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Abstract

Introduction: The identification of specific targets for treatment of ovarian cancer patients remains a challenge. The
objective of this study is the analysis of oncogenic pathways in ovarian cancer and their relation with clinical outcome.

Methodology: A meta-analysis of 6 gene expression datasets was done for oncogenic pathway activation scores: AKT, b-
Catenin, BRCA, E2F1, EGFR, ER, HER2, INFa, INFc, MYC, p53, p63, PI3K, PR, RAS, SRC, STAT3, TNFa, and TGFb and VEGF-A.
Advanced serous papillary tumours from uniformly treated patients were selected (N = 464) to find differences independent
from stage-, histology- and treatment biases. Survival and correlations with documented prognostic signatures (wound
healing response signature WHR/genomic grade index GGI/invasiveness gene signature IGS) were analysed.

Results: The GGI, WHR, IGS score were unexpectedly increased in chemosensitive versus chemoresistant patients. PR and
RAS activation score were associated with survival outcome (p = 0.002;p = 0.004). Increased activations of b-Catenin
(p = 0.0009), E2F1 (p = 0.005), PI3K (p = 0.003) and p63 (p = 0.05) were associated with more favourable clinical outcome and
were consistently correlated with three prognostic gene signatures.

Conclusions: Oncogenic pathway profiling of advanced serous ovarian tumours revealed that increased b-Catenin, E2F1,
p63, PI3K, PR and RAS –pathway activation scores were significantly associated with favourable clinical outcome. WHR, GGI
and IGS scores were unexpectedly increased in chemosensitive tumours. Earlier studies have shown that WHR, GGI and IGS
are strongly associated with proliferation and that high-proliferative ovarian tumours are more chemosensitive. These
findings may indicate opposite confounding of prognostic versus predictive factors when studying biomarkers in epithelial
ovarian cancer.
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Introduction

Epithelial ovarian cancer (EOC) is the most important cause of

mortality among gynaecological cancers. Patients with EOC often

present in an advanced stage. Treatment modalities consist in

general of the sequence of surgical cytoreduction and platinum-

taxane based chemotherapy [1]. Although the disease is relatively

sensitive to cytotoxics, relapse occurs in a majority of patients with

advanced stage [1]. The emergence of resistance to conventional

chemotherapeutics is an often-deadly event in the management of

ovarian cancer patients. There is an urgent need for additional

therapies that increase survival and/or quality of life in these

patients. Recent studies of VEGF-A inhibitors have shown

remarkable benefits [2–4]. Promising results have been reported

for PARP inhibitors in ovarian cancer patients with a BRCA1 or

BRCA2 mutation [5–7]. Individualization of therapy is necessary

since epithelial ovarian cancer is a heterogeneous disease. The

identification of specific targets for treatment remains a challenge.

Recent microarray technology and bioinformatics have shown

the ability of analysing oncogenic cellular signalling pathways

based upon gene signatures in cancers [8–10]. This may identify

cellular processes that may be targets to develop treatment

strategies. Survival can be used as a measure to quantify the

biological relevance in this disease. Ideally, evaluation of survival

outcome should be made in a homogenous population with a

uniform treatment to avoid treatment-induced biases and uniform

histology to find subtler differences independent from histology.

Therefore, in the present report, patients were selected by

including only patients with serous papillary histology, in advanced

stages (III/IV).

Another methodology of estimating prognostic value may be the

correlation with documented prognostic gene signatures that have

shown to be of prognostic value in breast cancer and other types of

cancer. The invasiveness gene signature (IGS) was generated using

stem cell-like or tumorigenic breast cancer cells [11]. This

signature has shown prognostic value in lung cancer, medullo-
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blastoma and prostate cancer. The Wound healing response (WHR)

signature, based upon genes induced by wound healing, also has

shown its prognostic value in breast cancer, NSLC and bladder

cancer [12–14]. The genomic grade index (GGI) is a signature that

divides low-grade versus high-grade breast carcinomas [15].

Interestingly, using this signature, histological intermediate-grade

tumours could be classified as low- or high-grade tumours with the

preservation of the gene signatures’ prognostic value.

The objective of this study is the analysis of oncogenic pathways

in advanced serous papillary carcinoma through their relation with

survival outcome and correlation with known prognostic gene

signatures IGS/WHR/GGI.

Materials and Methods

Patient’s datasets
A dataset of 285 patients (Melbourne dataset) was obtained though

the Gene Expression Omnibus GEO database (GSE 9891) together

with the clinical annotation data file. Only patients that had

carcinomas of serous histology in advanced stages (III/IV) were

included for analysis. Patients were selected that received platinum

and taxane based chemotherapy. Other patients who did not receive

chemotherapy or received only one agent, platinum or taxane, were

also excluded. After this selection N = 165 patients were eligible for

further analysis. This dataset contained gene expression data derived

from the Affymetrix U133_plus2 platform, which already underwent

normalisation using the Robust Multiarray Averaging (RMA)

method and subsequent filtering by excluding log expression values

of ,7 and a variance of ,0.5. After filtering there were 8,732 probe

sets left that are considered informative. Progression free survival was

used in further analysis [16].

A second dataset GSE3149 N = 153 (North Carolina dataset) with

clinical data was also obtained from the GEO website. Here, the

same criteria for patient selection were used. After selection N = 107

were further analysed. The North Carolina dataset used the same

Affymetrix U133_plus2 platform. The raw data were processed in

Bioconductor in R software packages. Filtering was done by selecting

expressions below a threshold (log 2 of 100) that are present in at least

25% of the arrayed samples. Normalisation was done using GC-

Robust Multiarray Averaging. The number of probe sets that were

informative was 7,741. Overall survival data was used, as there was

no progression free survival data available [8].

A third dataset (Québec dataset) were patients (N = 20) that

were selected to be either chemoresistant versus chemosensitive.

Here, raw microarray data based upon the Agilent platform

Human 1A (v2) oligonucleotide microarray were normalised using

the Lowess normalisation method. Hereafter, 16,096 genes were

eligible for further analysis. Progression free survival data were

used [17]. RAW gene expression data is publicly available

according to MIAME guidelines through the GEO database

(Accession number: GSE 28739) .

A fourth dataset (Niigata Dataset-GSE 17260) contained samples

that originated from patients who met the inclusion criteria from

present study. Progression free survival data were available. The

authors used the Agilent Whole Human Genome Oligo Microarray

platform and normalised the data using upper quartile normalisa-

tion. 28,446 genes were found to be informative [18].

A fifth and sixth dataset (Boston dataset A+B - GSE19829) were

derived from a report studying BRCAness in ovarian cancer [19].

Progression free survival data was used. After selection, (N = 26)

and (N = 36) patients were eligible. These datasets were RMA-

normalised. 35252 and 5626 probe set ID’s were informative after

filtering. Gene expression data was derived from two platforms:

the Affymetrix U133_plus2 platform and the Affymetrix 95UAv2.

Oncogenic and prognostic gene signatures
The oncogenic gene signatures were derived from a recent

paper by Gatza and colleagues [10] and applied similarly. Briefly,

for each array-sample the pathway-specific informative genes were

identified. Next a pathway score was calculated by adding up the

products of the gene expression for each gene and its

corresponding regression coefficient, which indicates the weight

(amplitude of regression coefficient) and the effect (sign of

regression coefficient) of the corresponding gene for activation of

the corresponding pathway. Finally, the pathway scores were

scaled using the intercept values provided in the original

manuscript and standardized for comparability by median-

centering and setting the standard deviation to 1. Pathways

included in the analysis were AKT, b-Catenin, E2F1, EGFR, ER,

HER2, INFa, INFc, MYC, p53, p63, PI3K, PR, RAS, SRC,

STAT3, TNFa, and TGFb.

A BRCA activation score was applied using the same

methodology with 60 genes, their weight and sign [19]. Prognostic

gene signatures (IGS, GGI and WHR) were also applied by

previously described methodology [11,12,15]. All gene signature

activation scores were handled as a continuous variable. The same

standardisation (Median = 0; SD = 1) was applied for each gene

signature.

VEGF-A activation gene signature
For the VEGF-A activation signature we used the 13 genes

reported by Hu and colleagues [20]. To validate and transform

this gene signature into a VEGF-A activation probability score we

performed subsequent analysis using publicly available gene

expression data sets on naı̈ve and VEGF-A treated HUVEC cell

lines (GSE18913 (N = 21), GSE10778 (N = 9; only the HGU133A

samples were used) and GSE15464 (N = 4)). Each data set was

normalised using the GC-RMA algorithm and informative genes

(above log 2(100) in at least 25% of the genes) were filtered in.

First, we applied a principal component analysis on the GSE18913

data set using the informative VEGF-A signatures genes only

(N = 10). Significant segregation between the VEGF-A treated and

naı̈ve cell lines was investigated using class label permutation.

Next, for these 10 genes, we used the regression coefficients that

define the first principal component to calculate the VEGF-A

activation probability score, in a similar way as described above.

The score was compared between VEGF-A treated and naı̈ve

HUVEC’s using a Mann-Whitney U-test. To validate our

procedure, we applied our algorithm on the samples in gene

expression data sets GSE10778 and GSE15464.

Statistical analysis
Analysis of the gene signatures and array samples were done

using BioConductor in R. Correlations were calculated with the

Pearson correlation methods in SPSS 16.0 statistical software

packages. Standard errors for Pearson correlation coefficients were

estimated by the formula SE = (1-Rho‘2)/SQRT(n-1). Cox

proportional regression models estimated survival hazard ratios

with 95% confidence intervals. Meta-analysis was done using the

MIX 2.0 software using a random effects model for relative risk

and correlation coefficients.

Results

Generation of VEGF-A activation signature
The VEGF-A signature described by Hu and colleagues [20]

was derived from a matched analysis of primary tumours, lymph

node metastases and distant metastases in breast cancer. A 13-gene

profile, containing VEGF-A, discriminated between primary
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tumour samples and regional metastases on the one hand and

distant metastases on the other hand. These 13 genes were

analysed on publicly available gene expression data sets of naı̈ve

and VEGF-A treated HUVEC’s. First, the discriminative power of

the 13-gene signature to distinguish between VEGF-A treated and

naı̈ve HUVEC’s was tested on gene expression data set

GSE18913. Within this data set, only 10 out of 13 genes (FABP5,

UCHL1, PLOD, DDIT4, VEGF, ADM, ANGPTL4, NDRG1, NP and

SLC16A3) were reliably measured (high signal-to-noise ratio).

Using these 10 genes in a principal component analysis (PCA) we

were able to demonstrate a significant segregation of VEGF-A

treated and naı̈ve HUVEC’s along the first principal component.

Class label permutation analysis revealed that the observed

Euclidean distance between the centroids of the VEGF-A treated

and naı̈ve HUVEC’s on the 2D scatterplot representation of the

PCA was significantly different from the expected Euclidean

distance (Figure 1A; Observed Euclidean distance = 2.185,

Expected Euclidean distance = 0.682, P,0.0001). Next, we

transformed the VEGF-A signature into a VEGF-A activation

probability score adopting the methodology described by Gatza

and his colleagues [10]. Therefore, we used the regression

coefficients that define the first principal component and

multiplied these with the gene expression values of their

corresponding genes. The products were summed and the

resulting score was compared between VEGF-A treated and naı̈ve

HUVEC’s using a Mann-Whitney U-test (Median VEGF-A

Figure 1. A VEGF-A signature was able to distinguish VEGF treated and naı̈ve HUVEC’s in the GSE18913 dataset. The 2D scatterplot of
the principal component analysis showed that the centroı̈ds had an observed Euclidean distance different from the expected Euclidean distance
(p,0.0001). The first principal component of each sample is plotted along the X-axis, while the second principal component is plotted along the Y-
axis. VEGF-A treated HUVEC samples are represented in blue and VEGF-A untreated samples are represented in red. Centroı̈ds of both conditions are
indicated by a black dot. (Panel A). After conversion to an activation score, the VEGF-A treated HUVEC’s showed higher VEGF-A activation score in a
time dependent relation (PANEL B AND C).
doi:10.1371/journal.pone.0022469.g001
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treated HUVEC’s: 6.416, Median naı̈ve HUVEC’s: 4.276,

P,0.0001). The boxplot representation is provided in Figure 1B.

In addition, we observed a strong correlation between the VEGF-

A activation probability scores and the time of VEGF-A

incubation of HUVEC’s (Correlation coefficient = 0.762;

P = 0.038). (Figure 1C)

In order to validate our VEGF-A activation probability score,

we downloaded two more publicly available gene expression data

sets (GSE10778 and GSE15464) on VEGF-A treated and naı̈ve

HUVEC’s. In the first data set (GSE10778), the median VEGF-A

activation probability score of the VEGF-A treated HUVEC’s

(N = 4; Score = 5.351) was significantly different from the score

observed in the naı̈ve condition (N = 1; Score = 3.937)

(P = 0.0209). A boxplot representation is provided in Figure 2A.

In addition, we observed a significant difference between the

VEGF-A treated (N = 4; Score = 5.351) and EGF-treated HU-

VEC’s (N = 4; Score = 4.307) (P = 0.0431), suggesting that the

VEGF-A activation probability score is VEGF-A specific

(Figure 2B). Finally, we performed the same analysis for data set

GSE15464. In this case, we observed a trend towards a significant

difference between the VEGF-A treated HUVEC’s (N = 3;

Score = 4.069) and the score observed in the naı̈ve condition

(N = 1; Score = 3.645) (P = 0.0892). Again, a boxplot representa-

tion is provided in Figure 2C. In these two data sets, we observed

strong correlation coefficients between the VEGF-A incubation

time and the VEGF-A activation probability score (respectively

0.503 and 0.692), however the p-values did not reach significance,

probably due to the small sample sizes of the data sets.

Application of pathway activation signatures
We applied the oncogenic pathways on the six datasets. These

datasets together represent a total of N = 464 advanced serous

papillary carcinomas. A summary of these 6 datasets is listed in

Table 1. Since these are selected oncogenic pathways, it is

plausible that many significant correlations were found between

pathway activations and the 3 prognostic signatures (IGS, WHR

and GGI). The b-Catenin pathway showed consistent and strong

correlations. (Table 2) Since the six datasets were generated on

different platforms with different methodologies, we estimated the

overall effect of a pathway activation score by using a meta-

analysis approach (Table 2). Similar meta-analysis of correlation

coefficients showed that the BRCA, E2F1, EGFR, HER2, MYC,

p53, p63 and PI3K showed steady correlations with the WHR,

GGI and IGS. The RAS pathway and TGFb pathway showed

significant correlations with 2/3 prognostic signatures. Table 3

shows the overall correlation estimates, which were the most

significant. While most pathway activation scores showed a

positive correlation, the EGFR, HER2, p53 and TGFb pathway

showed a negative correlation.

Survival Analysis
Next, we looked at clinical outcome and the degree of pathway

activation. While some pathways were associated with survival

outcome in one or more datasets, they showed no or opposite

result in another dataset. To estimate the overall survival effect of a

given pathway, a similar meta-analysis approach was performed to

estimate the overall effect of pathway activation using a random

effects model. After this analysis, the b-Catenin, E2F1, PR, p63

PI3K and RAS pathway activation showed a significant

association with clinical outcome. Considering the overall effect

by means of Hazard Ratios, the b-Catenin pathway showed the

most prominent effect after meta-analysis (HR = 0.74; 95%CI

[0.62–0.88]). The survival analysis showed that the higher the

activation of the b-Catenin pathway, the better the outcome was.

Also for PR, E2F1, RAS, PI3K and p63 increased activation of

respective pathway was associated with more favourable survival.

(Figure 3)

Because of these rather unexpected results, we calculated the

activation scores of selected discovered pathways in other

independent datasets as additional quality control to confirm

whether the directions of the activation scores were certainly

correct. For b-Catenin the activation scores were found to be

higher (borderline significance, p = 0.06) in paediatric medullo-

blastoma with a CNTBB1 mutation (N = 4) versus non-mutated

medulloblastomas [21]. For the RAS activation score, K-RAS

mutated colorectal cancers (N = 27) had a significant higher

activation score (p = 0.03) than wild type cancers (N = 43) [22].

PIK3CA-mutated cancers (N = 14) had a higher -although non

significant- PI3K activation score (p = 0.11) than non-mutated

breast cancers (N = 29) [23]. The PR activation scores were higher

(p = 0.06) in ER positive, PR positive breast cancers (N = 59)

versus ER positive, PR negative breast cancers (N = 18) [24].

For the 3 prognostic signatures there was a tendency that a

prognostic worse outcome predicted by IGS, WHR and GGI

Figure 2. Validation of the VEGF-A activation score was performed in dataset GSE10778 (PANEL A) and GSE15464 (PANEL C). In
both datasets, activation scores of VEGF-A treated HUVEC’s (boxplots) were higher than the untreated condition (red dots). For GSE 10778, there was
a higher activation score in VEGF-A treated cells, but not in EGF treated cells. (PANEL B).
doi:10.1371/journal.pone.0022469.g002
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showed an unexpected higher probability of better clinical survival

outcome. Further analysis in the Québec dataset showed that

chemoresistant patients showed significant lower scores than

chemosensitive patients and therefore may explain this finding.

(WHR p = 0.02; GGI p = 0.002; IGS p = 0.06) (Figure 4)

Discussion

Although VEGF-A inhibition has proven to be active in ovarian

cancer, the VEGF-A activation signature we studied did not prove

to be of any significant prognostic value in this meta-analysis. A

number of considerations must be made: First, it may not be

necessary that VEGF-A biology automatically would be of any

prognostic value, even if VEGF-A inhibition has demonstrated to

be effective [2,3]. Secondly, although this signature was validated

on gene expression data and was able to distinguish between

VEGF-A treated versus untreated HUVEC’s cells, it may lack the

ability in clinical samples.

Table 1. A summary of datasets that were used in the meta-analysis.

Dataset N = 464 Platform Normalisation
Clinical
outcome

Uniform
treatment

Advanced stage/
serous papillary
histology Remarks

Québec 2006 20 Agilent Human 1A (v2) Lowess PFS yes yes patients were selected either to be
chemosensitive versus chemosensitive

North Carolina 2006 107 Affymetrix U133_plus2 GC-RMA OS yes yes

Melbourne 2008 165 Affymetrix U133_plus2 RMA PFS yes yes

Niigata 2010 110 Agilent Whole Human
Genome Oligo Microarray

Upper quartile PFS yes yes

Boston A 2010 26 Affymetrix U133_plus2 RMA PFS yes yes all patients were BRCA1&2 mutation
negative

Boston B 2010 36 Affymetrix U95_A2 RMA PFS yes yes dataset enriched for BRCA1&2
mutation negative patients/patients
with no relevant family history of
ovarian/breast cancer

doi:10.1371/journal.pone.0022469.t001

Table 2. Table 2 shows the consistent correlations of the b-
Catenin activation scores and WHR/IGS/GGI in each separate
dataset (Québec, North Carolina, Melbourne, Niigata, Boston
A and Boston B dataset).

Pearson Rho WHR IGS GGI

Québec 0.65 0.62 0.67

p = 3.4 E-4 p = 0.001 p = 2.0 E-4

North Carol 0.81 0.89 0.6

p = 7.7 E-40 p = 9.9 E-59 p = 8.0 E-18

Melbourne 0.73 0.54 0.79

p = 2.8 E-22 p = 6.9 E-11 p = 5.6 E-28

Niigata 0.77 0.73 0.79

p = 2.4 E-19 1.0 E-22 p = 4.5 E-25

Boston A 0.83 0.48 0.87

p = 1.2 E-7 p = 0.013 p = 5.5 E-9

Boston B 0.75 0.56 0.26

p = 1.8 E-7 p = 3.7 E-4 p = 0.13

Meta Analysis 0.73 0.62 0.79

p,0.0001 p,0.0001 p,0.0001

Overall Rho Coefficients were estimated by a meta-analysis approach using
random models effects.
doi:10.1371/journal.pone.0022469.t002

Table 3. Estimates of Pearson rho correlation coefficients
after meta-analysis of six datasets between pathway
activation scores and prognostic gene signatures: wound
healing response signature (WHR)/Invasiveness gene
signature IGS and Genomic grade Index (GGI).

Rho estimates WHR IGS GGI

b-Catenin 0.73 0.62 0.79

p,0.0001 p,0.0001 p,0.0001

BRCA 0.43 0.36 0.36

p,0.0001 p,0.0001 p,0.0001

E2F1 0.51 0.42 0.54

p,0.0001 p,0.0001 p,0.0001

EGFR 20.52 20.43 20.42

p,0.0001 p,0.0001 p,0.0001

HER2 20.45 20.5 20.26

p,0.0001 p,0.0001 p,0.0001

MYC 0.69 0.53 0.4

p,0.0001 p,0.0001 p,0.0001

p53 20.59 20.42 20.72

p,0.0001 p,0.0001 p,0.0001

p63 0.46 0.29 0.36

p,0.0001 p = 0.001 p,0.0001

PI3K 0.43 0.33 0.29

p,0.0001 p,0.0001 p = 0.002

RAS 0.51 0.2 0.4

p,0.0001 p = 0.017 p,0.0001

TGFb 20.23 20.3 20.13

p = 0.0001 p,0.0001 p = 0.004

Most significant correlations are shown. (Threshold p-value adjusted for
multiple testing = 0.0025).
doi:10.1371/journal.pone.0022469.t003
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Earlier studies have shown that a signature derived from BRCA

mutated vs sporadic disease was able to divide a population of

sporadic epithelial ovarian cancers in tumours with a ‘‘BRCAness-

like’’ and a ‘’non-BRCA-like’’ profile. These two groups had

significant different clinical outcome in terms of overall and

progression free survival. In the present meta-analysis this BRCA-

profile was correlated with prognostic signatures, however it did

not prove to be of significant prognostic/predictive value

considering the total of 6 datasets. The difference in patient

selection may partly account for this finding. Konstantinopoulos

and colleagues selected patients enriched for sporadic cancers,

which were predominantly BRCA1 and BRCA2 mutation

negative [19]. Here, patients were selected for advanced stages,

serous papillary histology and uniform chemotherapy regimen.

Furthermore, we did not use a cut-off point to divide patients in

BRCA-like and non-BRCA-like tumours. Since our objectives

were to find biological associations, rather than to validate a

specific biomarker in the perspective for possible clinical usage, we

used the BRCA-activation score as a continuous variable in

survival and correlation analysis.

Our initial analysis consisted of two datasets. The initial design

was to use one dataset, as a discovery dataset while the other one

would serve as a validation set. Since bioinformatical mislabelling

errors/reproducibility issues have lead to withdrawal of papers of

the same research group from which one dataset originated, we

sought additional datasets to confirm our findings and render

more power and reliability [25–27]. Furthermore, this research

group and critical review by another research group have

confirmed that the dataset that was used in the present meta-

analysis was indeed correctly annotated [9,28]. With the

availability of more datasets, we noticed variation among

pathway’s association with survival outcome. We therefore used

a meta-analysis approach to estimate the overall effect. The

advantage is that several studies can be combined despite

differences in platforms and methodologies. This overall effect

estimation takes into account the number of patients of each

separate dataset and confidence interval in the estimation of

correlation coefficient of survival hazard ratios. The heterogeneity

among datasets (e.g. different patient selection criteria) may partly

explain some opposite findings. The Québec dataset is different

from others because this specifically selected patients to study

differential expression between chemosensitive versus chemoresis-

tant tumours [17]. This dataset therefore may represent the

extremities of this disease. Interestingly this dataset showed clearly

that chemosensitive patients had tumours that were more likely to

be of unfavourable outcome estimated by WHR/IGS/GGI. This

contradictory finding may be explained by the finding that these

three prognostic signatures are all primarily associated with

increased proliferation [29]. It is known that chemosensitive

tumours have higher tumour cell proliferation indexes in serous

ovarian cancer [30,31]. The estimated prognostic values in this

survival analysis therefore seems strongly oppositely confounded

by the predictive value for platinum/taxane-based chemotherapy.

Despite the heterogeneity in datasets and confounding of

predictive value versus prognostic value, the E2F1, b-Catenin

and the PI3K activation scores showed overall association with

survival outcome (p,0.01) and consistent significant correlations

with three prognostic signatures. (Table 3+Figure 5)

The E2F1 pathway a critical role in proliferation and apoptosis.

It has been shown that transcription factor E2F1 interacts with the

p53 and PI3K pathway [32–34]. Its role in ovarian cancer has

been unclear, as other research groups have found similar

favourable survival with increased E2F1 pathway activation [32],

while other findings have shown favourable survival with

decreased E2F1 gene expression by RT-PCR [33,34]. It must be

remarked that the latter study included an overrepresentation of

patients with clear cell carcinomas (42.9%) and may be less

informative here.

The b-Catenin protein is a multifunctional protein. It was

originally discovered as a protein that is associated with the

cytoplasmatic region of E-cadherin. E-cadherin is a transmem-

brane protein that is involved in cell-cell contact and cell’s

adhesive functions. Furthermore, b-Catenin is involved in Wnt

signalling as a nuclear transcription factor and is believed to play a

Figure 3. Forest plots of meta-analysis using a random effects model of the b-Catenin BRCA, E2F1, p63, PR, PI3K, RAS and VEGF
pathway. The VEGF and BRCA signature was overall not significantly associated with clinical outcome. The other pathways showed significant
association with survival after meta-analysis using 6 datasets (Québec, North Carolina, Melbourne, Niigata, Boston A, Boston B). Note the larger 95%
Confidence intervals of the Québec dataset due to lower number of patients. Along the X-axis, hazard ratios are indicated by the centre of each
square for each dataset. The meta-analysis used a weighted method (shown by the size of the squares/and the percentages indicated for each
dataset) based upon confidence interval/number of patients. The 95% confidence interval for each hazard ratio is indicated by the width of the blue
lines originating from the squares. The vertical red line shows the overall hazard ratio after meta-analysis, with the width of the diamond as the 95%
confidence interval.
doi:10.1371/journal.pone.0022469.g003

Figure 4. In the Québec dataset sensitive (S) patients showed a higher genomic grade index (GGI) compared to chemoresistant
patients (R) (p = 0.002). Similarly chemosensitive patients showed a higher wound healing response score (p = 0.02) and a higher invasiveness
gene signature score (IGS) (p = 0.06).
doi:10.1371/journal.pone.0022469.g004
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role in cancer stem cells [35]. Loss of its membranous function or a

higher nuclear presence has been linked with poor survival in

several studies in ovarian cancer based upon immunohistochem-

ical studies [36–40]. In addition, a correlation of b-Catenin

protein expression has been described with tumour grade and Ki-

67 expression [39,40]. Present results are thus confirmative of

earlier findings that b-Catenin is associated with survival outcome.

The consideration must be made whether this effect is not

attributed to its predictive value to platinum-taxane chemotherapy

rather than its prognostic value. In present study, b-Catenin had

strong and consistent correlation with IGS/WHR/GGI. Although

these signatures were constructed based upon different oncogenic

biological processes (wound healing, stem cell phenotype, grade),

their major common force has been proven to be cell proliferation

[29]. The observation that chemosensitive patients in present

analysis showed significantly higher values of GGI, WHR and IGS

renders credibility to this statement.

Similarly, the unexpected findings that increased activation of

PI3K-, and RAS- pathways are more favourable for survival may be

explained by their predictive value for chemotherapy. This

hypothetically may have clinical consequences. Several compounds

target the PI3K pathway or downstream effectors (e.g. mTOR) and

are under early clinical development in epithelial ovarian cancer.

Other compounds have inhibitory effects on the RAS pathway, e.g

lonafarnib (a farnesyltransferase inhibitor). Recent findings of a

randomised phase II trial (IGCS meeting 2010, W. Meier et al.)

showed that the concomitant addition to standard chemotherapy

(first line) and 6-month continuation of lonafarnib in primary

epithelial ovarian cancer stage IIB-IV (n = 105) resulted in borderline

poorer outcome for the experimental- lonafarnib arm (overall survival

HR = 0.62 95CI%(0.36–1.06) p = 0.08) or even resulted in significant

unexpected worse outcome (p = 0.01) in the experimental stratum of

patients with suboptimal debulking. This finding may be relevant in

the context of our results. Since increased activation of pathways as

RAS and PI3K have been found to be favourable for survival

outcome, the question should be asked whether inhibition of one of

these pathways concomitant with chemotherapy is desirable. These

pathways are driving forces of proliferation, which is an important

factor in the efficacy of standard chemotherapeutics. We hypothesize

that inhibition of these pathways may therefore also negatively affect

the efficacy of these chemotherapies and theoretically induce

chemoresistance. This would possibly be an explanation for the

recent unexpected findings of lonafarnib in ovarian cancer. Hence,

we theorize that these agents may have their potential in ovarian

cancer in a sequential adjuvant setting rather than its concomitant

combination with chemotherapy.

The PR pathway did not show any relevant association with IGS

or GGI. It did show high significant association with survival

outcome and WHR. Other immunohistochemical studies have

shown that the PR protein expression has predictive of prognostic

value, more than the expression of ER [41–44], Since PR

expression is a downstream target of the ER pathway, this finding

may indicate that an active ER pathway, rather than the expression

of ER by itself may be of importance. Anti-hormonal therapies have

shown anti-tumoural activity in relapsed/refractory ovarian cancer

in phase II studies [45–49]. Biomarker studies have shown that

increasing ER expression was associated with increasing CA125

response rate [47]. We suggest that further studies are needed to

study if PR expression may add value as a suitable biomarker to

select patients for anti-hormonal therapy in ovarian cancer.

To conclude, oncogenic pathway profiling of advanced serous

ovarian tumours revealed that it is difficult to estimate the true

prognostic value of a pathway since there seems confounding of

predictive factors. Despite these biases, with a meta-analysis

approach of 6 independent datasets generated on different micro-

array platforms, we found that a PR and a RAS activation score was

associated with clinical outcome. Activation scores for b-Catenin,

p63, E2F1 and PI3K were also associated with survival and were

consistently correlated with three prognostic gene signatures.

Further studies are needed to elucidate whether these pathways

may help in designing targeted therapies treatment strategies.
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Figure 5. A Venn diagram is showing combined results of the meta-analysis: b-Catenin, E2F1, p63 and PI3K activation scores
showed significant association with survival and were significantly correlated with all three prognostic signatures (WHR/IGS/GGI)
after meta-analysis. PR and RAS activation scores were associated with clinical outcome, but did not consistently correlate with prognostic
signatures. *Negative correlation coefficient **borderline significance with clinical outcome.
doi:10.1371/journal.pone.0022469.g005
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