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Abstract: Rapa Nui is one of the most remote islands in the world. As a young island, its biota is
a consequence of both natural dispersals over the last ~1 million years and recent human introductions.
It therefore provides an opportunity to study a unique community assemblage. Here, we extract
DNA from museum-preserved and newly field-collected spiders from the genus Tetragnatha to
explore their history on Rapa Nui. Using an optimized protocol to recover ancient DNA from
museum-preserved spiders, we sequence and assemble partial mitochondrial genomes from nine
Tetragnatha species, two of which were found on Rapa Nui, and estimate the evolutionary relationships
between these and other Tetragnatha species. Our phylogeny shows that the two Rapa Nui species
are not closely related. One, the possibly extinct, T. paschae, is nested within a circumtropical
species complex (T. nitens), and the other (Tetragnatha sp. Rapa Nui) appears to be a recent
human introduction. Our results highlight the power of ancient DNA approaches in identifying
cryptic and rare species, which can contribute to our understanding of the global distribution of
biodiversity in all taxonomic lineages.
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1. Introduction

Rapa Nui, or Easter Island, is one of the most isolated islands on Earth. Located in the easternmost
corner of the Polynesian triangle, this subtropical island is 3500 km from the Chilean coast and 4500 km
from Tahiti. The island is both small (163,61 km2) and young; it is comprised of three volcanoes—Poike,
Maunga Terevaka, and Rano Kau—that range in age from 0.94 to 0.11 million years old [1,2]. Rapa Nui’s
biota reflects a unique combination of species that are likely the result of long-distance dispersal from
both Asia and America over the last million years, including many recent human introductions [3].
The biodiversity of the island has also been profoundly affected by ecological shifts that are driven by
the complete deforestation of the island between Polynesian colonization (around 1200 AD [4]) and
European contact (1722) [5,6], and by the use of the island for intensive sheep grazing over the first half
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of the 20th century [7]. This ecological collapse has left an impoverished arthropod fauna, where only
one spider has been described as endemic, Tetragnatha paschae [8,9].

The genus Tetragnatha has a global distribution [10], and has colonized many remote
archipelagoes [11]. These spiders are often among the first colonizers after habitat perturbations [12],
and they have been extensively studied as a model system for adaptive radiations on islands [11].
For example, a clade of the Hawaiian species has moved into rainforests, and have become active
hunters, abandoning the riparian habitat and “sit-and-wait” on an orb-web hunting strategy that
is shared among other Tetragnatha [13]. Three species of Tetragnatha spiders have been reported on
Rapa Nui: Tetragnatha nitens, Tetragnatha paschae, and one whose identity has yet to be established.
T. nitens has a circumtropical distribution, and has been recorded on Rapa Nui in three separate surveys
of the island [9]: a Swedish expedition in 1916–1917, by Jacquemart in 1976, and by Baert et al. in
1993. T. paschae has only ever been described on Rapa Nui. The only description of this species was
based on a female, and was provided by Berland in [8]. The description focused mostly on highly
variable characters (size, color, and eye pattern), but also provided illustrations of the carapace and
chelicerae. However, the description does not include any of the key diagnostic features (genitalia).
Based on the body measurements that are reported in this description [9], Baert placed it among
the largest species of the genus [8]. The third Tetragnatha species on Rapa Nui has only recently been
observed in a survey of spiders in 2012 by Cotoras et al. [14]. The species is morphologically distinct
from Tetragnatha species that are known to inhabit other Pacific Islands and Chile (the two most likely
sources of human introduction), and it has therefore been hypothesized that it may represent a second
endemic Tetragnatha species on Rapa Nui [14]. The 2012 survey also found no evidence of T. paschae
or T. nitens, despite covering a wide range of environments and geographic locations. Since the 1993
survey by Baert et al. also found no evidence of T. paschae [9], it has been hypothesized that T. paschae
is now extinct [9,14].

Only three specimens that match the description of T. paschae were found in our searches of
several museum collections (Table S1). The type specimens of the species that were described by
Berland appear to have been lost, since they were not found in the Muséum national d’Histoire
naturelle in Paris, where Berland was based. All of the specimens originate from Rapa Nui and
are in the collection of the Natural History Museum (London, U.K.): three were collected in 1925
by P.H. Johnson, as part of the Pacific expedition of the S.Y. St. George, and one was collected in
1913, probably by Francisco Fuentes from the Museo Nacional de Historia Natural (Santiago, Chile).
The three females match the original illustration in terms of the eye distribution and teeth pattern.
In vial with P.H. Johnson’s collections, there is also an immature male, but its identification cannot be
confirmed because the original description was based only on a female.

Since T. paschae is only known from an incomplete description and museum specimens,
our understanding of the identity and evolutionary origins of these Rapa Nui spiders requires
the recovery of DNA from preserved specimens. Arachnids remain challenging for ancient DNA
analyses, due to their often complicated preservation histories and small sizes. The most common
approach to preserve spiders in museums is to store specimens in jars filled with 70% ethanol at room
temperature [15]. This liquid environment may vary for a single specimen over its preservation history,
as ethanol evaporates and jars are refilled. As the proportion of water in the liquid environment
increases, so does the potential for DNA hydrolysis, a common form of DNA decay [16]. Samples
may also be stored in or refilled using mixed or alternative liquids, including methanol, isopropyl
alcohol, acetone, or methyl ethyl ketone [17]. Different storage and refill histories, which are often
impossible to reconstruct, may all influence long-term DNA preservation. Finally, liquid storage
in bulk, where different species, genera, and even families are preserved in the same jar, may lead
to co-extraction of DNA from different individuals, further complicating genomic reconstruction
and analysis.

Several studies have assessed methods to recover DNA from pin-preserved insects [18–21], however
less work has focused on recovering preserved DNA from specimens that are liquid-preserved [22,23].
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In addition to the potential for degradation during liquid storage, museum-preserved insects and
spiders are small and often precious, limiting the amount of sample that is available for destructive
analysis. Consequently, extraction methods that do not destroy the physical structure of the specimen
or that are minimally destructive are often preferred. Recently, an extraction protocol was described
that used surfactants and reducing agents to lyse cells, with the goal being to recover DNA from
museum-preserved insects without requiring the destruction of the samples [21].

Here, we take advantage of recent improvements in the efficiency of DNA recovery from ancient
and historic remains [24] to explore the evolutionary histories of Tetragnatha spiders from Rapa Nui.
We combine the use of the lysis buffer described in [21] on pulverized spider legs with a DNA
purification protocol that was developed specifically for ancient DNA that requires only a small amount
of input tissue [24]. We use this optimized protocol to generate mitochondrial genomic data from
museum-preserved Tetragnatha. We compare these data with mitochondrial genomic data from recently
collected Tetragnatha from Rapa Nui, and field sites in Asia (Myanmar), America (Chile and Peru),
and French Polynesia (the Society Islands), to explore the phylogenetic relationships, possible extinction,
and recent introduction of Tetragnatha spiders on Rapa Nui.

2. Methods

2.1. Samples

We gathered specimens representing nine different Tetragnatha species to generate mitochondrial
assemblies for phylogenetic analysis (Table 1). We collected six new specimens during recent field
expeditions to Rapa Nui, Chile, the Society Islands, Myanmar, and Peru, and selected three specimens
from museum collections. We also downloaded two previously published mitochondrial genomes
from Asian Tetragnatha species from GenBank. We selected these 11 species as they span a wide
geographic range within the Pacific Rim (Table 1; Figure 1). We did not have access to the previous
T. nitens that were collected on Rapa Nui, but we included in the analysis several published sequences
for this cosmotropical species. We also downloaded the three most closely related mitochondrial
genomes available on GenBank (Araneidae and Lycosidae; Table 1), which we used as outgroups in
our phylogenetic analyses.

Figure 1. Map of the Pacific Rim with the species included on this study. Names with asterisks correspond
to museum specimens. Map from www.esri.com.

www.esri.com
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Table 1. Species included on the study.

Species Name Geographic Origin Collection/GenBank Preservation Conditions Collection Year

Tetragnatha paschae Rapa Nui Natural History Museum
of London

Ethanol 70% originally and currently 80%
IDA (industrial denatured alcohol),

room temperature
1925

Tetragnatha riveti Ecuador California Academy
of Sciences Ethanol 70%, room temperature 1943

Tetragnatha versicolor * United States
(California)

California Academy
of Sciences Ethanol 70%, room temperature 1947

Tetragnatha puella Myanmar California Academy
of Sciences Ethanol 95%, −20 ◦C 2003

Tetragnatha cf.
tincochacae Perú California Academy

of Sciences Ethanol 95%, −20 ◦C 2010

Tetragnatha sp. Rapa Nui This study Ethanol 95%, −20 ◦C 2012
Tetragnatha similis Chile This study Ethanol 95%, −20 ◦C 2015

Tetragnatha macilenta Tahiti This study Ethanol 95%, −20 ◦C 2015
Tetragnatha moua Tahiti This study Ethanol 95%, −20 ◦C 2015

Tetragnatha maxillosa China KP306789.1 - -
Tetragnatha nitens China KP306790.1 - -

Hypsosinga pygmaea China NC028078.1 - -
Araneus angulatus China KU365988.1 - -
Pirata subpiraticus China KM486623.1 - -

* Morphologically identified as Tetragnatha laboriosa, but cytochrome oxidase I (COI) data shows that it is more
closely related to Tetragnatha versicolor. For more information about these specimens, see the metadata associated
with the GenBank sequences.

2.2. DNA Extraction

We extracted DNA from the six field-collected spiders using the Qiagen DNEasy Tissue Kit, (Venlo,
The Netherlands) following the manufacturer protocol. Four legs were removed from the right side of
the spider and pulverized in 200 µL of lysis bufffer (180 µL of buffer ATL + 20 µL Proteinase K). We then
incubated the samples at 56 ◦C overnight. After digestion, we purified DNA following the manufacturer’s
instructions, and eluted DNA into a final volume of 100 µL.

We extracted DNA from the three museum specimens in a geographically isolated laboratory
facility that has been designed for ancient DNA research. We followed standard ancient DNA
protocols throughout the experimental process [25], including the use of sterile reagents, consumables,
and outerwear.

We followed slightly different extraction protocols for the three museum specimens, based on
their rarity and what was known about their preservation history. We performed two different DNA
extractions from Tetragnatha versicolor. From this specimen, we removed all eight legs. We then extracted
DNA from four of these using the Qiagen DNEasy Tissue Kit, following manufacturer’s instructions.
For the other four legs, we followed a protocol optimized to recover short fragments of DNA from
ancient bone [24].

For T. paschae and Tetragnatha riveti we used a DNA extraction protocol that is based on [21,24].
Our modified protocol used a lysis buffer similar to that described in [21], which was developed
for non-destructive DNA extraction from museum insects. Our lysis buffer comprised (in 100 mL)
5.3 mL 1 M Tris-HCl (pH 8.0), 5.3 mL 0.2 M EDTA, 10.6 mL 20% Sarkosyl, 1 mL 2-mercaptoethanol,
and distilled water. Sock solutions of this buffer can be wrapped in foil and stored at 4 ◦C prior to use.
At the moment of use, we added 200 µg/mL proteinase K, and incubated tissue overnight at 56 ◦C.
We then purified the lysed DNA via centrifugation, as described in [21], as centrifugal purification has
been shown to recover smaller fragments of DNA than purification using silica beads described in [21].

For T. riveti, which was stored in a jar with other spider species, we removed four legs from
the right side and washed these three times in 500 µL of distilled water for one minute. The aim
of this washing step was to remove potential superficial DNA that may originate from the other
specimens in the same jar. After washing, we pulverized the four legs in 1 mL of the lysis buffer that is
described above.

For T. paschae, because of the rarity of our specimens, we selected to remove and process only
two legs from only one of the specimens using a non-destructive method. We selected one of
the specimens from 1925, due to its more recent preservation. We placed these two legs in the lysis
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buffer without pulverization. After overnight digestion, we removed these two legs from the lysis buffer
and washed them three times in 70% ethanol, and then transferred them back into their original vial.

We eluted DNA from the three museum spiders into 50 µL of Tris-EDTA (TE) buffer.

2.3. Library Preparation and Sequencing

We transformed the DNA extracts into barcoded Illumina sequencing libraries [26]. We then
pooled and sequenced all of the libraries on an Illumina MiSeq (San Diego, CA, USA), using 150-cycle
v3 chemistry (2 × 75), targeting an initial 300,000 reads per library. After calculating the endogenous
DNA content, we sequenced the museum specimens more deeply to compensate for the amount of
non-spider DNA. Total depth of sequencing is provided in Table 2. For T. versicolor, we prepared
one library for each DNA extract. For T. paschae and T. riveti, we prepared multiple libraries for each
species to compensate for poor preservation (specifically, the small number of unique DNA molecules
recovered from each library).

Table 2. Species included on the study.

Species Name Merged Reads Unmerged Read Pairs Mapped Reads % Mapped Reads Coverage *

T. paschae 2,035,294 127,651 274 0.012 1.142
T. riveti 1,152,000 191,722 1717 0.112 7.754

T. versicolor 1,664,113 81,418 19,793 1.08 96.616
T. puella 203,936 464,142 4695 0.415 27.776

T. cf. tincochacae 205,455 501,781 2811 0.232 16.923
Tetragnatha sp.

Rapa Nui 187,032 411,508 2944 0.291 17.622

T. similis 109,240 580,116 2003 0.158 11.481
T. macilenta 159,505 729,383 2023 0.125 11.866

T. moua 307,068 732,206 3663 0.207 21.920

* Coverage before application of “Strict”/“Relaxed” filter and removal of misassembles.

2.4. Mitochondrial Genome Assembly

We combined data from samples for which more than one library was sequenced, and trimmed
adapters and merged reads using a customized version of SeqPrep [27]. We then performed a reference
guided mitochondrial assembly using a wrapper script (wormhole Mitochondrial Iterative Assembler,
whMIA) to run the program Mitochondrial Iterative Assembler (MIA) [28], with the complete
mitochondrial genome of Tetragnatha maxillosa (KP306789.1) as the initial reference. For field-collected
samples, we mapped reads with the parameters -i -k 13 -w “./mia -c -U –C”–H 8000. For the museum
samples, we used similar mapping parameters, but did not use a hard cutoff for the mapping score
(-H 8000). The total number of mapped reads and the respective coverage are provided in Table 2.

After mapping, we called consensus mitochondrial genome sequences using two approaches [29].
Our “relaxed” approach required a minimum of 3X coverage, and at least 66% agreement per site in
order to call a base. A “strict” approach required a minimum of 10X coverage and 90% agreement per
site. Under both of the approaches, sites not meeting these criteria were masked as ‘N’. We assessed
the resulting mitochondrial genomes by eye, including mapping genes and checking for stop codons
within predicted coding regions.

2.5. Phylogenetic Reconstruction

We created two alignments; one with sequences generated using the “relaxed” approach (Table S2)
and the other with sequences generated using the “strict” approach (Table S3). To each alignment,
we added the five sequences downloaded from NCBI (Table 1). We aligned each data set using default
parameters of MAFFT [30], as implemented in Geneious v. 5.6.7 [31]. We then used the annotated
reference genome KP306789.1 to determine the locations of coding sequences, tRNAs and rRNAs.
Because it was poorly assembled, we excluded the control region. The “relaxed” data set produced
an alignment of 12,737 base-pairs (bp), while the “strict” data set resulted in a 12,291 bp alignment.
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T. paschae, for which we could only generate 242 bp of sequence meeting the “relaxed” base-calling
criteria, was only included in the “relaxed” alignment.

We then reconstructed the phylogenetic relationships between the spider species in both of
the alignments using RAxML v. 8.2.4 [32]. For both alignments, we used five data partitions: 1st
codon positions; 2nd codon positions; 3rd codon positions; rRNAs; and, tRNAs. Following RAxML’s
manual [33], we used the GTR + G model for each partition. Pirata subpiraticus (Lycosidae) was used
as an outgroup. We estimated support for the inferred topology using 500 bootstrap replicates.

To test the robustness of this topology, we also performed a Bayesian phylogenetic reconstruction
using MrBayes v. 3.2.6 [34,35]. Evolutionary models for each partition were chosen using PartitionFinder v.
1.1.1 [36]. For the “relaxed” alignment, the models that were selected were: CDS 1st codon position: GTR +
I + G; CDS 2nd position: GTR + I + G; CDS 3rd position: HKY + I + G; rRNA and tRNA: GTR + I + G.
For the “strict” alignment the models selected were: CDS 1st codon position: GTR + I + G; CDS 2nd position:
GTR + G; CDS 3rd position: HKY + I + G; rRNA and tRNA: GTR + I + G. We performed two runs of
four independent chains. Each run consisted of 1,000,000 generations sampling every 1000 generations.
At the end of the run, the standard deviation of split frequencies was <0.01. Using Tracer v. 1.7.5, parameter
convergence was determined by estimating the Effective Sample Size (ESS) [37]. All parameters had an ESS
>200 after removal of burn-in (25%). A consensus tree was constructed after removal of this burn-in.

While the T. nitens in our alignment originates from China, the species is known to have
a wide circumtropical distribution [38]. We therefore downloaded all available T. nitens and T. moua
mitochondrial sequences from GenBank (EU796911-EU796917, EU796906-EU796908). Our aim was to
determine the relationship between the T. nitens from China that we used in our main phylogenetic
analyses and other T. nitens from a variety of geographic locations. Since the available sequences only
included the COI gene, we estimated a phylogeny of these samples, combined with data from our
“strict” alignment, based solely on this gene. Since our T. paschae sequence did not include any sites
from the COI gene, it had to be excluded from this analysis. We also excluded any sequences with
large numbers of missing sites for this gene, and then estimated a phylogeny using RAxML, as above.

All of the trees were visualized using FigTree v. 1.4.0 [39].

3. Results

3.1. DNA Recovery

We recovered DNA from all nine specimens for which we attempted DNA extraction. The amount
of recovered DNA varied between samples, and, as expected, less DNA was recovered from
the museum-preserved specimens than from the present-day specimens.

3.2. Mitochondrial Genome Assemblies

We assembled partial mitochondrial genomes from all nine spiders, although we were only able
to recover a small (242 bp) fragment from the oldest and most poorly preserved specimen, T. paschae.
We deposited the resulting “relaxed” partial mitochondrial genomes and the genes COI and ND4 from
T. paschae in GenBank, with accession numbers (MG564492–MG564500, MG597260). The genes COI and
ND5 of T. paschae and all of the “strict” assemblies are in Supplementary file 2. Details of the sequencing
results are provided in Table 2.

3.3. Phylogenetic Reconstruction

The phylogenies we estimated using our “relaxed” and “strict” alignments were consistent;
although not all of the nodes could be resolved, all that received high support were observed in both
reconstructions (Figure 2). We also found that the topologies were robust to our use of different methods
of reconstruction and evolutionary models (Figure 2). All of the Tetragnatha species that were included
in our analyses form a strongly supported monophyletic group. Although T. paschae (indicated by
an arrow on Figure 2) is represented by only a small fragment of DNA, we were able to establish
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that it falls within a strongly supported clade with the Tahitian endemic species T. moua, and sister to
a T. nitens specimen from China. In the COI gene phylogeny (Figure 3), which includes more specimens
from T. nitens, we found that the T. nitens and T. moua specimens that are described in Figure 2 fall
within a larger clade of T. nitens, which includes other specimens from Asia (Papua New Guinea and
Indonesia) and the Pacific (Mo’orea, Society Islands). The Tetragnatha sp. from Rapa Nui (indicated by
an arrow with dashed line on Figure 2) appears as a sister to T. riveti, and is nested on a clade with
other American species.

Figure 2. Maximum likelihood reconstruction. (a) Relaxed consensus including T. paschae. (b) Strict
consensus not including T. paschae. The node values represent the bootstrap support/Bayesian posterior
probability. As: Asia; Am: America; P: Pacific.

Figure 3. Maximum likelihood reconstruction including extra populations of T. nitens and specimens
of T. moua. The reconstruction was done using the strict consensus sequences of COI. The T. moua and
T. nitens specimens marked with asterisk correspond to the ones used on Figure 2.

4. Discussion

Our phylogenies establish that the modern unidentified Tetragnatha from Rapa Nui has a distinct
evolutionary origin from T. paschae. The modern Tetragnatha sp. is most closely related to T. riveti from
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Ecuador, and falls within a strongly supported clade with species from Chile and the United States,
while, T. paschae is nested within the T. nitens species complex.

4.1. Revealing the History of Tetragnatha Species on Rapa Nui

Because of its geographic isolation and relatively recent history of colonization by humans,
the biotic communities on Rapa Nui comprise mixtures of colonizing species originating from disparate
geographic locations at different times [9,14,40,41]. The island therefore provides an opportunity
to study dispersal and introduction patterns. This study used Tetragnatha spiders, a previously
unexplored component of Rapa Nui’s biotic community, to study these patterns. We used ancient
DNA approaches and mitochondrial phylogenetic reconstructions to explore the relationships between
T. paschae and the Tetragnatha species that were collected on Rapa Nui in 2012, and other Tetragnatha
from the surrounding geographic region.

Due to the poor preservation of the T. paschae specimens, we were able to reconstruct only a small
fragment of the mitochondrial genome. Nevertheless, our results confirm that T. paschae and the newly
discovered Tetragnatha belong to distinct evolutionary lineages, with independent colonization histories
(Figure 2).

The genetic similarity between T. riveti and Tetragnatha sp. Rapa Nui suggests that the latter was
only recently introduced to Rapa Nui (Figure 2). This is supported by the failure of previous surveys
of Rapa Nui to observe this species [9]. Moreover, it is unlikely to have been misidentified in Berland’s
description of the Swedish Expedition (1916–1917) [8], since Berland himself described T. riveti prior to
publishing his work on Rapa Nui [42]. Our results led us to undertake a morphological comparison of
these species, which revealed similarities in taxonomically relevant characters. In particular, both of
the specimens share three very distinctive characteristics of the male chelicerae: (1) a median strong
tooth in the promargin; (2) next to this strong tooth, a small promarginal tooth directed towards
the proximal end of the chelicerae; and, (3) a dorsal spur (thorn-like projection) on the distal end.
The male palp also has several distinctive traits that are common to both specimens, including
a straight embolus and oval-shaped bulbus. The anterior and posterior eyes in both samples are
arranged in two curved and opposite rows. Finally, they both have elongated and similarly shaped
endites. These morphological similarities were not discovered in the previous analysis of the Rapa Nui
specimen [14] because comparisons were only made with species that were described in Chile and
Polynesia; and T. riveti has only been described for Ecuador [42].

Given the morphological similarities and the short length of the branch separating these
two species in the mitochondrial phylogeny, it seems likely that the recently collected Tetragnatha
from Rapa Nui is T. riveti, rather than a new endemic species. While T. riveti has only been
reported for Ecuador [42], the full range of the species has not been investigated and there is no
comprehensive revision for the genus in the region. In particular, it is not known whether the species’
range extends to Peru or Chile, countries that historically have had more contact with Rapa Nui
than Ecuador and are therefore more likely routes of anthropogenic introduction [7]. Based on reported
species distributions, fewer than 10% of known arachnid introductions to Rapa Nui are of South
American origin, with the majority of the introduced species representing groups with circumtropical
or circumglobal distributions [14].

Our phylogenies place T. paschae within the genetic diversity of T. nitens, a species that comprises
a complex of highly structured populations [43]. While this might mean that T. paschae was incorrectly
described as a distinct species, T. moua, a Tahitian endemic, also falls within the genetic diversity of
T. nitens [11]. T. nitens presents strong morphological conservation across divergent genetic lineages,
and T. moua, while falling within the genetic diversity of T. nitens, has a distinct genital morphology and
cheliceral armature [44]. This divergence from T. nitens could reflect local adaptation or an increased
influence of random drift due to a small population size. We also observed some phenotypic divergence
from T. nitens in T. paschae. The chelicerae of the sequenced T. paschae is missing the posterior cusp
on the fang, which is a diagnostic character of females of T. nitens [8,45]. It also differs in not having
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an enlarged and isolated tooth in the distal portion of the promarginal row of teeth [8,45] (Figure 4).
However, since we have no description of the male T. paschae, and no adult male specimens, we cannot
fully assess the morphological divergence between T. paschae and T. nitens. Also, because of the small
amount of mitochondrial sequence that we were able to generate for T. paschae, and the lack of
specimens of T. nitens from Rapa Nui, we cannot fully evaluate the evolutionary distance of T. paschae
from T. nitens and T. moua.

Figure 4. Inner view of left chelicerae of the sequenced female T. paschae. Complete arrow indicates
the lack of the posterior cusp on the fang. Dashed arrow shows the absence of an enlarged and isolated
tooth in the distal portion of the promarginal row of teeth. Both characters are present in T. nitens.

If T. paschae was a distinct species that is now globally extinct, it would be the first extinct
arachnid from which DNA has been amplified, and a rare description of a spider extinction. The IUCN
red list currently includes only three extinct spider species, all from the Seychelles Islands [46,47].
This number of arachnid species that are recently extinct is likely to be much greater than this [48],
and the paucity of described spider extinctions highlights the importance of surveys and monitoring
of species, particularly island endemics. The causes and temporal dynamics of arthropod extinctions,
in general, are poorly understood, and the further application of ancient DNA techniques to museum
collections of arthropods and comparisons with extant species is a promising direction for future
research [49].

4.2. Recovering Ancient DNA from Museum-Preserved Spiders

Our results show the combined power of field surveys and molecular analysis of museum-preserved
samples to identify cryptic species and infer evolutionary relationships. However, our results also
highlight the challenges of performing ancient DNA research on museum-preserved spiders. For example,
the amount of recovered endogenous DNA varied considerably between the museum-preserved samples
that are processed here (Table 2). Moreover, interpreting this is complicated by both the paucity of
comparative molecular data from living species [50] and incomplete records of the preservation history of
the specimens.

Our approach, which combines two previously published optimizations for ancient DNA [21,24]
was successful in recovering DNA from very small amounts of a nearly 100 year-old spider. A previous
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comparison of DNA extraction methods for bone powder showed that only proteinase K and EDTA
in the lysis buffer positively influenced DNA recovery [51]. For bone powder, the utility of EDTA
is known to be its decalcifying effect, as preserved DNA in bone tends to form a complex with
hydroxyapatite [52]. However, this does not apply to spiders, where the majority of recoverable
DNA is probably preserved within cells. Based on a recently published non-destructive method for
DNA recovery from museum-preserved insects [21], we included in our lysis buffer the surfactant
Sarkosyl, to dissolve cellular membranes, and the reducing agent 2-mercaptoethanol, to break S-S
bonds. We selected 2-mercaptoethanol instead of dithiothreitol (DTT), due to its longer half-life
(>100 h 2-mercaptoethanol vs. 4 h DTT) in conditions similar to those of the lysis buffer (pH 8.5, 20 ◦C
and 1.0 mM EDTA) [53]. We note, however, that an advantage of DTT is that the reduction of the S-S
bonds is through an irreversible reaction, instead of an equilibrium reaction where the reducing agent
needs to be in excess in order to move the reaction towards the reduced products [54]. To increase yield
further, we combined the approach from [21] with modified DNA purification columns, as described
in [24]. Although the size of individual specimens limits the feasibility of direct comparative analyses,
our results suggest that the combination of these two approaches is an appropriate choice for
the recovery of DNA from museum-preserved spiders.

Another challenge to ancient DNA research in spiders is the paucity of comparative genomic
data from living species. Currently, only four spider genomes are published (Stegodyphus mimosarum,
Acanthoscurria geniculata, Nephila clavipes, and Parasteatoda tepidariorum [55–57]). Since spiders
originated at least 340 Million years ago (Ma) [58], these four species are not likely to be ideal references
for read-mapping or calculating endogenous content for the majority of preserved specimens. However,
promising developments in both genome sequencing and assembly technologies [59–61] are likely
to increase the pace and diversity of published spider genomes, despite the sequencing challenges
inherent to this taxonomic group [50]. These resources will accelerate spider research and enable more
efficient and powerful research using spiders that are preserved in museum collections, as well as other
environments, including lake sediments [62], sinkholes [63], permafrost [20,64], and archeological
sites [65].

5. Conclusions

We assembled partial mitochondrial genomes from museum-preserved and field-collected spiders,
using a modified DNA extraction approach. Using these data, we showed that the only endemic
spider that has been described on Rapa Nui, T. paschae is nested within the T. nitens species complex.
This brings into question whether T. paschae is truly distinct from T. nitens, and therefore whether
its absence from recent surveys of Rapa Nui might reflect an extinction. We found that T. paschae
is evolutionarily distant from the Tetragnatha species found in the most recent survey of Rapa Nui.
Our results suggest that this recently observed species is most likely T. riveti, which is a species that has
previously only been found in Ecuador, and that this species was brought to the island only recently
as a human introduction. Our results show the combined power of field surveys and ancient DNA
analysis of museum specimens to reveal phylogenetic and dispersal history of rare and extinct spiders.
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