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Abstract: Background: Factors related to the wellness of taxi drivers are important for identifying
high-risk drivers based on human factors. The purpose of this study is to predict high-risk taxi drivers
based on a deep learning method by identifying the wellness of a driver, which reflects the personal
characteristics of the driver. Methods: In-depth interviews with taxi drivers are conducted to collect
wellness data. The priorities of factors affecting the severity of accidents are derived through a random
forest model. In addition, based on the derived priority of variables, various combinations of inputs
are set as scenarios and optimal artificial neural network models are derived for each scenario. Finally,
the model with the best performance for predicting high-risk taxi drivers is selected based on three
criteria. Results: A model with variables up to the 16th priority as inputs is selected as the best model;
this has a classification accuracy of 86% and an F1-score of 0.77. Conclusions: The wellness-based
model for predicting high-risk taxi drivers presented in this study can be used for developing a taxi
driver management system. In addition, it is expected to be useful when establishing customized
traffic safety improvement measures for commercial vehicle drivers.

Keywords: artificial neural network; deep learning; traffic safety; taxi driver wellness; random
forest method

1. Introduction

The number of deaths from traffic accidents is decreasing. However, according to the data on
the reduction rate of deaths in traffic accidents by vehicle type in the last 10 years, the reduction
rate of noncommercial vehicles was 39%, while that of commercial vehicles was 31% [1]. Efforts to
improve the risk of accidents in business vehicles are essential for zero traffic accident deaths [2,3].
According to the dataset of commercial vehicles’ traffic accidents in 2019 in Korea, taxis were involved
in 40.1% of commercial vehicle accidents. In addition, among fatalities involving commercial vehicles,
25% involved a taxi; this demonstrates the need for social countermeasures to reduce traffic accidents [3].
In a review of the existing literature related to the traffic safety of commercial vehicles, it was found
that a driver’s working environment, personality, fatigue, and mental and physical health are the
main factors influencing traffic safety [4,5]. In particular, taxi drivers have high levels of fatigue
and stress because they work for long shifts, and these conditions affect their traffic safety records [6–8].
More specifically, these poor working environments and mental conditions can result in drowsy driving
and dangerous driving, which lead to traffic accidents [9–12].

Although there have been various efforts to improve the quality of life and working environments
of taxi drivers, continuous management plans for taxi drivers to reduce accidents are still insufficient.
As human factors account for about 94% of the major reasons of traffic accidents, it is essential to
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understand and manage drivers’ intrinsic factors to reduce traffic accidents [13]. Therefore, in order
to prevent traffic accidents related to taxis, it is necessary to identify high-risk taxi drivers based on
human factors. In this study, the concept of wellness is applied to investigate the human factors of taxi
drivers and present a methodology reflecting these factors to prevent traffic accidents. Wellness is
related to well-being and health, and in a modern society, the meaning has been expanded to include
happiness [14,15]. Wellness implies a healthy state physically, mentally, and socially. In this study, it is
defined as a concept reflecting the working environment, living environment, and health characteristics
of taxi drivers. Factors related to the wellness of taxi drivers are important for identifying high-risk
drivers based on human factors, and they are also essential for preparing customized traffic safety
measures that reflect individual characteristics.

The purpose of this study is to predict high-risk taxi drivers based on a deep learning method using
wellness data. This study consists of Stage 0 through Stage 3. Stage 0 is the data construction phase.
In this phase, in-depth interviews are conducted to identify the wellness of commercial vehicle drivers,
and this wellness data is matched with an accident dataset collected from the commercial vehicle driver
management system operated by the Korea Transport Safety Authority (KOTSA). In Stage 1, the priority
of factors affecting the severity of accidents is defined, and the random forest analysis is applied as
the methodology. Stage 2 involves constructing an optimized model based on an artificial neural
network (ANN), which classifies the severity level of an accident. In this phase, by using the priority
of variables derived from Stage 1, combinations of input data are set as scenarios, and optimized
classifiers for each scenario are derived. Stage 3 aims to choose an optimized model for predicting
high-risk taxi drivers. In this phase, the selection criteria for the optimized model are established
and applied. This derived model is expected to be useful in determining high-risk taxi drivers. With the
model, it should be possible to support customized consulting systems for commercial vehicle drivers
and manage wellness factors that are highly related to accidents. This study can be used to induce
active improvements in traffic safety through drivers’ self-diagnosis and feedback.

The rest of this paper is organized as follows. Section 2 presents the analysis methodology
and mentions the overall research flow, data preparation, and principles of model construction of the
random forest and ANN, which are the deep learning techniques used in this study. In Section 3,
the analysis results are presented in three steps; the first step derives the priority of factors affecting
accident severity based on the random forest model, the second derives a classifier through ANN
optimization, and the third presents the optimized model selection criteria and the best model for
predicting a high-risk taxi driver. Finally, Section 4 discusses the conclusions and future research
directions based on the identified limitations of this study.

2. Methodology

In this study, a deep learning method is applied to predict high-risk taxi drivers through driver
wellness evaluation, and the process of the study is presented in Figure 1. The study consists of
multiple stages. In Stage 0, wellness items are collected through an in-depth interview; this information
is matched with the commercial vehicle driver’s accident data. In Stage 1, the priority of factors
affecting the severity of accidents is derived, and a random forest model is applied as the analysis
model. In Stage 2, different priorities of factors are applied to create scenarios for the ANN classifiers,
and the optimal ANN classifiers that predict the severity of accidents are derived for each scenario.
Finally, in Stage 3, the best model for predicting high-risk taxi drivers is selected by considering the
classification accuracy and the number of input data.
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traffic accidents from the third quarter of 2018 to the second quarter of 2019. Drivers belonging to taxi 
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Figure 1. Overall research framework.

2.1. Data Preparation

As of July 2020, there were 254,490 taxi drivers in Korea, of which 89,650, or 35%, belonged to taxi
companies. Moreover, private taxi drivers account for 65% of taxi drivers, and ride-hailing services
such as Uber do not operate in Korea. In Stage 0, to identify the wellness of taxi drivers, in-depth
interviews were conducted by a professional investigator. In the in-depth interviews, professional
investigators were matched one-to-one to increase the reliability of the data. The subjects of the in-depth
interviews were drivers belonging to taxi companies; these drivers caused serious traffic accidents from
the third quarter of 2018 to the second quarter of 2019. Drivers belonging to taxi companies (rather than
individual taxi drivers) were selected as the subject of the survey because corporate taxi companies in
which serious accidents occurred are obligated to undergo safety inspections and have high access to
investigations. Interviews were conducted with 993 drivers at 89 taxi companies from September to
October 2019. The survey items consist of 246 variables, including wellness, the characteristics of the
driver, and company data. The 20 wellness variables related to traffic safety were selected based on the
literature review presented in Table 1.

The investigation items consist of 20 categories related to wellness and traffic safety, which were
collected through the interviews, and one accident characteristic factor, which was collected through
the commercial vehicle driver management system. The items and scale of the survey are presented
in Table 2. The wellness categories include a worker’s working environment (level of satisfaction,
working hours per week), living environment (level of satisfaction), and health characteristics (sleeping
time, level of stress). If the survey scale is 5 points, it represents the level of the question: ‘Strongly
disagree’, ‘Disagree’, ‘Neutral’, ‘Agree’, and ‘Strongly agree.’ In order to examine the validity of the
wellness data, the presence of missing values and the same response rate are identified. As a result, it is
found that there are no missing values in all 20 items, and all items are valid with the same response
rate within 90%. Furthermore, based on the correlation analysis with 20 variables and the number of
accidents, the correlation between accidents and all variables was statistically significant.
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Table 1. Review of existing literature for selection of wellness data related to traffic safety.

Literatures Considered Factors

Hagl and Kouabenan [16]
Staubach et al. [17] Needs for advanced driver assistance system (ADAS)

Li et al. [18] Working hours/Time spent on personal affairs/Fatigue
level

Meng et al. [15] Fatigue level

Wang et al. [9] Level of job satisfaction

Wang et al. [9]
Ba et al. [19] Frequency of safety education by the company

Vahedi et al. [20] Working hours per week/Level of living
satisfaction/Age

Ishimaru et al. [21] Drinking frequency

Bulduk et al. [22] Usual fatigue level/Age

Lim et al. [23]
Williamson et al. [24] Amount of sleeping time

Burgel et al. [6]
Degree of health management/Satisfaction level with

the wage system/Comfort level of internal
environment of the vehicle

Di Milla et al. [25] Physical health condition/Mental health
condition/Waiting time for passengers

Raanaas et al. [7]
Mental stress by passengers/Degree of physical

burden of taxi driving/Average frequency of nights
worked per week

Chen et al. [8] Job stress level/Level of job satisfaction

Table 2. The description of variables.

Division Investigation Item Survey Scale

In-depth interview

Mental stress by passengers 5 points
Drinking frequency 6 points

Degree of health management 5 points
Physical health condition 5 points
Mental health condition 5 points

Usual fatigue level 5 points
Amount of sleeping time narrative
Working hours per week narrative

Satisfaction level with the wage system 5 points
Job stress level 5 points

Needs for advanced driver assistance system (ADAS) 5 points
Waiting time for passengers 5 points

Level of job satisfaction 5 points
Comfort level of internal environment of the vehicle 5 points

Degree of physical burden of taxi driving 5 points
Average frequency of nights worked per week narrative

Time spent on personal affairs 5 points
Frequency of safety education by the company 5 points

Level of living satisfaction 5 points
Age narrative

Driver management
system

Risk level of accident severity
(High-risk, Medium-risk, Low-risk) 3 categories
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In order to analyze the accident characteristics of the interviewed taxi drivers, we used the dataset
of the number of casualties per traffic accident from August 2016 to July 2019; this was obtained from
the commercial vehicle driver management system. Accident data were also considered only when the
taxi driver was the perpetrator. Among the 993 interviewed drivers, accident data were collected for
781 drivers. From the collected data, the accident severity is classified into three levels based on the
severity of the accident, and this is defined as the risk level of accident severity. High-risk (class 3) refers
to a driver who has experienced more than a serious injury, medium-risk (class 2) refers to a driver who
has experienced a minor injury, and low-risk (class 1) refers to a driver with no accident experience.
The numbers of drivers for the different risk levels of accident severity are 66, 164, and 551, respectively.

2.2. Random Forest Model

The random forest model is an ensemble machine learning technique, and it uses an advanced
decision tree analysis methodology to overcome the drawbacks of decision tree analysis [26]. In the
random forest model, every tree is created in the learning process based on bootstrap samples that are
randomly selected with replacements. The number of trees is set by the analyst in advance, and the
average values of the results for each tree are derived as the final outputs, based on the results generated
in each tree. Random forest models are a technique that can build a model with excellent predictive
performance. Compared to a decision tree, which has a high probability of overfitting, a random
forest has the advantage of supplementing the limitations of overfitting from the decision tree [26].
The process of random forest learning using bootstrap sampling proceeds according to the following
steps: (i) Generate the trees and training datasets from the specified training dataset by sampling the
bootstrap, (ii) train a basic tree sorter, (iii) combine the basic sorter (tree) into one sorter (random forest),
and (iv) derive the final prediction results by the majority voting rule. Observed values in the random
forest that are not included in the learning cycle of individual trees are considered out-of-bagging
(OOB) and are used to validate the model. OOB is used as the category to estimate the predicted
odds and to classify the variables that cause anomalies. The number of times that OOB is chosen in
all random forest decision trees varies for each tree, and the expected values are different for each
tree. The probability of predicting the OOB observation correctly for each observation in the original
category, which belongs to category k, is calculated using Equation (1).

p̂k(xi) =

∑
j ∈ OOBi − I

[
ŷ(xi, t j) = k

]
|OOBi|

, for k (1)

Here, i is an indicator function that is set as 1 when the value in the parentheses is true and set to
0 when the value is false. Additionally, ŷ(xi, t j) represents the predicted category and tj means the jth
decision tree in the generated decision tree (t).

OOBi is a group of decision trees that is not used in the learning process, by bagging as an
observed attribute. If a set of decision trees does not include xi, the ratio of the number of decision
trees predicting xi to the k category is p̂k(xi) [27]. The verification method using OOB is as accurate as
the method through new verification data. It indicates that there is no need to configure a separate test
set when measuring OOB [26,27]. This study uses the mean decrease Gini (MDG) as an indicator to
measure the importance of explanatory variables in random forests. The MDG is the average reduction
in the GI index for a given explanatory variable in all trees. If the number of classification categories (i)
is j, that is, i = 1, 2, 3, · · · , J, the GI index is calculated as shown in Equation (2).

GI =
∑J

i=1
fi(1− fi) = 1−

∑J

i=1
f 2
i (2)

Here, fi is the ratio of classifying i to the i category correctly, and 1 − fi is the ratio of classifying
i to another category. If the model perfectly classifies every category, fi is 1 and the value of the GI
index becomes 0. A higher MDG value for a particular variable indicates that this value is suitable for
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correct classification of a certain category, meaning that it decreases the degree of impurity. The MDG
value varies from 0 to 100. When an MDG value of one variable is 0, the variable will not be used for
classification. However, if the MDG is closer to 100, the observation can be completely classified by
the variable.

2.3. Artificial Neural Networks (ANN)

An ANN is a data processing system resulting from the mathematical modeling of the learning
process inspired by humans. It consists of an input layer that accepts input data, a hidden layer that
processes input values and produces the result, and an output layer that calculates an output value [28].
Each layer is composed of nodes, and results are derived from the linkage between the nodes and the
action of the transfer function.

The pattern recognition network applied in this study is a feed-forward network, which can be
trained to classify inputs according to the classes of outputs. The feed-forward network is a method in
which the signal from the input layer is forwarded to the hidden layer and the signal from the hidden
layer is forwarded to the output layer. The hyperparameters that need to be optimized in neural
networks are the number of hidden layers and neurons, as well as the transfer function that calculates
the output value of the neurons. The descriptions of each hyperparameter are shown in Table 3.

Table 3. Hyperparameters for neural network [29,30].

Hyperparameter Description

Transfer function Softmax

Maps the nonnormalized
output to a probability

distribution over
predicted output classes

h(x) = exp (x)∑
exp (x)

Number of hidden layers Number of hidden layers

Number of neurons Number of neurons in the hidden layers

For neural network optimization, some studies have applied the Bayesian optimization method,
which effectively solves the global optimization problem [31–33]. Bayesian optimization is a
methodology for tuning hyperparameters, finding the value of x that maximizes the objective function
f(x). This is defined as shown in Equation (3) [34]. This study defines the correct classification rate
(CCR) of the classifier as the objective function and derives a hyperparameter x that maximizes CCR.

x∗ = argmaxx f (x) (3)

where

• x*: Optimized hyperparameters
• x: Hyperparameter
• f (x): Correct classification rate (CCR) of the models.

Bayesian optimization constructs a probabilistic model for f(x). This process is outlined as follows:
(i) With the assumption that f(x) follows the Gaussian process (GP) prior, learn the model by using the
given data D(=

{
(x1, f (x1)), (x2, f (x2)), · · · , (xn, f (xn))

}
), (ii) calculate the acquisition function for

data not included in D, and (iii) include the data point (xn, f (xn)) in D that has the largest acquisition
function value. The acquisition function is a measure used to find the global optimum, which is the
hyperparameter affecting the maximum classification accuracy. In this study, the expected improvement
(EI) function is selected as the acquisition function. EI minimizes the error of the predicted f (x), and it
is defined as shown in Equation (4) [31,35–37]. For calculating the mean and standard deviations of
predictions from the model, the Gaussian process (GP) is used. The GP is suitable for the Bayesian
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optimization algorithm because it facilitates incremental learning and variance calculation for predicted
values [38–40].

z =
f̂ (x)max−µ( f̂ (x))
σ( f̂ (x))

EI(x) = σ(zG(z) + g(z))
(4)

• f̂ (x)max: Maximum of CCR predicted for hyperparameters
• µ( f̂ (x)): Average of CCR predicted for hyperparameters
• σ( f̂ (x)): Standard deviation of CCR predicted for hyperparameters
• (G)z: Normal cumulative distribution function
• (g)z: Probability density function for z.

3. Results and Discussion

3.1. Determination of the Priority of Factors Related to Accident Severity Based on a Random Forest (Stage 1)

The purpose of Stage 1 is to derive the priority of factors affecting the severity of accidents by
using the random forest method. To do this, the risk level of accident severity is defined as the target
variable and 20 wellness items are set as input variables. For training the random forest model, the total
number of trees is optimized to 500, and it is derived as an optimization phase that builds trees with
two randomly chosen variables when configuring each node. In the optimized model, the OOB error is
shown as 30.94%. However, classification accuracy is not considered in this study, because the purpose
of the random forest analysis is to derive the priority of factors affecting the severity of accidents.
The importance of factors that affect the classification of a taxi driver’s accident severity risk level
is evaluated based on the MDG value, which is the evaluation index for the importance of an input
variable. The evaluation results are presented in Figure 2. The MDG of the driver’s age is shown
as 22.25; this is determined to be the most effective factor in classifying the risk level of accident
severity. In addition, the most important factors of classification are derived in the order of the average
living satisfaction, level of job satisfaction, amount of sleeping time, and working hours per week.
Combinations of five to twenty variables with the highest priority of factors, as derived in Stage 1,
are used as the inputs of the ANN model in Stage 2.
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3.2. Derivation of the Risk Level of Accident Severity Classification Based on the ANN (Stage 2)

Stage 2 involves deriving an optimized ANN model that classifies the risk level of accident
severity. In this phase, the combinations of inputs with the highest priority, as derived from Stage
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1, are developed. Sixteen combinations of inputs are set as scenarios. For example, in the case of a
scenario that uses 10 variables, the 1st to 10th variables derived from Stage 1 are used as input variables.
In each scenario, optimized ANN classifiers are derived. The ratio of training data to test data for the
ANN model is defined as 7:3.

The classification accuracies and F1-scores for each scenario are shown in Table 4. The F1-score is
a harmonized average of precision and recall that can accurately evaluate the model’s performance
when the data label is imbalanced. The larger the F1-score, the better the model can be determined,
and the calculation formula is presented in Equation (5) [41,42]. From Table 3, it can be seen that the
average of the overall classification accuracy for all scenarios is 81%. Additionally, the averages of
classification accuracies by risk level of accident severity are 94%, 52%, and 29%, corresponding to
Classes 1, 2, and 3, respectively. In addition, the overall classification accuracy of the scenarios in
which all 20 variables are used is found to be 87%, which is higher than other scenarios. In terms of the
F1-score, the overall mean is found as 0.59, and the F1-score of the scenario in which 18 variables are
used is 0.80, which is the highest score among the scenarios. As the scenarios with the best performance
are different according to the performance criteria, it is found that criteria for selecting the best scenario
are necessary.

F1-score = 2×
Precision×Recall
Precision + Recall

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN

where

• TP: True positive
• FP: False positive
• FN: False negative.

Table 4. Correct classification rate and F1-score by scenarios.

# of Input
Variables

Priority of
Factors by

Stage 1

Class

F1-Score1
(Low-Risk)

2
(Medium-Risk)

3
(High-Risk) Total

5 1st–5th 96% 38% 0% 76% 0.47
6 1st–6th 100% 0% 0% 71% 0.28
7 1st–7th 90% 37% 53% 76% 0.61
8 1st–8th 96% 29% 32% 77% 0.58
9 1st–9th 97% 47% 11% 79% 0.61
10 1st–10th 95% 41% 0% 76% 0.62
11 1st–11th 97% 50% 53% 83% 0.71
12 1st–12th 92% 40% 37% 76% 0.6
13 1st–13th 92% 80% 47% 86% 0.77
14 1st–14th 93% 72% 42% 85% 0.75
15 1st–15th 92% 49% 85% 82% 0.75
16 1st–16th 90% 83% 63% 86% 0.77
17 1st–17th 89% 88% 0% 82% 0.55
18 1st–18th 92% 78% 65% 86% 0.80
19 1st–19th 96% 61% 0% 81% 0.51
20 1st–20th 91% 90% 45% 87% 0.79

Average 94% 52% 29% 81% 0.59
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3.3. Selecting the Best Model for Predicting High-Risk Taxi Drivers (Stage 3)

From Stage 2, it is confirmed that the performances of the ANN model in each scenario are different.
Therefore, in Stage 3, three criteria are designed to select the best model, as follows. Criterion 1 is based
on the F1-score, and the 75th percentile value of 0.77 is set as the threshold for satisfying this criterion.
Through criterion 1, a model considering the prediction performances of all classes can be determined.
However, as the F1-score of the model is highly influenced by the classification accuracy of Class 1
(low-risk) with a large number of samples, criterion 1 is limited in that it does not accurately reflect the
classification accuracy of Classes 2 (medium-risk) and 3 (high-risk). In order to address the limitation
of criterion 1, the classification accuracies of the three classes are checked as the second criterion.
In criterion 2, 53% is defined as the threshold, which is the 75th percentile value of the classification
accuracy for Class 3, which shows the lowest average accuracy value. If the classification accuracies
of each class are 53% or more, criterion 2 is satisfied. Finally, criterion 3 determines whether the
model can show a similar performance with the minimum dataset. In this study, to expand and easily
use the classification results in the future, it is expected that a model working with a minimal data
collection would be practical. Accordingly, in criterion 3, models satisfying criteria 1 and 2 show
similar performance. When the performances of the models are similar, the model with the smaller
number of input variables is determined as the better model. A summary of these three criteria is
shown below, and the models that satisfy these criteria are shown in Figure 3.

Criterion (1) The F1-score is 0.77 or higher.
Criterion (2) The classification accuracies of each class are 53% or higher.
Criterion (3) Scenarios that satisfy criteria 1 and 2, with fewer input variables.
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As a result of selecting the best model according to the three criteria mentioned above, the model
with 16 input variables is selected as the best model. Figure 3 shows the structure of the optimized
model with 16 variables. Among the hyperparameters of the model, softmax is chosen as the transfer
function. The number of hidden layers of the optimized model is found to be three, and the numbers
of neurons per hidden layer are 50, 85, and 23, respectively. The F1-score of the model is 0.77, and the
overall classification accuracy is 86%. In addition, the classification accuracies of each class are 90%,
83%, and 63%, respectively, showing higher performance than other models.
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4. Discussion

Effective traffic accident prevention is possible when taxi drivers’ working environment, life
patterns, and active management of health characteristics, and the degree of interest in taxi companies’
driver management, are improved. The analysis results of this study will be used as basic data to
improve the effect of preventing traffic accidents in commercial vehicles. For example, the traffic safety
manager of a taxi company may investigate 16 items derived from the analysis results of a taxi driver’s
traffic-safety survey. It is possible to perform customized traffic safety consulting for taxi drivers using
the factors derived from the best model. Figure 4 illustrates an example of a traffic safety consulting
diagnosis result for taxi drivers. The driver presented in the example was diagnosed as a high-risk
driver, and the working hours per week were higher than the average. In this case, ‘confirmation of
appropriate working hours’ as a management plan can be presented. With the high-risk taxi driver
prediction model proposed in this study, it is also possible to provide customized diagnosis results
and establish a transportation safety consulting system. Such a system will help improve life patterns
and the working environment by providing regular transportation safety consulting and diagnosis
charts. Specific safety and health improvement plans can be prepared for each taxi company to reduce
the number of high-risk taxi drivers. Furthermore, it can be used as basic data for establishing an
evaluation and compensation system to encourage safe driving.
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taxi drivers.

5. Conclusions

Taxis account for the largest share at 40.1% of the traffic accidents in commercial vehicles. Moreover,
the reduction rate of deaths in taxi accidents was low compared to other commercial vehicles. Therefore,
efforts should be made to improve the traffic safety of taxis by preparing effective measures. Many taxi
drivers are exposed to overwork due to inadequate working environments and long working hours.
Therefore, a traffic safety management system for taxis based on underlying human factors is required.
However, existing studies investigating the relationship between accidents and drivers have focused on
physical factors and demographic characteristics, such as accident sites and vehicle factors. Few studies
have looked into intrinsic aspects of the drivers.

This study develops a risk level of accident severity classifiers to predict high-risk taxi drivers
based on a deep learning method with wellness data. The study is broken into several stages. In Stage
0, wellness data are collected, including information related to drivers’ working environments,
living environments, and health characteristics, through in-depth interviews conducted with 993 taxi
drivers. In addition, high-risk drivers are classified based on the severity of the accidents they
experienced, which is derived from the accident dataset of the drivers collected from a driver
management system. High-risk drivers were classified based on the severity of the accidents they
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experienced. In Stage 1, a random forest analysis is used to identify the priorities of factors affecting the
risk level of accident severity that taxi drivers experienced. As a result, a driver’s age, living satisfaction,
level of job satisfaction, amount of sleeping time, and working hours per week are identified as the
top five variables that have the greatest influence on the risk level of accident severity. In Stage 2,
optimized ANN classifiers are derived to predict the risk level of accident severity for 16 scenarios
using the priority of variables derived in Stage 1. Finally, in Stage 3, the best model for predicting
high-risk taxi drivers is selected based on three criteria considering the classification accuracy, F1-score,
and number of input variables. As a result, the scenario with input variables up to the 16th priority
is selected as the best model; this showed a classification accuracy of 86% and an F1-score of 0.77.
With the optimal model derived in this study, high-risk taxi drivers can be identified. Based on these
results, it is expected that traffic safety measures can be established to reflect the wellness of individual
drivers, which can be used to manage high-risk drivers.

In order to increase the reliability of the high-risk taxi driver classifier developed in this study,
further studies should be undertaken in the future. First, this study identifies 20 items related to
the wellness of taxi drivers through an interview, but it is necessary to consider more variables that
can represent wellness, such as the job-related affective well-being scale (JAWS), physical symptoms
inventory (PSI), and so on. In the case of health-related variables, the reliability of data can be improved
through objective data collection, such as data from medical institutions. In addition, while this study
predicts the risk level of accident severity, it is also necessary to consider other variables related to traffic
safety, such as the number of accidents and dangerous driving behavior. Additionally, it is necessary
to consider the driving distance and the number of working days as exposure to traffic accidents.
Second, it is necessary to secure the reliability of the prediction model by collecting additional data.
In order to increase the accuracy of the collected data, this study applies an interview method. However,
face-to-face interviews take a lot of time. Therefore, a way to collect more data while increasing the
accuracy of the response is necessary in the future. Furthermore, it is necessary to predict high-risk taxi
drivers with consideration for the types of taxi drivers by expanding the survey groups to individual
taxi drivers. Finally, we may be able to increase the reliability of the model by considering various
deep learning methods, such as k-fold validation.

This study derives classifiers for predicting high-risk taxi drivers based on the driver’s wellness,
which goes beyond the physical factors of traffic accidents. It is expected that the results of this study
can be used to prepare plans for changing the paradigm of taxi traffic safety measures based on
wellness. Additionally, it is also expected that these results can be used as basic data for establishing
an effective traffic safety policy.
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