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Abstract

Fall dormancy (FD) determines the adaptation of an alfalfa variety and affects alfalfa produc-

tion and quality. However, the molecular mechanism underlying FD remains poorly under-

stood. Here, 44 genes regulating FD were identified by comparison of the transcriptomes

from leaves of Maverick (fall-dormant alfalfa) and CUF101(non-fall-dormant), during FD and

non-FD and were classified them depending on their function. The transcription of IAA-

amino acid hydrolase ILR1-like 1, abscisic acid receptor PYL8, and monogalactosyldiacyl-

glycerol synthase-3 in Maverick leaves was regulated by daylength and temperature, and

the transcription of the abscisic acid receptor PYL8 was mainly affected by daylength. The

changes in the expression of these genes and the abundance of their messenger RNA

(mRNA) in Maverick leaves differed from those in CUF101 leaves, as evidenced by the cor-

relation analysis of their mRNA abundance profiles obtained from April to October. The

present findings suggested that these genes are involved in regulating FD in alfalfa.

Introduction

Fall dormancy(FD) is defined as an adaptive growth characteristic of alfalfa in autumn in

response to the reduction of daylength and drop in temperature. Alfalfa varieties are classified

into three types, fall-dormant varieties (FD I-III), semi-dormant varieties(FD IV-VI), and

non-dormant varieties(FD IIV-IX), according to plant regrowth after mowing in the autumn

[1–3]. FD, which is one of the most important factors that influences plant adaptation, has a

dramatic impact on the production of alfalfa[2].Therefore, FD is considered the primary evalu-

ation index of alfalfa varieties in North America [4]. In this region, fall-dormant alfalfa is

adapted to the cold climate, grows slowly after cutting in autumn, and has low yield, but ex-

hibits strong cold-hardiness and overwintering ability, which non-dormant alfalfa does not

possess[5]. The FD of fall-dormant alfalfa is stronger than that of semi-dormant and non-

dormant alfalfa, and that of non-dormant alfalfa is the weakest [6–8]. Recently, it has been

reported that environmental factors, such as photoperiod and temperature, regulate FD[9, 10].

Furthermore, photoperiod is considered a limiting FD-inducing factor, and complex interac-

tions associated with daylength and temperature are known to occur[6].
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Deeper insights into the molecular mechanisms underlying FD have been recently reported.

Douglas identified genomic regions that control the FD of alfalfa, although the specific nucleo-

tide sequences of these genomic regions remain unknown[11]. Wang et al. found that PHYA/

PHYB mRNA content increases with the shortening of daylength and reduction in tempera-

ture[8]. Fan et al. identified 583 dormancy-related microRNAs via high-throughput sequenc-

ing, of which 28 microRNAs were found to play key roles in regulating dormancy[12]. Zhang

et al. detected 2,064 differentially expressed genes in alfalfa leaves between dormant and non-

dormant periods by transcriptome sequencing[13]. In addition, the reduction of indoleacetic

acid (IAA), zeatin riboside (ZR), and gibberellins (GA3) in leaves of fall-dormant varieties is

more significant than that of semi-dormant and non-dormant varieties. Further, increased lev-

els of abscisic acid (ABA) were observed in semi-dormant and non-dormant varieties[14].

However, to the best of our knowledge, the genes, specifically those related to photoperiod and

temperature, that regulate FD in alfalfa remain unknown.

In the present study, the candidate genes that regulate alfalfa FD were identified by compar-

ing the leaf transcriptomes of Maverick (fall-dormant alfalfa) and CUF101 (non-fall-dormant

alfalfa) at FD and non-dormant periods, the results of the bioinformatics analysis, and the data

for gene function from previous studies. Finally, three genes regulating fall dormancy were

identified by analyzing the changes in mRNA abundance of key candidate genes from April to

October and by performing correlation analysis between their mRNA abundance and day-

length and temperature. The present study establishes the foundation for highly targeted study

of molecular mechanisms underlying FD.

Materials and methods

Plant materials and growth condition

Seeds of Maverick (FD I) and CUF101 (FD IX) of alfalfa standard varieties were introduced

from the United States and planted in sandy loam soil at the Experimental Station of Henan

Agricultural University (34˚19 N, 113˚35 E) by hand on October 1,2009, with 0.6m spacing

between rows. The plants were irrigated regularly during drought, but they were not fertilized

during growth. Weeds were controlled by hand or hoeing, and insects were controlled as

required by hand. Leaf samples of the fall-dormant alfalfa variety collected in May and Septem-

ber are labeled DM and DS, respectively, and the samples of the non-dormant alfalfa variety

collected in September are labeled NDS thereafter[13].

The plants were cut, then let grow for 14 days, the leaf samples were collected, which was

done once a month. Three replicates of mature fresh leaves of both varieties were collected from

the top of the plant between 08:00 and 09:00 on April 12, May 10, June 12, July 8, August 6, Sep-

tember 2, and October 18 in2011,and on April15, May11, June13, July9, August7, September5,

and October16 in 2016.The samples were immediately frozen in liquid nitrogen, and stored at

-80˚C until use for RNA extraction and assessment of mRNA abundance of genes. Meanwhile,

height of 30 randomly chosen plants was recorded to calculate the mean height for each plot.

Leaf area was calculated based on the length and width of ten randomly chosen leaves of each

plant [15]. Day length and temperature of each sampling day were also recorded.

Maverick and CUF101 grown under artificial growth conditions in a green house were

exposed to different illumination times or different temperature. One group of plants includ-

ing three plants of each variety was cultured at 24˚C and a daily illumination (3000lux) of 8h,

12h, or 16h. Another group of three plants of each variety was grown under 3000 lux illumina-

tion for 48h and a temperature of 16˚C, 24˚C,or 32˚C. Leaf samples of each variety from each

treatment were collected and immediately frozen in liquid nitrogen and subsequently stored at

-80˚C until use for RNA extraction and mRNA abundance assessment.
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Significant differences were analyzed by one-way ANOVA using SPSS 19.0 (IBM Corp.,

Armonk, NY, USA). Daylength and temperature of each sampling day were also recorded.

Correlation between plant growth rate or mRNA abundance of genes of the two varieties and

daylength or temperature was analyzed using double factor correlation analysis and one-sided

t-test, respectively, both available in SPSS 19.0 (IBM Corp., USA). Correlation between mRNA

abundance of genes in the two varieties and daylength or temperature was also analyzed. A lin-

ear chart of the obtained data was constructed using GraphPad Prism 5 software (GraphPad

Software, Inc., San Diego, CA, USA).

Screening and bioinformatic analysis of candidate genes

After these sequencing reads were trimmed, paired-end reads were assembled by Trinity [16]

as a single dataset (reference transcriptome) that was then annotated using BLASTX. The tran-

script was deposited in DDBJ/EMBL/GenBank under the accession number GAFF00000000.

Differentially expressed genes (DEGs) were identified using Simbiot1 platform, and the accu-

racy of the results was tested[13]. DEGs with absolute foldchange�4 and adjusted p-value�

0.05 for DM vs. DS and DS vs. NDS were obtained using R software[17], and a custom script

was implemented to identify common DEGs(co-DEGs) and unique DEGs for DM vs. DS and

DS vs. NDS. Next, the total DEGs in DM vs. DS and DS vs. NDS were screened for unique

genes of DS vs. NDS and unique genes of DM vs. DS, respectively. Some of the unique DEGs

were also classified as co-DEGs based on the fold-change value and adjusted p-value. In addi-

tion, DEGs associated with drought resistance, insect resistance, and disease resistance, as well

as DEGs with the same expression trend in DM vs. DS and DS vs. NDS, were excluded. The

co-DEGs, unique DEGs of DM vs. DS, and unique DEGs of DS vs. NDS were confirmed and

collectively designated ACDEGs.

ACDEGs were imported into Blast2GO for gene ontology (GO) annotation. The sequences

of these genes were submitted to the Kyoto Encyclopedia of Genes and Genomes (KEGG)

Automatic Annotation Server (KAAS; http://www.genome.jp/kaas-bin/kaas_main; Version

1.67x) to retrieve KEGG orthology (KO) assignments and KEGG pathways using single-direc-

tional best hit assignment method. The function of each ACDEG was determined by submit-

ting the amino acid sequences of the ACDEGs to the UniProt database (http://www.uniprot.

org/uniprot/) and consulting the literature. The ACDEGs were classified according to their

common functions. Finally, key candidate genes involved in the regulation of alfalfa FD were

identified based on foldchange in their expression, p-value, and their function in plant growth

and development.

Assessment of mRNA abundance of key genes and correlation analysis

between mRNA abundance of genes and daylength or temperature

The mRNA abundance of 44 candidate genes in Maverick leaves (three samples over a

7-month period, resulting in a total of 21 samples) was detected and analyzed from April to

October in 2011. Key genes among the 44 candidate genes were selected based on whether

their transcription was regulated by photoperiod or temperature and their role in plant growth

and development. The mRNA abundance of six key genes in CUF101 leaves(3 samples per

month over a 7-month period, resulting in a total of 21 samples) was detected and analyzed

again in 2011. The mRNA levels of these genes in Maverick and CUF101 leaves (3 samples

×7months × 2 varieties = 42 samples) were detected and analyzed again in 2016.

The mRNA abundance of the six key genes in Maverick and CUF101 leaves grown under

artificial culture conditions (3 samples × 3 treatments × 2 varieties × 2 factors = 36 samples)

was detected and analyzed.
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Total RNA in all samples was extracted in strict accordance with the TRIzol method (Invi-

trogen, Carlsbad, CA, USA). Reverse transcription was performed using a RT kit following the

manufacturer’s instructions (Takara Bio, Inc.). RNA content and quality were analyzed in a

Nano2000 Ultramicro spectrophotometer (ThermoFisher Scientific, Waltham, MA, USA),

and each RNA sample was adjusted to the same concentration.

Quantitative reverse transcription polymerase chain reaction (qRT-PCR) primers for each

gene were designed using Primer5.0 software (Premier Biosoft International, Palo Alto, CA,

USA) following the established principles of qRT-PCR primer design (S1 Table). mRNA abun-

dance of each gene in all samples was detected using the Roche SYBR Green fluorescent dye

method and a Roche Cycler9.0 fluorescent PCR instrument (Roche Diagnostics GmbH, Man-

heim, Germany). The data were normalized against the expression of the housekeeping gene

GAPDH, and the expression was calculated relative to a calibrator samples using the formula

2−ΔΔCt; the values were presented as mean±standard deviation[18]. Significant differences

were assessed by one-way ANOVA, and the correlation of the mRNA abundance of each

gene with daylength or temperature was analyzed using double factor correlation analysis and

one-sided t-test, respectively, implemented in SPSS 19.0 (IBM Corp., USA). The obtained

qRT-PCR data were used to construct a linear chart in GraphPad prism 5 (GraphPad Software,

Inc., USA).

Results

Analysis of DEGs

The DEGs of DM vs. DS and DS vs. NDS were listed in S1 and S2 Files. A total of 538 genes

were identified as DEGs in DM vs. DS, of which 122 were annotated and 416 were not anno-

tated. Further, the expression of 337 DEGs was upregulated and201 DEGs were downregulated

in DM vs. DS(S3 File). Similarly, of the 836 DEGs identified in DS vs. NDS,156 were annotated

and 680 were not annotated; 545 DEGs were upregulated and 291 DEGs were downregulated

(S4 File). 86 genes were co-DEGs of DM vs. DS and DS vs. NDS(S5 File); among these, 78

genes were un-annotated and 8 were annotated (S5 File). After a series of analyses and screen-

ing, in total, 489 co-DEGs of DM vs. DS and DS vs. NDS were obtained; of these, 405 genes

were un-annotated and 84 genes were annotated. Further, 218genes were unique to DS vs.

NDS, with163 genes being un-annotated and 55 genes annotated. Of the354genes unique to

DM vs. DS, 290 genes were un-annotated and 64 genes were annotated. Overall, ACDEGs

comprised 1,069 genes (S6 File).

GO enrichment analysis of ACDEGs

The GO enrichment analysis classified most ACDEGs into three significant, broad GO catego-

ries: “biological process”, “molecular function” and “cell component”. Within the category

“biological process”, the DEGs were assigned to the terms: metabolic process (153 genes), cel-

lular process (113 genes), response to stimulus (37 genes), single-organism process (55 genes),

localization (36 genes), cellular component organization or biogenesis (26 genes), signaling

(21 genes), developmental process (13 genes), and growth (6 genes). The DEGs assigned to

“molecular function” category were enriched in cell (84 genes), organelle (65 genes), macro-

molecular complex (26 genes), membrane (8 genes), and extracellular region (6 genes). Finally,

in the “cell component,” the genes were functionally assigned to catalytic activity (139 genes),

binding (95 genes), transporter activity (15 genes), molecular structure (15 genes), and nucleic

acid binding transcription factor activity (9 genes) (Fig 1).
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Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis of ACDEGs

ACDEGs were significantly enriched in 33 pathways (p�0.05) according to the KEGG enrich-

ment analysis. Ribosome pathway and metabolic pathways were the two main pathways, and

DEGs were significantly enriched in carbohydrate metabolic pathways, such as the starch and

sucrose metabolism pathway and the pentose and glucuronate interconversion pathway. The

biosynthesis of secondary metabolites, such as cyanoamino acid metabolism, phenylpropanoid

biosynthesis, amino sugar and nucleotide sugar metabolism, phenylalanine metabolism, and

sesquiterpenoid biosynthesis, was also enriched. Genes involved in protein processing and

endoplasmic reticulum pathway coded mainly for heat shock proteins. The RNA transport

pathway, ubiquitin-mediated proteolysis pathway, tryptophan metabolism pathway, plant cir-

cadian rhythm, and plant hormone signal transduction were also significantly enriched (S7

File).

Based on the results of the KEGG and GO analysis of DEGs and the results of previous

studies, 44 key candidate genes may be involved in the regulation of FD (Table 1).

Daylength, temperature, leaf area, and plant height of the Maverick

variety from April to October

Daylength and temperature first increased and then decreased from April to October: the lon-

gest day was in June, and the highest temperature was measured in July (Fig 2).

The plant height of Maverick did not differ significantly between April and August, but it

decreased significantly in September and October as compared with that from April to August.

The plant height of CUF101 did not differ significantly between July and October, and it was

significantly higher than that of Maverick in the same period (Fig 3). The leaf area of Maverick

was smaller than that of CUF101 from April to September, and the difference in leaf area

between the two varieties reached its maximum in September. There was no significant differ-

ence in the leaf area of CUF101 from June to September, whereas the leaf area of Maverick

decreased from June to September. In addition, the leaf area of Maverick in August and Sep-

tember was significantly smaller than that in June and July (Fig 4).

mRNA abundance of four ACDEGs from April to October in the two

alfalfa varieties

Among the 44 DEGs, mRNA abundance of six DEGs was significantly correlated with day-

length and temperature in 2011. However, the comparison of the data between 2011 and 2016

revealed that the change in mRNA abundance of one gene in both varieties differed between

the two sampling years and the change in mRNA levels of another gene followed the same

Fig 1. Gene ontology functional classification of key candidate genes. The functional assignments with biological processes, molecular

functions, and cellular components are shown based on the number of proteins and the converted corresponding proportion.

https://doi.org/10.1371/journal.pone.0188964.g001
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Table 1. Key candidate genes involved in regulating alfalfa fall dormancy.

Classification Number Tags Genes Function [reference] Expression

trend of DM vs.

DS

Expression

trend of DS vs.

NDS

Genes involved in

carbohydrate

metabolism and

transport

1 comp1260_c0 MGDG synthase 3 Synthesis of photosynthetic

membranes and chloroplast

envelope [19]

Downregulated

(-3.53)

2 comp59094_c0 Beta-D-glucosidase Catalyzes the hydrolysis of

terminal non-reducing residues in

beta-D-glucosides with a release

of glucose[20]

Downregulated

(-2.10)

Upregulated

(3.05)

3 comp25768_c0 UDP-sugar

pyrophosphorylase

Catalyzes the conversion of

various monosaccharide

1-phosphates to respective UDP-

sugars in the salvage pathway

[21]

Upregulated

(2.14)

Downregulated

(-3.19)

4 comp53413_c0 Ribulose bisphosphate

carboxylase/oxygenase

(Rubisco) activase

Activates Rubisco Downregulated

(-2.87)

Upregulated

(1.01)

Genes regulated by

photoperiod and

light

5 comp46970_c0 Cryptochrome-2(CRY-2) Inhibits hypocotyl elongation [22]

and stem and root growth[23]

Upregulated

(3.50)

6 comp1262167_c0 Protein FAR-RED

IMPAIRED RESPONSE 1

(FAR1)

Positively regulates chlorophyll

biosynthesis via the activation of

HEMB1 gene expression[24];

activates transcription; elongates

hypocotyls and reduces

expansion of cotyledons[25]

Upregulated

(2.23)

7 comp38709_c0 GATA transcription factor

12(GATA12)

Activates transcription, regulates

some light-responsive genes and

circadian rhythm[26–28]

Upregulated

(2.40)

Downregulated

(-2.41)

8 comp12163_c0 Serine protease SPPA,

chloroplastic

the light-dependent degradation

of antenna and photosystem II in

chloroplasts[29, 30];

Downregulated

(-2.22)

Upregulated

(2.23)

9 comp46405_c0 Protein HEADING DATE

3A

Regulates dormancy [31] Downregulated

(-1.72)

Upregulated

(4.38)

10 comp56985_c0 Granule-bound starch

synthase 1(GBSS1)

Regulated by photoperiod, may

be accompanied by abolition of

expression of starch synthesis

genes [32]

Downregulated

(-2.69)

Upregulated

(5.74)

Phytohormone

11 comp36708_c0 Probable indole-3-pyruvate

monooxygenase YUCCA3

Participates in indoleacetic acid

(IAA) synthesis[33]

Upregulated

(3.40)

Downregulated

(-1.35)

12 comp343499_c0 Methylesterase17 Hydrolyzes conjugates of IAA Downregulated

(-1.72)

Upregulated

(3.38)

13 comp522282_c0 IAA-amino acid hydrolase

ILR1-like 1

Hydrolyzes conjugates of IAA[34] Upregulated

(2.36)

14 comp15714_c0 Auxin response factor 6

(ARF6)

Activates transcription,

participates in transcriptional

regulation of a variety of biological

processes related to growth and

development[35, 36]

Downregulated

(-2.74)

15 comp57456_c0 ABA receptor PYL8 Positively regulates abscisic acid

(ABA) signaling pathway[37–40]

Upregulated

(2.66)

16 comp61323_c0 Protein early responsive to

dehydration 15

Negatively regulates ABA

responses and mediates stress-

related ABA signaling[41, 42]

Upregulated

(2.05)

(Continued )
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Table 1. (Continued)

Classification Number Tags Genes Function [reference] Expression

trend of DM vs.

DS

Expression

trend of DS vs.

NDS

Transportation

17 comp46282_c0 ATP-binding cassette

(ABC) transporter C family

member 7

Involved in the response to biotic

stress

Upregulated

(2.36)

18 comp10285_c0 ABC transporter B family

member 11

Essential regulator of plant

growth

Upregulated

(2.55)

19 comp70285_c0 Monosaccharide-sensing

protein 3

Involved in direct growth and

differentiation or flexible response

to changing environmental

conditions (UniProt: Q9SD00)

Upregulated

(2.13)

20 comp40098_c0 Probable ion channel

SYM8

A calcium channel[43] Upregulated

(3.15)

21 comp343967_c0 Putative phospholipid-

transporting ATPase 7

Transports phospholipids

(UniProt: Q9LVK9)

Upregulated

(3.15)

Downregulated

(-3.32)

22 comp928260_c0 Ras-related protein

RABH1d

Involved in protein transport

(UniProt: Q9SID8)

Downregulated

(-0.83)

Upregulated

(2.23)

23 comp1120261_c0 Oligopeptide transporter 6 Translocates tetra- and

pentapeptides[44, 45]

Upregulated

(2.40)

Downregulated

(-2.41)

Cell cycle, division,

and growth

24 comp33056_c0 Cyclin-D5-2 Mediates the linking of

extracellular and developmental

signals to the cell cycle[46]

Downregulated

(-3.60)

25 comp67791_c1 Anaphase-promoting

complex (APC)subunit 1

Marks target cell cycle proteins

for degradation by 26s

proteasome; involved in

eukaryotic cell reproduction[47–

49]

Downregulated

(-1.27)

Upregulated

(5.11)

26 comp686013_c0 Protein S-acyltransferase

24 (PAT24)

Involved in cell growth regulation

[50]; affects root hair formation

and growth [51, 52]

Upregulated

(2.20)

27 comp32326_c0 Monocopper oxidase-like

protein SKU5

Possibly involved in directional

growth processes and cell wall

expansion[53]

Upregulated

(2.20)

28 comp672512_c0 Prohibitin-3, mitochondrial Loss of function of the homologs

AtPHB3 causes mitochondrial

welling, decreases meristematic

cell production, increases cell

division time, and reduces cell

expansion rates, leading to

severe growth retardation[54]

Downregulated

(-0.83)

Upregulated

(2.36)

29 comp887354_c0 Kinesin-4 Involved in cell cycle[55] and cell

division[56–61].

Downregulated

(-2.92)

Upregulated

(2.23)

30 comp37666_c0 Structural maintenance of

chromosomes protein 3

(SMC3)

Essential protein for plant

viability, required for cell division

during embryogenesis, increased

expression accelerates cell cycle

[62, 63]

Upregulated

(2.23)

Genes regulating

transcription

31 comp424089_c0 Probable histone H2A.2 Plays a central role in

transcription regulation, DNA

repair, DNA replication, and

chromosomal stability. Involved in

gene regulation[64]

Upregulated

(2.36)

32 comp57595_c0 Histone H3.3 Upregulated

(6.23)

Downregulated

(-4.08)

33 comp391402_c0 MADS-box transcription

factor PHERES 1

Regulates dormancy[31, 65] Downregulated

(-3.20)

Upregulated

(3.12)

34 comp50413_c1 Squamosa promoter-

binding protein 1(SBP1)

Activates transcription, and

involved in leaf development,

vegetative phase change, etc.

[66, 67]

Upregulated

(3.97)

(Continued )
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trend in both varieties and thus was not significantly different between the two varieties.

Therefore, these two genes were excluded from further analysis. The mRNA profiles of IAA-

amino acid hydrolase ILR1-like 1(ILR-like 1), ABA receptor PYL8(PYL8), monogalactosyldia-

cylglycerol (MGDG) synthase-3(MGDGS-3), and Ribulose bisphosphate carboxylase/oxyge-

nase (Rubisco) activase are discussed herein. The mRNA profiles of the four genes exhibited

Table 1. (Continued)

Classification Number Tags Genes Function [reference] Expression

trend of DM vs.

DS

Expression

trend of DS vs.

NDS

Ubiquitination

35 comp53272_c0 Probable mediator of RNA

polymerase II transcription

subunit 37c

Coactivator regulates

transcription of nearly all RNA

polymerase II-dependent genes

[UniProt: Q9LHA8—

MD37C_ARATH]

Downregulated

(-6.76)

36 comp538610_c0 BTB/POZ domain-

containing protein

At1g67900

Mediates transcriptional

repression [UniProt: Q9C9V6—

Y1790_ARATH]

Upregulated

(2.40)

37 comp933338_c0 BTB/POZ domain-

containing protein

At3g19850

Mediates transcriptional

repression [UniProt: Q9LT24—

Y3985_ARATH]

Upregulated

(2.40)

38 comp29926_c0 F-box only protein 6 Substrate-recognition component

of some SCF-type E3ubiquitin-

ligase complexes, participates in

regulation of auxin-mediated

signaling pathway, leaf vascular

tissue pattern formation, and

simple leaf morphogenesis[68,

69]

Upregulated

(5.50)

39 comp655910_c0 UBX domain-containing

protein 7

Acts in many cellular events such

as ubiquitin-dependent

degradation and membrane

fusion[70]

Upregulated

(2.87)

Downregulated

(-3.00)

40 comp909276_c0 Putative E3 ubiquitin-

protein ligase LIN

Catalyzes polyubiquitination with

ubiquitin-conjugating enzyme E2

UBC8 in vitro, involved in plant C/

N response and early steps of the

plant defense signaling pathway

[71]

Upregulated

(2.40)

41 comp395328_c0 E3 ubiquitin-protein ligase

UPL6

Mediates ubiquitination and

subsequent proteasomal

degradation of target proteins

[UniProt:Q8RWB8—

UPL6_ARATH]

Downregulated

(-2.96)

Upregulated

(1.68)

Receptor kinases

42 comp70176_c0 Wall-associated receptor

kinase(WAK)5; Wall-

associated receptor

kinase-like (WAKL)2

Involved in cell expansion,

elongation[72, 73]

Upregulated

(2.36)

43 comp41596_c0 WAK3 Downregulated

(-3.00)

44 comp403595_c0 Serine/threonine-protein

kinase Nek1

Involved in sensing and repair of

DNA strand breaks at the G1-S

and G2-M transitions[74]

Upregulated

(2.40)

Downregulated

(-2.41)

DM and DS: Leaf samples of the fall-dormant alfalfa variety collected in May and September, respectively; NDS: leaf samples of the non-dormant alfalfa

variety collected in September.

https://doi.org/10.1371/journal.pone.0188964.t001
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the same regular, specific trends from April to October in 2011 and 2016, with significant dif-

ferences detected between Maverick and CUF101 (Figs 5–8). The mRNA data of other genes

are not shown.

The change in mRNA abundance of ILR1-like 1 and the PYL8 followed the opposite trends

in the autumn. Thus, the mRNA abundance of ILR1-like 1 decreased in Maverick but

increased in CUF101 from June to September, whereas the mRNA abundance of the PYL8

Fig 2. Daylength and temperature from April to October.

https://doi.org/10.1371/journal.pone.0188964.g002

Fig 3. Plant height of Maverick and CUF101varieties from April to October. The difference in plant height in

Maverick is marked with *. The difference in plant height between Maverick and CUF101 is marked with #. (*, #,

p < 0.05; **, ## p< 0.01).

https://doi.org/10.1371/journal.pone.0188964.g003
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Fig 4. Leaf area of Maverick and CUF101 varieties from April to October. * and **indicate significant

difference at p < 0.05 and p < 0.01, respectively.

https://doi.org/10.1371/journal.pone.0188964.g004

Fig 5. mRNA abundance of indoleacetic acid (IAA)-amino acid hydrolase ILR1-like 1 in Maverick and CUF101

varieties from April to October in 2011 and 2016. * and ** indicate significant difference between August-September

and June-July at p<0.05 and p<0.01, respectively.

https://doi.org/10.1371/journal.pone.0188964.g005
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increased in Maverick but decreased in CUF101 in the same period. In Maverick, the mRNA

abundance of ILR1-like 1 in August to October was significantly lower than that in June and

July. In CUF101, the abundance of the same mRNA was significantly higher in July to Septem-

ber than it was in June. The mRNA abundance of the PYL8 was significantly higher in Septem-

ber and October in Maverick but significantly lower in CUF101 as compared to those in

August(Figs 5 and 6).

The mRNA abundance of MGDGS-3 in the two varieties first increased and then decreased

starting from June (in Maverick) and August (in CUF101). In Maverick, the mRNA abun-

dance of MGDGS-3 was significantly lower from July to October than it was in June, but in

CUF101, it was significantly higher from July to September compared with that in June. The

mRNA abundance of MGDGS-3 from July to September was significantly lower in Maverick

compared to that in CUF101 (Fig 7). Similarly, the abundance of the Rubisco activase mRNA

increased initially in both varieties, which was followed by a decrease from July onwards. In

both alfalfa varieties, its mRNA abundance in September and October was significantly lower

than that in July and August(Fig 8).

mRNA profiles of four DEGs in leaves of the two alfalfa varieties under

artificial growth conditions

The change in mRNA abundance of ILR1-like 1 in Maverick followed the opposite trend to

that in CUF101 with increasing illumination from 8h to 16h. Thus, its mRNA abundance in

Fig 6. mRNA abundance of the abscisic acid receptor PYL8 in Maverick and CUF101 varieties from April to

October in 2011 and 2016. ** indicates significant difference between September-October and August at p<0.01.

https://doi.org/10.1371/journal.pone.0188964.g006
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Maverick gradually increased with increasing illumination from 8h to 16h and was signifi-

cantly less than that in CUF101 (Fig 9A).

The mRNA abundance of the PYL8 in the two varieties gradually decreased with increasing

illumination from 8h to 16h and was significantly greater than that in CUF101 (Fig 9B).

As the illumination increased from 8 h to 16 h, the mRNA abundance of MGDGS-3

increased and that of the rubisco activase mRNA was not significantly altered. The levels of

both genes of mRNA in Maverick were significantly lower than those in CUF101 (Fig 9C and

9D).

The changes in mRNA abundance of the ILR1-like 1 and the PYL8 in the same variety fol-

lowed the same trend as temperature increased from 16˚C to 32˚C.Thus, their mRNA abun-

dance gradually increased from 16˚C to 32˚C in Maverick, whereas in CUF101, the abundance

of the two mRNAs at 24˚C was greater than that at 16˚C and 32˚C (Fig 10A and 10B). Simi-

larly, the abundance of the Rubisco activase mRNA in the two varieties gradually increased

from 16˚C to 32˚C, but it reached higher levels in Maverick than in CUF101 (Fig 10C). In con-

trast, the levels of the MGDGS-3 mRNA gradually increased in Maverick but decreased in

CUF101 with increasing temperature from 16˚C to 32˚C (Fig 10D).

Fig 7. mRNA abundance of monogalactosyldiacylglycerol synthase-3 in Maverick and CUF101 varieties from

April to October in 2011 and 2016. * and ** indicate significant difference between July, August, September, and

June at p<0.05 and p<0.01, respectively.

https://doi.org/10.1371/journal.pone.0188964.g007
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Correlation analysis of plant growth rate, mRNA abundance of genes,

and daylength or temperature under natural conditions

The growth rate of Maverick was significantly correlated with daylength, but not with temper-

ature, whereas the growth rate of CUF101 was not significantly correlated with either day-

length or temperature (Table 2).

The mRNA abundance of ILR1-like 1 in Maverick was significantly positively correlated

with daylength and moderately positively correlated with temperature in both varieties in the

two experimental years. In contrast, the abundance of the ILR1-like 1 mRNA in CUF101 had

no significant correlation with daylength and temperature (Tables 3 and 4).

The mRNA abundance of the PYL8 was significantly negatively correlated with daylength

and moderately negatively correlated with temperature in Maverick, but had no significant

correlation with the two parameters in CUF101 (Tables 3 and 4).

In both varieties, the abundance of the MGDGS-3 mRNA was significantly positively corre-

lated with temperature, and that of the Rubisco activase was moderately positively correlated

with temperature; neither of the two was correlated with daylength (Tables 3 and 4).

Fig 8. mRNA abundance of Rubisco activase in Maverick and CUF101varieties from April to October in 2011

and 2016. ** indicates significant difference between September, October, July, and August at p<0.01.

https://doi.org/10.1371/journal.pone.0188964.g008
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Correlation analysis of mRNA abundance of genes and daylength or

temperature under artificial growth conditions

The correlation of the mRNA abundance of ILR1-like 1 and that of Rubisco activase was in the

two varieties with illumination time was opposite. The mRNA abundance of ILR1-like 1 and

Rubisco activase in Maverick was significantly positively and negatively correlated with illumi-

nation time, respectively. Correlation of the mRNA abundance of PYL8 and MGDGS-3 in

Maverick and CUF101 with illumination time was same. The mRNA abundance of PYL8 was

significantly negatively correlated with illumination time. The mRNA abundance of MGDGS-

3 was significantly positively correlated with illumination time. (Table 5).

Correlation of the mRNA abundance of MGDGS-3 in Maverick and CUF101 with temper-

ature was opposite, the mRNA abundance of MGDGS-3in Maverick was significantly posi-

tively correlated with temperature. Correlation of the mRNA abundance of other three genes

in Maverick and CUF101 with temperature was same, their mRNA abundance was signifi-

cantly positively correlated with temperature (Table 6).

Thus, in Maverick, the correlation of the mRNA abundance of the PYL8 and Rubisco acti-

vase with illumination time and temperature followed the opposite trends, whereas that of the

mRNA abundance of the ILR1-like 1 and MGDGS-3with illumination time and temperature

Fig 9. mRNA abundance of four differentially expressed genes (DEGs) in Maverick and CUF101 varieties grown under 8h to 16h

daylength and artificial growth conditions. Significant difference in the mRNA content of DEGs at 8h,12h, and 16h of illumination in each

variety is marked with *. Significant difference in mRNA content between the two varieties is indicated with # (*, #, p<0.05; **, ##,p<0.01).

Error bars indicate standard deviation (SD).

https://doi.org/10.1371/journal.pone.0188964.g009
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was the same (Tables 5 and 6). In CUF101, the correlation of the mRNA abundance of

MGDGS-3 with illumination time and temperature was the opposite, but that of the ILR1-like

1,PYL8, and Rubisco activase was the same (Tables 5 and 6).

Discussion

At the whole-plant level, communication between various organs in a plant is involved in the

coordination of growth processes at different organizational levels. Thus, growth of individual

organs is regulated by long-distance communication from other organs[75]. FD is the overall

growth performance of the whole plant during special phases and environment conditions.

Leaf plays a key role in the growth of the whole plant through photosynthesis, respiration,

Fig 10. mRNA abundance of four differentially expressed genes (DEGs) in Maverick and CUF101 varieties grown under artificial

growth conditions at different temperatures (from 32˚C to 16˚C). Significant difference in mRNA content of DEGs between 16˚C, 24˚C

and 32˚C for each variety is marked with *. Significant difference in mRNA content between the two varieties is marked with # (*, #, p<0.05;

**, ##, p<0.01). Error bars indicate standard deviation (SD).

https://doi.org/10.1371/journal.pone.0188964.g010

Table 2. Correlation of the growth rate with daylength and temperature in Maverick and CUF101 varieties.

Maverick growth rate CUF101 growth rate

Pearson correlation Significance Pearson correlation Significance

Daylength 0.858** 0.007 0.593 0.080

Temperature 0.107 0.410 0.445 0.158

**represent significant correlation at 0.01 level.

https://doi.org/10.1371/journal.pone.0188964.t002
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transpiration, and other basic functions involved in plant growth, and changes in those func-

tions affect the growth of the whole alfalfa plant. Thus, the leaf plays an important role in alfalfa

FD. The comparison of the leaf area in different months between fall-dormant and non-dor-

mant alfalfa indicated that this parameter may be used as an important index of differences

between various alfalfa varieties in terms of FD.

In the present study, beside a few annotated DEGs similar to dormancy-regulation genes,

the GO and KEGG analysis revealed that ACDEGs play roles in basic biological processes and

pathways involved in the regulation of plant growth and development, such as in the response

to macro environmental factors (e.g., light, photoperiod, temperature), the photosynthesis and

respiration of leaves, and the regulation of phytohormones. Therefore, these genes are

expected to be involved in the regulation of FD.

Temperature and especially photoperiod are important environmental factors that regulate

FD[6]. In the present study, the growth of Maverick was induced by daylength, whereas FD of

Maverick was accompanied by the shortening of daylength. These findings confirm that pho-

toperiod is a key environmental factor regulating FD in alfalfa and thus corroborate previous

study[6]. Under artificial growth conditions, the expressions of the ILR1-like 1 and Rubisco

activase in Maverick and CUF101 were oppositely affected by illumination, and expression of

Table 3. Correlation between mRNA abundance in the leaves of Maverick and CUF101 varieties and daylength in 2011 and 2016.

Daylength

Maverick CUF101

2011 2012 2011 2012

Pearson

correlation

Significance Pearson

correlation

Significance Pearson

correlation

Significance Pearson

correlation

Significance

IAA-amino acid

hydrolase ILR1-like 1

0.975** 0.000 0.700* 0.040 0.232 0.308 -0.137 0.385

Abscisic acid

receptor PYL8

-0.664 0.052 -0.92** 0.001 -0.184 0.346 -0.035 0.47

MGDG synthase 3 0.610 0.073 0.318 0.244 0.012 0.49 0.054 0.454

Rubisco activase 0.294 0.261 0.438 0.163 0.579 0.086 0.604 0.075

IAA: indoleacetic acid; MGDG: monogalactosyldiacylglycerol.

*and **represent significant correlation at 0.05 and 0.01 level, respectively. IAA: indoleacetic acid; MGDG: monogalactosyldiacylglycerol.

https://doi.org/10.1371/journal.pone.0188964.t003

Table 4. Correlation between mRNA abundance in the leaves of Maverick and CUF101 varieties and temperature in 2011 and 2016.

Temperature

Maverick CUF101

2011 2012 2011 2012

Pearson

correlation

Significance Pearson

correlation

Significance Pearson

correlation

Significance Pearson

correlation

Significance

IAA-amino acid

hydrolase ILR1-like 1

0.491 0.131 0.627 0.066 0.545 0.103 0.599 0.078

Abscisic acid

receptor PYL8

-0.726* 0.032 -0.430 0.167 0.192 0.34 0.654 0.055

MGDG synthase 3 0.665 0.051 0.713* 0.036 0.506 0.123 0.714* 0.035

Rubisco activase 0.612 0.072 0.807* 0.014 0.899** 0.003 0.926** 0.0015

IAA: indoleacetic acid; MGDG: monogalactosyldiacylglycerol.

* and ** represent significant correlation at 0.05 and 0.01 level, respectively.IAA: indoleacetic acid; MGDG: monogalactosyldiacylglycerol.

https://doi.org/10.1371/journal.pone.0188964.t004
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MGDGS-3 in Maverick and CUF101 was oppositely affected by temperature. Comparison of

the correlations between mRNA abundance of the four genes and the two environmental fac-

tors (daylength and temperature) under natural and artificial growth conditions showed that

the expression of ILR1-like 1 is upregulated by daylength and temperature, whereas in

CUF101, it is mainly affected by temperature. The expression of the PYL8 in Maverick is

affected by daylength, and that of MGDGS-3 is affected by daylength and temperature in Mav-

erick or by daylength in CUF101. Temperature was the main factor affecting the levels of

Rubisco activase in the two cultivars. Therefore, these results suggest that the responses of

Maverick and CUF101 to changes of daylength and temperature are different.

Leaf is an important organ involved in phytohormone synthesis. Phytohormones synchro-

nize developmental processes by adjusting plant growth in response to intrinsic and environ-

mental cues [76, 77]. Thus, IAA and ABA play key roles in plant growth and development[78],

indole-3-pyruvate monooxygenase YUCCA3, methylesterase 17, and ILR1-like 1 in ACDEGs

participate in IAA synthesis and activation[33–36], and PYL8 and early responsive to dehydra-

tion 15 in ACDEGs are associated with the ABA signaling pathway[42, 79]. However, the pres-

ent findings suggest that downregulation of ILR1-like 1 transcription and upregulation of

PYL8 transcription were most likely the only factors involved in alfalfa FD in response to

shortened photoperiod and a drop in temperature.

Auxins, such as IAA, possess various functions including induction of cell) elongation and

cell division, which are important for plant growth and development[80]. ILR1-like 1 releases

IAA by hydrolyzing specific amino acid conjugates of the plant growth regulator IAA [34].

The GO analysis showed that ILR1-like 1 was involved in metabolic processes resulting in cell

Table 5. Correlation between mRNA abundance in the leaves of Maverick and CUF101 varieties and illumination time under artificial growth

conditions.

illumination time

Maverick CUF101

Pearson correlation Significance Pearson correlation Significance

IAA-amino acid hydrolase ILR1-like 1 0.812** 0.008 -0.984** 0

Abscisic acid receptor PYL8 -0.987** 0 -0.981** 0

MGDG synthase 3 0.767* 0.016 0.666* 0.05

Rubisco activase -0.756* 0.019 0.617 0.077

* and ** represent significant correlation at 0.05 and 0.01 level, respectively.

IAA: indoleacetic acid; MGDG: monogalactosyldiacylglycerol.

https://doi.org/10.1371/journal.pone.0188964.t005

Table 6. Correlation between mRNA abundance in the leaves of Maverick and CUF101 varieties and temperature under artificial growth

conditions.

Temperature

Maverick CUF101

Pearson correlation Significance Pearson correlation Significance

IAA-amino acid hydrolase ILR1-like 1 0.997** 0 0.771* 0.015

Abscisic acid receptor PYL8 0.886** 0.001 0.062 0.874

MGDG synthase 3 0.947** 0 -0.842** 0.004

Rubisco activase 0.971** 0 0.996** 0

* and ** represent significant correlation at 0.05 and 0.01 level, respectively.

IAA: indoleacetic acid; MGDG: monogalactosyldiacylglycerol.

https://doi.org/10.1371/journal.pone.0188964.t006
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growth(GO:0008152). Decreased expression of ILR1-like 1 in Maverick observed after reduc-

tion in daylength and drop in temperature as the summer transitioned into autumn indicates

that its expression was regulated by daylength and temperature. However, in CUF101, the

expression of ILR1-like 1 increased with shorter daylength in the autumn. Our previous study

showed that, compared with semi- and non-dormant alfalfa, the decrease in IAA content in

fall-dormant alfalfa was greater and more rapid in response to daylength shortening under

artificial growth conditions[14]. In addition, plant height decreased in the fall-dormant alfalfa

but remained constant in non-fall-dormant alfalfa from summer to autumn. Therefore, it is

speculated that the reduction of ILR1-like 1 participates in alfalfa FD; specifically, its decrease

leads to an increase in amino acid conjugates of IAA and a reduction of IAA levels with day-

length shortening. Biological activity of an IAA conjugate is opposite from the function of the

IAA itself[81]. A previous study showed that exogenous IAA-Ala treatment of tomato inhibits

IAA-induced shoot growth and root initiation[82], which explains the observed increase in

amino acid conjugates of IAA during IAA-inhibited plant growth.

ABA-mediated signaling plays a critical role in the responses of plants to environmental

stresses[83]. In the present study, PYL8 was involved in plant hormone signal transduction

(KO 04075). The expression of the PYL8 in Maverick was significantly negatively regulated by

daylength and it increased with shortening of daylength. Furthermore, our previous study

showed that, compared with semi- and non-dormant alfalfa, ABA content in fall-dormant

alfalfa increased more rapidly and by a greater amount in response to daylength shortening

under artificial growth conditions, reaching significantly higher levels compared to those in

non-dormant alfalfa when the daylength was 13h or less[14]. In addition, plant height of the

fall-dormant alfalfa decreased from summer to autumn, whereas that of the non-dormant

alfalfa was not reduced. Previous studies demonstrated that ABA is associated with bud dor-

mancy[84], inhibition of seed germination, and prevention of loss of seed dormancy[85, 86].

The PYL8, which is required for ABA-mediated responses (such as stomatal closure and ger-

mination inhibition), inhibits the activity of group-A protein phosphatases type 2C when acti-

vated by ABA, thus positively regulating the ABA signaling pathway[37–40]. Therefore, it is

speculated that increased levels of the PYL8 are involved in alfalfa FD by enhancing the ABA

signaling pathway.

Leaf photosynthesis plays a key role in plant growth. MGDG is the most abundant integral

lipid in the thylakoid membrane and the photosystem II (PSII) complex[87, 88], which main-

tains both the linear electron transport process and the photostability of the PSII apparatus

[89]. MGDGS-3was found to be involved in the glycolipid biosynthetic process(GO:0009247).

The final step of the MGDG biosynthesis is catalyzed by the MGDG synthase[90, 91]. The

mRNA abundance of MGDGS-3 in Maverick decreased with shorter illumination time and

temperature drop, reaching levels that were significantly lower than those in CUF101 in the

autumn; the plant height of Maverick was significantly lower than that of CUF101.Similarly,

MGDG-deficient transgenic tobacco plant M18 exhibits retarded growth[89]. Therefore,

reduction of MGDGS-3 levels is involved in alfalfa FD. Given that decreased MGDG content

in Arabidopsis thaliana and tobacco have been associated with reduction in MGDG synthase

levels[89, 92], the same is expected to occur in alfalfa. In addition, reduced MGDG levels

reduce thylakoid membrane and the rate of photosynthesis[92, 93]. Therefore, it is suggested

that the decrease in MGDG synthase participates in alfalfa FD by reducing leaf photosynthesis

in response to temperature drop.

Rubisco(ribulose-1,5-bisphosphate carboxylase/oxygenase) is a key protein in plants.

The change in its expression affects the photosynthesis and plant growth by altering the avail-

ability of N [94]. Rubisco can be activated by rubisco activase[95]. Previous studies demon-

strated that the decrease in the expression of Rubisco activase may lead to the reduction of the
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photosynthetic rate and plant growth due to reduced activity of Rubisco. In addition, moder-

ately high temperature was found to inhibit Rubisco activase-mediated activation of Rubisco

[96]. Therefore, the reduction of Rubisco activase, which trigged by the fall in temperature, sig-

nificantly reduces the activation of Rubisco or the light-saturated photosynthetic rate[97–99].

Considering that enhanced thermostability of Rubisco activase in Arabidopsis has been shown

to improve CO2 assimilation rates and plant growth under heat stress[100, 101] and as our

results showed that the expression of Rubisco activase was positively regulated by temperature,

it was expected that the change in the expression of Rubisco activase would affect alfalfa

growth. However, the changes in mRNA abundance of rubisco activase followed the same

trend in Maverick and CUF101 and its abundance showed no difference between the two vari-

eties, suggesting that rubisco activase is not involved in FD of alfalfa.

Conclusion

In the present study, 44 important candidate genes likely associated with alfalfa growth and

FD were identified. These genes were mainly enriched in the following categories: transduc-

tion of light and photoperiod signals and leaf-derived signals (carbohydrates and phytohor-

mones); the process of cell cycle, division, and growth; transcription factors, ubiquitination

proteins; receptor kinases; and un-annotated genes. The present work demonstrates that the

reduction of ILR1-like 1 and the increase of PYL8 and MGDGS-3 promote alfalfa FD in a

response to changes in photoperiod or temperature.
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75. Beemster GTS, Fiorani F, Inzé D. Cell cycle: the key to plant growth control? Trends in Plant Science.

2003; 8(4):154–8. http://dx.doi.org/10.1016/S1360-1385(03)00046-3. https://doi.org/10.1016/S1360-

1385(03)00046-3 PMID: 12711226

76. Williams M. Introduction to phytohormones. The Plant Cell. 2010; 22:1–9. https://doi.org/10.1105/tpc.

109.220110

77. Wolters H, Jürgens G. Survival of the flexible: hormonal growth control and adaptation in plant develop-

ment. Nature Reviews Genetics. 2009; 10(5):305–17. https://doi.org/10.1038/nrg2558 PMID: 19360022

78. Gray WM. Hormonal Regulation of Plant Growth and Development. Plos Biology. 2004; 2(9):E311.

https://doi.org/10.1371/journal.pbio.0020311 PMID: 15367944

79. Muschietti J, McCormick S. Abscisic acid (ABA) receptors: light at the end of the tunnel2010.

80. Zhao Y. Auxin Biosynthesis and Its Role in Plant Development. Annual Review of Plant Biology. 2010;

61(1):49–64. https://doi.org/10.1146/annurev-arplant-042809-112308 PMID: 20192736.

81. Staswick P. Plant hormone conjugation: A signal decision. Plant Signal Behav. 2009; 4(8):757. https://

doi.org/10.1104/pp.109.138529 PMID: 19820345

82. Magnus V, Hangarter RP, Good NE. Interaction of free indole-3-acetic acid and its amino acid conju-

gates in tomato hypocotyl cultures. Journal of Plant Growth Regulation. 1992; 11(2):67–75.

83. Sultan SE. Plant developmental responses to the environment: eco-devo insights. Current Opinion in

Plant Biology. 2010; 13(1):96–101. http://dx.doi.org/10.1016/j.pbi.2009.09.021. PMID: 19857987

84. Rinne P, Saarelainen A, Junttila O. Growth cessation and bud dormancy in relation to ABA level in

seedlings and coppice shoots of Betula pubescens as affected by a short photoperiod, water stress

and chilling. Physiologia Plantarum. 1994; 90(3):451–8. https://doi.org/10.1111/j.1399-3054.1994.

tb08801.x

85. Millar AA, Jacobsen JV, Ross JJ, Helliwell CA, Poole AT, Scofield G, et al. Seed dormancy and ABA

metabolism in Arabidopsis and barley: the role of ABA 80-hydroxylase. The Plant Journal. 2006; 45

(6):942–54. https://doi.org/10.1111/j.1365-313X.2006.02659.x PMID: 16507085

86. Rodrı́guez-Gacio MdC, Matilla-Vázquez MA, Matilla AJ. Seed dormancy and ABA signaling: the

breakthrough goes on. Plant Signal Behav. 2009; 4(11):1035–49. https://doi.org/10.4161/psb.4.11.

9902 PMID: 19875942.

87. Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W. Cyanobacterial photosystem II at

2.9-A resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol. Nature

Structural & Molecular Biology. 2009; 16(3):334. https://doi.org/10.1038/nsmb.1559 PMID: 19219048

88. Umena Y, Kawakami K, Shen JR, Kamiya N. Crystal structure of oxygen-evolving photosystem II at a

resolution of 1.9[thinsp]A. Nature. 2011; 473(7345):55. https://doi.org/10.1038/nature09913 PMID:

21499260

89. Wu W, Ping W, Wu H, Li M, Gu D, Xu Y. Monogalactosyldiacylglycerol deficiency in tobacco inhibits

the cytochrome b6f-mediated intersystem electron transport process and affects the photostability of

the photosystem II apparatus. Biochimica et biophysica acta. 2013; 1827(6):709–22. https://doi.org/

10.1016/j.bbabio.2013.02.013 PMID: 23466336

90. Shimojima M, Ohta H, Iwamatsu A, Masuda T, Shioi Y, Takamiya K. Cloning of the gene for monoga-

lactosyldiacylglycerol synthase and its evolutionary origin. Proceedings of the National Academy of

Sciences. 1997; 94(1):333–7.
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