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Copy number variations represent a substantial source of genetic variation and are associated with a
plethora of physiological and pathophysiological conditions. Joint copy number and allelic variations
(CNAVs) are difficult to analyze and require new strategies to unravel the properties of genotype
distributions. We developed a Bayesian hidden Markov model (HMM) approach that allows dissecting
intrinsic properties and metastructures of the distribution of CNAVs within populations, in particular
haplotype phases of genes with varying copy numbers. As a key feature, this approach incorporates an
extension of the Hardy-Weinberg equilibrium, allowing both a comprehensive and parsimonious model
design. We demonstrate the quality of performance and applicability of the HMM approach with a real data
set describing the Fcc receptor (FccR) gene region. Our concept, using a dynamic process to analyze a static
distribution, establishes the basis for a novel understanding of complex genomic data sets.

C
opy number variations (CNVs) are common and represent a source of enormous genetic complexity,
which is further increased by sequence variations. CNVs have been recognized as highly important for the
understanding of human disease pathogenesis1. Nonetheless, the complexity of CNAV poses a challenge

for statistical association analyses, requiring novel approaches to reveal hidden metastructures.
Most CNVs are inherited, but 10% develop de novo, either during parental meiosis (30%) or during devel-

opmental mitosis (70%). The majority of CNVs (approximately 80%) are gains2. During mitosis, several
mechanisms have been proposed to cause changes in copy numbers3–6. Among these mechanisms, the micro-
homology-mediated break-induced repair (MMBIR) mechanism has been proposed to be a major source of
CNVs4,7. This repair mechanism uses either the sister DNA strand or the second chromosome as a reference to
repair DNA strand breaks during replication. In microhomologous regions, annealing to the reference may be
misplaced, leading to either the deletion or duplication of the affected gene region. This mechanism causes loss of
heterozygosity (LOH) as its specific signature in the respective DNA sequence4,7.

A prominent example of a CNAV is in the genetic region harboring the genes for low-affinity Fcc receptors. Fcc
receptors are key molecules for the binding of immunoglobulins by cellular players of the immune system and
mediate a plethora of downstream signaling events8,9. These receptors are associated with susceptibility to
autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis and idiopathic thrombo-
cytopenic purpura10–16. Although each FccR possesses a unique functionality, their respective genes show a very
high intergenic homology. Currently, the most advanced high-throughput method to characterize CNAVs of the
FccR gene region is a multiplex ligation-dependent probe amplification (MLPA) method16,17. This method
determines the abundance counts of sequence motifs, i.e., alleles, in genomic DNA. In detail, this method
determines integer copy numbers for 7 genes within the FccR gene region, ranging from 0 to more than 5 copies,
thereby distinguishing allelic variants of 9 different single nucleotide polymorphisms (SNPs) (Fig. 1).

The approach we present here was originally developed to address the complexity of this data set. For this
purpose, we re-interpret these data as the static summary of a dynamic series of events. The order of events is
introduced as a latent variable described by a specialized hidden Markov model (HMM) that is randomly walked
according to transition probabilities, which are inferred from the data set. The order of events can be regarded as
the order of genes and alleles along a single chromosomal strand (Fig. 2a). Inspired by the above described
mechanisms that lead to copy number variation, we introduce recursive loops that model deletion or multiplica-
tion of genes (Fig. 2b).
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The Hardy-Weinberg equilibrium is a widely used model to
describe the distribution of genotypes without copy-number vari-
ation in a population. It is based upon the idealized assumption that
genetic alleles are independent and distribute evenly with every gen-
eration in a population. We extend this idea by further assuming
independence and even distribution of alleles between gene copies.
Moreover, we assume that the processes that lead to copy-number
variation have reached a steady-state equilibrium. This leads to the
Markov model graph described in Fig. 2c. The above described
CNAV generating mechanisms that cause the LOH signature can
be incorporated by further derivation of this model (Fig. 2d).

The Markov model graph (Fig. 2b–d) and the genotyping data are
given as inputs to a Bayesian frame-work that infers the unknown
transition probabilities and latent Markov path. For the selection of
the best HMM, the marginal likelihood is also calculated.

Here, we present a novel approach for statistical inferences of
complex genotypes within a population together with a collection
of applications of the method to a real MLPA data set. We dem-
onstrate how an optimal HMM input graph can be set up for differ-
ent purposes and how the results of Bayesian inference can be
analyzed.

Results
To derive transition probabilities from given observed data and a
Markov model graph, a Markov Chain Monte Carlo (MCMC) sam-
pler, i.e. a data-augmented Metropolis-within-Gibbs sampler, altern-
ately simulates latent Markov paths and transition probabilities. The
implementation details are further described in the Methods and
Suppl. Materials sections. The output of the sampler can be used to

determine credibility intervals and point estimators for transition
probabilities for the respective input HMM graph, as shown below.

HMM interpretation of the Hardy-Weinberg equilibrium model.
To introduce our approach, we first apply it to two FccR genes with
two allelic variants that do not show any copy number variation. The
models depicted in Fig. 3a–b were designed to reflect the genotype
distribution of FccR IIa (Fig. 3a) and FccR IIb (Fig. 3b). This basic
model performs the same function as the calculations for a regular
Hardy-Weinberg equilibrium (Suppl. Tab. 1). The transition prob-
abilities at the bifurcation point in the models are therefore identical
to the haplotype frequencies for the H131R polymorphism (rs1801274)
of FccR IIa and the I232T polymorphism (rs1050501) of FccR IIb.

Extension of the Hardy-Weinberg equilibrium model to joint
copy-number and allelic variations. The genes for FccR IIIa, IIc
and IIIb show both allelic and copy number variations (compare
Fig. 1). To establish models that describe the CNAVs in these recep-
tors, we focus on those with the F158V amino acid polymorphism of
FccR IIIa (Fig. 3c); the open reading frame (ORF) stop codon
polymorphisms of Fcc receptor IIc (Fig. 3d); and the HNA1a
(Na1), HNA1b (Na2) and HNA1c (SH) polymorphisms of Fcc
receptor IIIb (Fig. 3e).

To set up a model for these genes, we extend the basic assumption
of the Hardy-Weinberg equilibrium, i.e., independence of alleles
between chromosomes, by assuming 2 other independences: inde-
pendence between individual gene copies and independence between
copy number changing events (compare Fig. 2c). This approach leads
to an HMM as outlined in Fig. 2b and c. The changes in copy num-

Figure 1 | Schematic of the genetic information measured by the Fcc receptor multiplex ligation-dependent amplification (MLPA) system. The FccR-

specific MLPA system determines copy numbers of depicted gene alleles of Fcc receptors IIa (FCGR2A, rs1801274), IIb (FCGR2B, rs1050501), IIc

(FCGR2C, rs183547105), IIIa (FCGR3A, rs396911) and IIIb (FCGR3B, rs200688856 and rs5030738). Additionally, copy numbers of heat shock proteins

A6 (HSPA6) and A7 (HSPA7) are determined. For FccR IIb and IIc, the promoter sequences are highly homologous. Thus, allele counts of the two

promoter polymorphisms C-386G (rs3219018) and A-120T (rs34701572) are not separable between these receptors.
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bers are represented by two separate loops for gains and losses of gene
copy numbers. To obtain an impression of the predictive capability
of this model, the marginal likelihood is calculated according to the
Chib and Jeliazkov method (CJ method)18 and compared to that of a
naı̈ve enumeration model (NEM, see the Methods section) by the
Bayes factor.

In the case of FccR IIIa, a Bayes factor (HMM over NEM) of 66.7
favors the HMM (Fig. 3c). The same is true for FccR IIc, with an even
higher Bayes factor of 8103 (HMM over NEM)(Fig. 3d). The sampler
output of 10 separate runs for FccR IIIa and FccR IIc shows rapid
convergence to a single optimum, with almost no autocorrelation
(Suppl. Figs. 1 and 2).

Both examples support the extended Hardy-Weinberg equilib-
rium model. Moreover, the HMM predicts the frequency of all
theoretically possible genotypes by design, even those not found in
the observed data set. Enumeration models do not have this predict-
ive capability, which is known as the zero-frequency problem19.
Therefore, comparison between HMMs and NEM is, strictly speak-
ing, inadequate. We nevertheless present this comparison here to
provide a rough orientation to the performance of the respective
HMMs.

As described, changes in copy numbers can be caused by the
MMBIR mechanism, which would violate the independence
assumption between individual gene copies, as LOH would be intro-
duced. We thus compare the performance of HMMs incorporating
LOH (compare Fig. 2d) for both FccR IIIa and IIc (Suppl. Fig. 3a and
b). However, according to a comparison by the Bayes factor, the LOH
models both performed slightly worse than the corresponding mod-

els without LOH, indicating no advantage for the extra complexity
introduced in the LOH models.

In contrast to Fcc receptor IIIa and IIc, the basic HMM for FccR
IIIb (Fig. 3e) appears to be worse than the NEM, with a Bayes factor
of 2.3 3 10227. This finding indicates that the genotype distribution
of this receptor violates some of the equilibrium assumptions
described above.

All calculations were done on a desktop computer with an Intel
Core i5 quad-core CPU 660 @ 3.33 GHz with 8 GB RAM. For our
data set with 387 individuals, the average running time for 1000
sampling cycles of the MCMC sampler was about 65 seconds for
each of the models described in Fig. 3a–b and about 80 seconds for
those described in Fig. 3c–e.

Using the HMM approach to model genotype distribution
disequilibria. To gain further insight into the nature of the
disequilibrium in the distribution of FccR IIIb genotypes, we
derived the model shown in Fig. 3e. In the extended model (Fig. 4a
and b), we assumed a first-order dependency between different allelic
variants. We found this model to be superior to the first model,
although at the cost of more parameters (Bayes factor against first
model: 2.46 3 10221). The posterior distribution of transition
probabilities appeared to be bi-modal (Fig. 4a and b, Suppl. Fig. 4)
and revealed a connection between HNA1c (SH) and HNA1A (Na1).
The bi-modality of the posterior distribution was expected because of
the ambiguity in the order of alleles in the tandem allele, which is
either HNA1c (SH) followed by HNA1A (Na1) or vice versa. This
connection is compatible with a tandem allele for FccR IIIb. The

Figure 2 | Derivation of a stochastic finite-state machine that simulates copy-number and allelic variation (CNAV). (a), general concept to describe

variable repetitions or deletions in chromosomal DNA: the chromosomal DNA strand (gray blocks) contains different microhomologous sites (thick

arrows in blue, green and red) that act as anchors for DNA strand repairing mechanisms and crossing-over during meiosis. Mismatches of these sites lead

to the losses or duplications (bended arrows) of gene blocks, i.e., copy-number variation. (b), definition of a stochastic finite-state machine that

reproduces the situation of a single block harboring gene G in a single chromosome or haplotype. Beginning at the initial state (circle-within-circle state),

the machine walks the graph randomly (transition probabilities are not shown here), either emitting a symbol (rectangle states) or nothing (circle states)

until it reaches the final state (circle-diamond states). Every genotype consists of two haplotypes; thus, the machine walks the graph twice to produce a

complete genotype. Loss and gain loops are separated here to avoid infinite recursion. (c), further derivation of the model for representation of a gene with

two alleles (A and B), assuming independence between changes in copy numbers and between individual gene copies. (d), a model for a biallelic gene that

incorporates a possible loss of heterozygosity (LOH).
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existence of such a duplication composed of HNA1a and HNA1c has
been hypothesized previously by a genotyping study for the northern
German population20. The extended model further indicates a
tendency of the HNA1c (SH) allele to be repeated multiple times,
which we considered as an artifact of the MLPA method.

We incorporated the above interpretations into a third model that
included the HNA1c-HNA1a (SH-Na1) tandem as an additional
allele (Fig. 4c). The marginal likelihood of this model was nearly
the same as for the second model, further supporting the possible
existence of this tandem allele. Moreover, in this third model, the
number of free parameters could be reduced from 13 to 7.

For our data set with 387 individuals, the average running time of
the MCMC sampler for the models described in Fig. 4a, b and c were
about 75–80 seconds for 1000 sampling cycles.

Resolution of phases for individual copies of FccR IIb and IIc
genes. The MLPA system determines three polymorphisms for
both FccR IIb and IIc, genes with opposite functions; FccR IIb is
an inhibitory receptor and FccR IIc an activatory receptor, but the
59 part of DNA sequences of both receptor genes, including the
promoter regions and a gross part of coding sequences, are
identical. In consequence, it is not straightforward to separately
determine the G-386C and the A-120T SNPs of FccR IIb and IIc
promoters (compare Fig. 1). Because these promoter polymorphisms
have been experimentally shown to influence the expression of their
genes21, it is important to determine which promoter alleles are
located in FccR IIb and which are located in FccR IIc.

Our approach here was to exploit possible linkages of promoter
polymorphisms with two additional polymorphisms determined by
the MLPA system, i.e., the functionally relevant I232T polymorphism
of FccR IIb and the above-described ORF/Stop codon polymorphism
of FccR IIc (Fig. 1). The fact that frequencies of promoter alleles are
reported to differ between FccR IIb and FccR IIc22 may also be
exploited to resolve the phases of promoter polymorphisms.

The corresponding HMM is described in Fig. 5a. In this model, we
added an extension to translate non-phased genotypes, as provided

from MLPA readouts, into phased genotypes with correctly deter-
mined promoter alleles for both receptors (Fig. 5b). For this purpose,
the HMM is associated with two alternative emission sets and mat-
rices: one for the non-phased genotypes and the other for phased
genotypes. We first inferred transition probabilities for the given
input model using non-phased emissions. The expectation value of
the transition probabilities’ posterior distribution was then used to
simulate a very large set of Markov paths. Those Markov paths
matching a given non-phased genotype were then used with the
alternative emission set. In this setting, a single non-phased genotype
may be associated with multiple phased genotypes, the probability of
which is also calculated (Fig. 5b). The translated phased genotypes
are available for downstream analyses.

In the case of FccR IIb and IIc phases, the resulting HMM nearly
allows one-to-one translation of genotypes, i.e., one phased genotype
with at least 95% probability. Sampling quality was checked by com-
parison of multiple separate sampler runs, which indicated a suf-
ficient mixing and a good convergence of parameter estimates as
well as low autocorrelation times.

Moreover, the frequencies for FccR IIc and IIb promoter haplo-
types, which are reflected by the inferred transition probabilities
(Fig. 5a), are identical to those reported using a long-range PCR
method22. Of interest, the FccR IIc ORF/Stop variation, which deter-
mines whether this gene is expressed as a functional receptor on the
surface of immune cells16, is strongly linked to the -386C/-120T
promoter variant. For FccR IIb, no relevant linkage was detected
between the I232T polymorphism and the promoter haplotypes.

For our data set with 387 individuals, the average running time of
the MCMC sampler for the above described model was about 835
seconds for 1000 sampling cycles.

Dissection of copy number blocks of Fcc receptors IIIa, IIc and
IIIb. The FccR IIIa, IIc and IIIb form a block on chromosome 1q23.3
that varies in copy numbers. This block is flanked by FccR IIa down-
stream and IIb upstream, with neither gene showing variation in
copy numbers. The gene order presented in the consensus map23

Figure 3 | HMM representation of copy number and allelic variation in FccR genes. (a), directed HMM graph for the H131R amino acid polymorphism

of FccR IIa, (b), directed HMM graph for the I232T amino acid polymorphism of FccR IIb. Both FccR IIa and IIb do not exhibit copy number

variation. (c), HMM for FccR IIIa, including loops for null alleles and multiplication, as well as the F158V amino acid polymorphism. (d), HMM for FccR

IIc with the open reading frame (ORF) and stop codon polymorphism. (e), HMM for Fcc receptors IIIb with the HNA1a (Na1), HNA1b (Na2) and

HNA1c (SH) allelic variation. Transition probabilities are indicated next to the transition edges and further by edge thickness and color. Circles (#)

indicate silent states, and boxes (%) indicate states that emit a counting event as denoted inside. The starting state is indicated by a circle-within-circle, the

final state by a diamond-within-circle.
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does not reflect how the gene sequence might look in the case of a
copy-number variation.

As a further challenge for the HMM approach, we wanted to
determine the chromosomal order of genes in cases of duplications
and deletions and reveal connection patterns in copy number varia-
tions. For this purpose, we defined a model graph in which all states
emitting a counting event are connected in both directions (Fig. 6).
This concept inevitably leads to a multimodal posterior distribution,
with a posterior distribution that contains more than one sharply
peaked high-posterior density island. The most frequent haplotype is
expected to harbor one copy of each receptor gene. In the HMM,
three genes may be ordered in six different ways along the highest
probability path through the HMM, which can be regarded as for-
ward and reverse variants of three unique orders. Thus, we expect at
least six main optima for the transition probability matrix, with three
symmetry pairs of equivalent likelihoods, as the genotype data set
itself does not contain information about the order of genes. If there
is complete independence between the copy numbers of individual
genes, all optima will have the same likelihood. However, if two genes
have a tendency to be duplicated or deleted together, they should be
sorted into a neighborhood in the highest-probability Markov path.
Practically, this order should be the same — or its reverse — as the
order in the consensus gene map. The symmetry between modes is
broken if there is any dependence between copy number gains or
losses of two genes. Because of the Markov property, a model in
which the highest-probability path orders the genes in a way that

dependent genes are arranged in sequential neighborhood should be
more optimal than other models.

We expected a sharply peaked posterior distribution of transition
matrix parameters, with all peaks located distant to each other within
the parameter space. Therefore, the MCMC sampler is not very likely
to jump between local optima within a finite time scale. To determine
a global optimum, we repetitively restarted the MCMC sampler until
it converged to use these local optima as candidate optima. Local
optima were compared using the marginal likelihood calculated by
the CJ method. The trace plots visualized in Suppl. Fig. 5 indicate that
the MCMC traces converge toward these six expected optima, which
are arranged at the corners of an octahedron (compare Fig. 6). The
trace plots (Suppl. Fig. 5) furthermore suggest that the 50 runs are
sufficient to rank optima. To associate each run with one of the six
optima, the samples (after removal of burn-in samples) of all runs
were combined and subjected to a k-means cluster analysis (with
k56). The mean of each cluster and its respective marginal likelihood
are presented in Fig. 6.

The highest probability path through the HMM for clusters 1 and
2 show the same gene order as the GRCh38 consensus map (in
forward and reverse). This pattern suggests that duplicated genes
are typically located in a neighborhood and that gene deletions occur
in a block-wise fashion. In the case of Fcc receptor genes, FccR IIc
and FccR IIIb form a block that is either deleted or duplicated as one,
whereas FccR IIIa is more independent from the other two. This
finding supports a higher restriction in copy-number variation for

Figure 4 | Improving the HMM for FccR IIIb by incorporating non-equilibrium assumptions. (a) and (b), depiction of two optima for transition

probabilities. The model design for FccR IIIb is improved by the assumption of a first-order dependency between alleles. For this purpose, interconnecting

transitions and recursion loops are added to the states that emit allele count events. (c), further derivation of the model by assumption of an HNA1a-

HNA1c (Na1-SH) tandem allele and irregular repetitions of HNA1c (SH). The graphical representation is as described in Fig. 3.
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this receptor, which is also noticeable in the model shown in Fig. 3c,
indicating a lower probability of deletion and duplication than for the
other two receptor genes (Fig. 3d and e).

For our data set with 387 individuals, the average running time for
1000 sampling cycles of the MCMC sampler was about 55 seconds
for the model described in Fig. 6.

Figure 5 | Resolution of haplotype phases of FccR IIb and IIc by the Markov model approach. (a), design and transition probabilities of an HMM for two

loci with several copy numbers and several allels that takes non-phased MLPA genotypes as input and translates them into phased genotypes. The HMM

design reflects this ambiguity between the promoter polymorphisms of FccR IIb and IIc by using two separate states emitting the same counting events for

these promoter polymorphisms. To introduce translation capability, this model can be used with an alternative set of emissions, depicted here with

additional colored octagonal boxes ( ) that are equivalent to phased haplotypes. Thus, a single Markov path through this model can emit the original

(half-tone square boxes%) or alternative counting events. Loops were included for FccR IIc only, as FccR IIb does not exhibit copy number variation. The

graphical representation is as described in Fig. 3. (b), non-phased genotypes (Original genotype) with translated phased genotypes (Translations) and

the probabilities of these (Probability).
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Discussion
The combined investigation of CNAVs introduces a new level of
complexity into genetics, which raises the need of novel tools for
analysis and data exploration. These tools should aid the human
researcher in uncovering patterns and metastructures that are hid-
den within data sets.

Challenged with a genetic data set of high complexity, we deve-
loped a framework to formulate and evaluate models that allow
deeper insights into the nature of copy number and allelic variation.

The original goal of this algorithm was to analyze the output of a
certain MLPA system that was developed to determine the CNAV of
the highly polymorphic Fcc receptor gene locus16,17. Differently from
other methods for determination of copy number variation, this
system uses a redundant probe set, that allows precise and allele-
specific differentiation between 0 and 5 copies, e.g. of FccR IIIb.
This type and quality of data is typically not provided by routine
genotyping methods such as TaqMan-based techniques or array-
comparative genomic hybridization (array-CGH), which is further
outlined by Van Loo et al.24 in the description of their bioinformatic
approach for allele-specific copy number analysis of tumors (ASCAT).
However, genotyping data of similar quality and complexity might

be provided in the future by special applications of next generation
sequencing25.

Trying to simply enumerate CNAV genotypes of a population
sample to determine their respective frequencies leads to the fun-
damental zero-frequency problem: not all theoretically possible gen-
otypes are found in a population sample. Moreover, any restriction in
the virtually infinite number of theoretically possible genotypes is
completely arbitrary.

Several approaches have been described to infer haplotype phases
in regions with CNAV, such as MOCSphaser26, CNVphaser27 and
polyHap28. These approaches either treat copy number variation of
genes as extra alleles, residing on two chromosomes (non-internal
phasing), or they assume multiple pseudo-chromosomes harboring
single copies of a gene. By this principle, the chromosomal order of
genes and SNPs in CNAV is given by the consensus map. Depending
on the complexity of represented genotypes, both methods require a
large number of model parameters, and neither avoids the zero-fre-
quency problem. MOCSphaser tries to exploit linkage between CNV
and neighboring SNP variation, but does not analyse SNPs within
genes varying in copy numbers26. CNVphaser uses internal phasing
and combines an expectation-maximization (EM) with a partition-

Figure 6 | Linkage of FccR IIIa, IIc and IIIb copy number variations. To dissect a possible relationship between gains and losses between FccR genes, a

model graph incorporating all possible connections between the states (input graph) was used for inference. Given that genotyping data do not explicitly

contain ordering information, and given that the gross of haplotypes carry only one copy of each gene, the highest-probability path through this model

orders the three genes FccR IIIa (3A), FccR IIc (2C) and FccR IIIb (3B) in one of 6 different ways; the corresponding optima of transition matrices are

spatially oriented in parameter space near the 6 corners of an octahedron. Thus, the samples from 50 separate MCMC simulation runs (compare Suppl.

Fig. 5) can be divided by k-means clustering into 6 clusters, which are located near the corner of the octahedron to which they are converging. Local
optimum 1–6, transition graph corresponding to the average of MCMC transition matrix samples at each of the clusters. Graph edges with transition

probability below 0.01 are omitted for clarity. log ML, average 6 std. dev. of calculated log marginal likelihoods. The graphical representation is as

described in Fig. 3.
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ligation (PL) algorithm to calculate the frequencies of CNAV haplo-
types in a population. To overcome unfavorable properties of the EM
algorithm, CNAV haplotypes that are determined to be rare are
dropped from inference. Furthermore, CNVphaser is not appropri-
ate for representing multiple genes with different copy numbers by
design27. polyHap combines both internal and non-internal phasing
and uses a (restricted) list of pre-calculated genotypes for inference28.

The above-described systems did not match the properties of our
MLPA data for the FccR gene locus. CNVphaser would not allow the
description of CNAVs with different copy numbers, and polyHap
could not resolve the ambiguities of FccR IIb and IIc promoter poly-
morphisms. These shortcomings led us to the development of our
HMM approach. To analyze complex genotypes, we defined them as
the static result of a dynamic process. This process is described by a
Markov model that emits events that are summarized as counts of
gene alleles. These summarized event counts are equivalent to data
from genotyping methods that determine the abundance of local
sequence motifs, such as MLPA.

The most remarkable feature of these Markov models, in contrast
to the other approaches developed for CNAV, is the incorporation of
recursion loops. This functionality leads to a huge reduction in para-
meters for the model, which remains able to represent all the virtually
infinite number of possible genotypes. The introduction of loops is
an extension of the Hardy-Weinberg equilibrium. The original
Hardy-Weinberg equilibrium assumes independence between chro-
mosomes and a constant frequency of alleles in a population. Using
the Markov model approach, we further assume independence
between individual gene copies and between copy events. More-
over, we assume that the processes that lead to changes in copy-
number variation have reached a steady-state equilibrium. This
extended Hardy-Weinberg equilibrium concept is supported by
the superior performance of the corresponding HMM. Neverthe-
less, as we demonstrate with our data set for FccR IIIb, the design
of HMMs enables an even more elaborate representation of different
types of linkage disequilibria, including LOH signatures of certain
CNAV generating mechanisms. Because of this simplicity, the cur-
rent implementation of the algorithm always assumes independence
between chromosomes.

With the HMM approach, the user pre-defines a directed model
graph, for which the transition probabilities are inferred using
Bayesian methodology. For this purpose, we developed a novel
hybrid MCMC algorithm that efficiently samples Markov paths
along the model, which are then used to simulate realizations of
transition probabilities. This sampler not only provides point
estimators for transition probabilities, as an expectation-
maximization algorithm would do, but also delivers corresponding
posterior distributions and credibility intervals. The Markov paths
can be considered as a proxy for the true linear chromosomal
sequence, containing resolved haplotype phases for individual
gene copies. Because of the distinctive intergenic homology of
FccR genes, the correct assignment of SNPs to the respective
promoters of FccR IIb and IIc is very difficult. With an extension
of HMMs, we were able to translate non-phased haplotypes into
phased haplotypes, which were then available for down-stream
analyses. The frequency of phased haplotypes for both receptors
is equivalent to that reported by Su et al.22, further supporting the
validity of our HMM approach.

Depending on the HMM graph design, the resulting posterior
distribution is multimodal. To cope with this condition, we applied
the MCMC sampler repetitively and selected the best result accord-
ing to a post hoc score. This strategy was used to evaluate the linkage
between copy numbers of Fcc receptors IIIa, IIc and IIIb. Although
the MLPA data do not contain concrete positional information, a
certain order of genes by the HMM transition probabilities seemed to
be optimal to describe the genotyping data. Remarkably, this order
was identical to the order in the GRCh38 consensus map.

The examples we provide in this study demonstrate how our
HMM approach can be applied, adapted and extended for different
analytical and statistical tasks. This approach provides a novel meth-
odology, including a novel extension of the Hardy-Weinberg equi-
librium concept, to gain insight into complex but important gene
regions.

Methods
Infrastructure. The software was developed under Linux (Debian29 distribution)
with R software version 3.030 with packages MCMCpack, coda and cluster, Rcpp and
RcppArmadillo version 0.4.100.2.1 (Edelbuettel, D., RcppArmadillo (Date of
access:03/11/2014), http://dirk.eddelbuettel.com/code/rcpp.armadillo.html) and the
Boost C11 libraries version 1.53 (Boost Community, Boost.org (Date of access:03/
11/2014), http://www.boost.org/). All calculations were performed on a desktop
computer with an Intel Core i5 quad-core CPU 660 @ 3,33 GHz (Intel, Santa Clara,
CA, USA) with 8 GB RAM.

Data sets. Genotyping data on healthy German control individuals (N 5 387) were
determined with the FCGR-P110 and FCGR-P111 MLPA kits (MRC Holland,
Amsterdam, The Netherlands) according to the manufacturer’s instructions. Briefly,
50 ng of genomic DNA was hybridized with twin probes overnight, followed by a
ligation reaction. The ligated probes were amplified by PCR, and the size and quantity
of the resulting PCR fragments were analyzed with a Beckman CEQ-880 capillary
sequencer (Beckman Coulter, Krefeld, Germany). The fragment analysis was
performed as recommended by the manufacturer. This data set contains the copy
numbers for the different alleles of each FccR gene, as outlined in Fig. 1 and further
specified in the Suppl. Materials.

The samples for the study were collected from healthy blood donors of the Dept. of
Transfusion Medicine of the university hospital of Lübeck. Further samples were
provided by popgen biological materials collection (Lieb W., popgen — Gesundheit für
Generationen (Date of access:03/11/2014), http://www.popgen.de/)31. All studies
with human materials followed the ethical principles established by the Declaration of
Helsinki and were approved by the local ethics committee (AZ 10-026 and AZ 08-
156). All sample donors gave informed consent.

Hidden Markov models and graphs. For inference on HMMs, the user provides a
directed graph defining valid transitions between states, including one starting and
one final state. This graph is walked randomly, once to generate a haplotype and twice
for a complete genotype. Haplotypes and genotypes are summaries of counting events
that may be emitted during the walking process. The HMMs are described in detail in
the Suppl. Materials section.

Sampling of transition probabilities. Given a model graph, data-augmented
Metropolis-within-Gibbs sampling is used to determine the posterior distribution of
transition probabilities. The Markov path pairs compatible with observed genotypes
are the latent variables in the sampling process. The sampler therefore cycles between
the determination of Markov paths and transition probabilities.

Given Markov path pairs along the model, a realization of the transition probability
matrix can be simulated using a MatrixDirichlet distribution (Suppl. Materials) as a
conjugate prior. To simulate Markov path pairs, a hybrid approach was used that
provided the highest sampling efficiency. The first component of this hybrid
approach is an incomplete Gibbs sampler. For this process, an empirically defined
number n of random Markov path pairs is produced, given the transition probabilities
matrix A. Markov paths compatible with a single genotype of the observations are
taken as a new proposal of the respective individual, and incompatible Markov path
pairs are dropped. If no proposal is found for an individual, the identity kernel is used
as a default. As with a normal Gibbs sampler, the acceptance rate for the proposal is 1.
However, if A is not near to an optimum, the fraction of individuals for which the
identity proposal is used is so high that the sampler does not move efficiently.

Therefore, the second component of the hybrid approach is used as a backup. This
backup is provided by a balanced recursive tree search, termed the squirrel algorithm,
which defines a symmetric MCMC transition kernel for a random walk. The sampling
process is further described in detail in the Suppl. Materials.

Calculation of the marginal likelihood. During sampling, both latent Markov paths
and transition probabilities are recorded and used to calculate the marginal likelihood
for a two-block sampler, as described by Chib and Jeliazkov18. The Chib method
requires a likelihood function, which is by itself computationally intractable here. To
approximate the likelihood function, the frequency of observed genotypes is
calculated from a large number of samples generated for given transition
probabilities. The naı̈ve enumeration model (NEM) uses Jeffrey’s prior to determine a
Dirichlet distribution of genotype frequencies. Genotypes that were observed at least
once in the data set were used as categories, plus one category for unobserved
genotypes. The parameters for the posterior Dirichlet distribution were calculated
from the observation counts for each category, enabling the exact calculation of the
marginal likelihood. Because of the arbitrary restriction of categories, the marginal
likelihood tends to become more overestimated the more complex the genotype
observations become. Nevertheless, the NEM is useful for evaluating and comparing
the performance of an HMM.
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URLs. Our implementation of the algorithm including the genetic control data set
described in this article is available as a source package CNAV for R at http://r-forge.
r-project.org/projects/cnav/.
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