
time series. The variance from 2004 to 2007 was the
smallest, followed by the data from 2008 to 2013, and
the variance from 2014 to 2016 was the largest. There-
fore, the variance was nonconstant. The time series
must be transformed to stabilize the variance. Gener-
ally, the logarithm or square root transformation can
stabilize the variance. The plot of the original time
series, logarithm and square root transformed human
brucellosis case time series is illustrated in Fig. 4. The
variance seemed to decrease with the level of the loga-
rithm transformed human brucellosis case time series.
For the square root transformed human brucellosis
cases time series, the variance appeared to be fairly
consistent. We found that square root transformation
was more appropriate for this study after trying these
two methods. The decomposition of time series after
square root transformation is plotted in Fig. 5. The gray
bars on the right side of the plot allowed for the easy
comparison of the magnitudes of each component. The
square root transformed time series, seasonal, trend,
and noise components are shown from top to bottom,
respectively. The seasonal component did not change
over time. The trend component showed a general up-
ward trend from 2004 to 2015 and declined slightly in
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Fig. 2 Time series plot for cases of human brucellosis in Mainland China from 2004 to 2017
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2016. There was no apparent pattern of noise. The
results of the decomposition were satisfactory.

Seasonal ARIMA model
A first-order difference and a seasonal difference made
the time series of square root transformed human bru-
cellosis cases look relatively stationary (Fig. 6). The ADF
test of the differenced time series suggested that it was
stationary (ADF test: t = - 5.327, P <0.01). Therefore, the
parameters d and D for a seasonal ARIMA model were
set to 1 and 1, respectively.

The plots of ACF and PACF are shown in Fig. 7. The
significant spike at lag 1 in the ACF suggested a possible
nonseasonal MA (1) component, and the significant

spike at lag 12 in the ACF suggested a possible seasonal
MA (1) component. The significant spikes at lags 1 and
2 in the PACF suggested a possible nonseasonal AR (2)
component, and the significant spikes at lags 12 and 24
in the PACF suggested a possible seasonal AR (2) com-
ponent. Therefore, we tried the parameters p from 0 to
2, q from O to 1, P from 0 to 2, and Q from 0 to 1. With
the combination of these parameters, 36 likely candidate
models were built. The models were considered as to
whether they could pass residual and parameter tests.
Eventually, five models remained. We found that the
ARIMA (2,1,0) x (0,1,1)15, model had the smallest CAIC
(798.731) among the candidate models (Table 1). The
Ljung-Box Q statistic of the residuals indicated no
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Fig. 3 Month plot for cases of human brucellosis in Mainland China from 2004 to 2017
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significant difference (P =0.097) at the significance level
of 0.05. Therefore, we considered that the residuals were
white noise. The estimated parameters of the optimal
seasonal ARIMA model are listed in Table 2. The re-
sults of the BDS test are shown in Table 3, and all of
the p values were smaller than the significance level
of 0.05. The results suggested that the time series of
human brucellosis in Mainland China from 2004 to
2016 was not linear.

Elman and Jordan neural networks

When we used the LOOCYV approach in the training set,
the lowest mean MSE was 0.018 and 0.010 for Elman and
Jordan neural networks when the number of units in the
hidden layer was 7 and 8, respectively. The plot of the train-
ing error by iteration is shown in Fig. 8. The error dropped
sharply within the beginning iterations. This finding indi-
cated that the model was learning from the data. The error
then declined at a more modest rate until 5000 iterations.
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Fig. 6 Plot of square root transformed human brucellosis cases after a first-order difference and a seasonal difference

Comparison of the three models

The training set was used to build models. A first-order
difference and a seasonal difference were performed in
building the seasonal ARIMA model. Therefore, we lost
the first 13 values in the training set, and the remaining
143 values were compared. We created 12 time-lagged
variables as input features for Elman and Jordan neural
networks. Therefore, 144 values were compared in the
training set for the neural networks. The fitting and
forecasting accuracy of the three models are shown in
Table 4. In the training set, the RMSE and MAE of

Elman and Jordan neural networks were lower than
those of the ARIMA model, whereas the MAPE of
Elman and Jordan neural networks was slightly higher
than that of the ARIMA model. In the test set, the
RMSE, MAE and MAPE of the Elman and Jordan neural
networks were far lower than those of the ARIMA
model. The Jordan neural network had the best forecast-
ing performance. The RMSE, MAE and MAPE of the
Jordan neural network were the lowest. Therefore, the
Jordan neural network was the best model for the test
set. The actual and forecasted cases of human
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Table 1 Comparison of five candidate seasonal ARIMA models

Model CAIC Ljung-Box Q P value
ARIMA (0,1,1) x (0,1,1);5 799.923 22.787 0.199
ARIMA (0,1,1) x (1,1,0)1> 817.906 22472 0212
ARIMA (0,1,1) X (2,1,0)12 813.588 25.848 0.103
ARIMA (2,1,0) X (0,1,1);> 798.731 26.107 0.097
ARIMA (2,1,0) X (1,1,0)12 823.300 22.852 0.196

brucellosis in mainland China from January to Decem-
ber 2017 of the three models are presented in Table 5.

Discussion
There are two methods for time series analysis: fre-
quency domain methods and time domain methods.
Seasonal ARIMA models, which belong to time domain
methods, have been regarded as one of the most useful
models in seasonal time series prediction [25]. There is
no need to use any extra surrogate variables [26]. We
can usually only analyze with the outcome variable series
without considering the factors that will affect the out-
come variable. This method is more practical because
we cannot obtain all of the time series data of impacting
factors most of the time. Before the model identification,
the time series should be handled to be stationary with
data transformation and difference. Generally, the more
differences are used, the more data loss will occur.
Fortunately, we only used a first-order difference and a
seasonal difference in this study. Eventually, the ARIMA
(2,1,0) x (0,1,1);, model was chosen as the optimal
model according to the value of CAIC. The seasonal
ARIMA model accurately captured the seasonal fluctu-
ation of human brucellosis cases in mainland China.
However, the forecasting accuracy in the test set was not
satisfactory. The MAPE of the seasonal ARIMA model
reached 0.236 in the test set. The most likely reason was
that the time series data of human brucellosis cases in
mainland China was not linear. As shown in Fig. 5,
although we could observe a long-term upward trend
from the trend component, some curves remained after
the seasonal and irregular components had been ex-
tracted. The results of the BDS test also supported that
the time series of human brucellosis in Mainland China
from 2004 to 2016 was not linear.

There are mainly two approaches for nonlinear time
series forecasting [27]. One approach is model-based

Table 2 Estimate parameters of the seasonal ARIMA
(2,1,0) x (0,1,1)1, model

Model parameter Estimate Standard error 95%Cl of estimate
AR1 -0.392 0.085 (=0.559, —0.225)
AR2 —0.220 0.081 (-0.378, — 0.062)
Seasonal MA1 -0.726 0.063 (—0.849, — 0.603)
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Table 3 Results of BDS test for the residuals of seasonal ARIMA

model

Epsilon Dimension Statistic p-value
1.838 2 2.751 0.006
1.838 3 3.532 0.000
1.838 4 2997 0.002
3677 2 2.241 0.025
3.677 3 2603 0.009
3677 4 2.524 0.012
5515 2 2371 0.018
5515 3 2452 0.014
5515 4 2317 0.021
7.354 2 2624 0.009
7.354 3 2572 0.010
7.354 4 2472 0.013

parametric nonlinear methods, such as the smoothing
transition autoregressive (STAR) model, the threshold
autoregressive (TAR) model, the nonlinear autoregres-
sive (NAR) model, the nonlinear moving average (NMA)
model, etc. In theory, these parametric nonlinear
methods are superior to the traditional ARIMA model
in capturing nonlinear relationships in the data. How-
ever, there are too many possible nonlinear patterns in
practice, which restricts the usefulness of these models.
The other approach is nonparametric data driven
methods, and the most widely used method is neural
networks. Neural networks are inspired by the structure
of a biological nervous system. These networks can cap-
ture the patterns and hidden functional relationships
existing in a given set of data, although these relation-
ships are unknown or hard to identify [28]. Recurrent
neural networks contain hidden states that are distrib-
uted across time. This characteristic suggests that these
networks have the ability to efficiently store much infor-
mation about the past. Therefore, these networks have
the advantage of dealing with time series data. Elman
and Jordan neural networks are two widely used recur-
rent neural networks. Elman neural networks have been
used in many practical applications, such as the price
prediction of crude oil futures [29], weather forecasting
[30], water quality forecasting [31], and financial time
series prediction [28]. Jordan neural networks have been
used in wind speed forecasting [32] and stock market
volatility monitoring [33]. All of these applications have
achieved good forecasting performance. In this study, we
tried these two neural network models to predict human
brucellosis cases in Mainland China. The MAPE of
Elman and Jordan neural networks were 0.115 and
0.113, respectively, almost the same as the MAPE of the
seasonal ARIMA model at 0.112 in the training set,
while the RMSE and MAE of Elman and Jordan neural
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Fig. 8 Training error by iteration for Elman and Jordan neural networks

networks were lower than those of the ARIMA model.
The RMSE and MAE of the Elman neural network were
the lowest, whereas the MAPE of the Elman neural net-
work was the highest in the training set. The most likely
reason was that the Elman neural network gained better
fitting accuracy for large values, but gained poorer fitting
accuracy for small values in this study. Importantly, the
Elman and Jordan neural networks achieved much
higher forecasting accuracy in the test set. The RMSE,
MAE, and MAPE of Elman and Jordan neural networks
were far lower than those of the seasonal ARIMA model.
Therefore, Elman and Jordan Recurrent Neural Net-
works are more appropriate than the seasonal ARIMA
model for forecasting nonlinear time series data, such as
human brucellosis. However, we must admit that there
are still some limitations of neural network models.
First, neural network models are black boxes, i.e., we
cannot know how much each input variable is influen-
cing the output variables. Second, there are no fix rules

to determine the structure and parameters of neural net-
work models. It all depends on the experience of re-
searchers. Third, it is computationally very expensive and
time consuming to train neural network models. Neural
network models require processors with parallel process-
ing power to accelerate the training process. Some re-
searchers have built hybrid models combining ARIMA
models and neural network models to analyze time series
data and achieved good results. We will try hybrid models
for human brucellosis in the future. There were still some
limitations to this study. First, the NHFPC of China only
reported the data from 2004 to 2017. More time series
data on brucellosis cases can improve the accuracy of
forecasting models. Second, the present study is an
ecological study, and we cannot avoid ecological fallacy.
Third, the factors that affect the occurrence of human
brucellosis such as pathogens, host, natural environment,
vaccines and socioeconomic variations were not consid-
ered when we conducted the models.

Table 4 Comparison of the fitting and forecasting accuracy of the three models

performance Training set Test set

index ARIMA Elman Jordan ARIMA Elman Jordan
RMSE 405.746 297.181 361.283 1050.018 684.450 561442
MAE 294.190 231.061 287.370 873.840 502.926 374737
MAPE 0.112 0.115 0.113 0.236 0.156 0.113
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Table 5 The actual and forecasted cases of human brucellosis
in mainland China from January to December 2017 of the three
models

Month Actual values ARIMA Elman Jordan
Jan 1874 2274 2148 2140
Feb 2740 2390 2395 2399
Mar 4055 4568 4211 4267
Apr 4048 5530 5077 5376
May 4539 6521 6085 5763
Jun 5203 6721 4450 5175
Jul 4742 6330 4873 4795
Aug 4330 5228 4376 4421
Sep 2781 3527 3478 3141
Oct 1953 2448 2890 2269
Nov 2427 2675 2489 2361
Dec 2549 2819 2612 2337
Conclusions

In this study, we established a seasonal ARIMA model
and two recurrent neural networks, namely, the Elman
and Jordan neural networks, to conduct short-term
prediction of human brucellosis cases in mainland
China. The Elman and Jordan recurrent neural networks
achieved much higher forecasting accuracy. These
models are more appropriate for forecasting nonlinear
time series data, such as human brucellosis, than the
traditional ARIMA model.
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Additional file 1: Monthly cases of human brucellosis in Mainland
China from 2004 to 2017. (XLSX 13 kb)

Additional file 2: R script of the function that can fit a range of likely
candidate ARIMA models automatically. (TXT 1 kb)
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