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In functionalmagnetic resonance imaging (fMRI) studies using spatial independent component analysis (sICA)method, amodel of
“latent variables” is often employed, which is based on the assumption that fMRI data are linearmixtures of statistically independent
signals. However, actual fMRI signals are nonlinear and do not automaticallymeet with the requirement of sICA. To provide a better
solution to this problem, we proposed a novel approach termed instantaneous power based fMRI (ip-fMRI) for regularization of
fMRI data. Given that the instantaneous power of fMRI signals is a scalar value, it should be a linear mixture that naturally satisfies
the “latent variables” model. Based on our simulated data, the curves of accuracy and resulting receiver-operating characteristic
curves indicate that the proposed approach is superior to the traditional fMRI in terms of accuracy and specificity by using sICA.
Experimental results from human subjects have shown that spatial components of a handmovement task-induced activation reveal
a brain networkmore specific tomotor function by ip-fMRI than that by the traditional fMRI.We conclude that ICAdecomposition
of ip-fMRI may be used to localize energy signal changes in the brain and may have a potential to be applied to detection of brain
activity.

1. Introduction

Independent component analysis (ICA) is a data-driven
approach that uses higher-order statistical moments to pro-
vide solutions to blind-source separation problems [1]. This
technique has been shown to be capable of partitioning vari-
ous physiological and physical signals in functional magnetic
resonance imaging (fMRI) studies of brain activation [2–5].
There are primarily two types of ICA methods: (i) temporal
ICA (tICA), which is used to detect specific changes in the
time series of fMRI signals from brain regions of interest
(ROIs) [6], and (ii) spatial ICA (sICA), which is often used
to localize brain activity changes and has, so far, been the
dominant ICA method used in fMRI applications [7]. Here,
we focus only on the sICA method for fMRI data analysis.

In fMRI data, blood oxygenation level-dependent
(BOLD) signals represent brain activity changes and can
be expressed by fluctuations of 𝑇∗

2
signals [8]. The BOLD

signal is a complex function of neural activity, oxygen

metabolism, cerebral blood volume, cerebral blood flow,
and other physiological parameters. A basic assumption
of sICA for fMRI data analysis is that the observed fMRI
signals are a linear sum of various components separated at
each voxel [9]. However, The dynamics underlying neural
activity and hemodynamic physiology are believed to be
nonlinear [10, 11], and they do not automatically satisfy the
commonly used latent variables model (see below). Although
there are always computational solutions of sICA for fMRI
data, they are nonunique [12]. Hence, in order to use sICA
for localization of brain activity changes, the problem of
converting nonlinear signals to linear ones needs to be
solved.

Although unique nonlinear ICA has been proposed in
previous studies [13] and there are different approaches for
regularizing ICA solutions [12, 14], so far these methods
have rarely been applied to fMRI studies. For example, the
methods for transforming postnonlinear mixtures in ICA to
invertible linear mixtures have been established [15, 16]. In
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addition, convolutive postnonlinear mixtures can be treated
in the samemanner as certain postnonlinear ones, which can
then be transformed to linear mixtures [12]. A fundamental
difficulty of the nonlinear ICA problem-solving is that its
solutions are nonunique if there is no suitable regularization.
More generally, a basic method for solving nonlinear ICA
problems is to transform nonlinear variables or measure-
ments into linear mixtures such that nonlinear ICA problems
can be reduced to traditional linear ICA problems.

In the present study, we propose using instantaneous
power as a new regularization approach in ICA for trans-
forming nonlinear fMRI signals to linear forms in order to
automatically satisfy the assumption in the “latent variable”
ICA model. The instantaneous power-based fMRI (ip-fMRI)
approach defines the energy of fMRI signals by their inner
products such that the signal energy can be represented by
a variance of fMRI signals, which is regarded as integral
to their instantaneous power. Based on the regulation, the
instantaneous power of fMRI signals is then partitioned into
independent components using conventional sICA. There
are three steps in establishing our method. First, we briefly
describe the theories of ICA and the instantaneous power of
fMRI signals. Second, based on the resulting accuracy and
receiving operator characteristic (ROC) curves, we describe
how simulated fMRI data can be used to evaluate the
performance of the ip-fMRI approach and compare it with
the traditional fMRI results. Third, we describe how the new
approach was further tested by applying it to human data for
the analysis of task-induced brain activations.

2. Theory

2.1. The Latent Variable Model of ICA. In classical ICA
methods, a statistical “latent variable” model [9, 17] is
often used based on the assumption that observed random
variables [𝑥(1, 𝑙), . . . , 𝑥(𝑡, 𝑙), . . . , 𝑥(𝑇, 𝑙)] are linear mixtures
of latent variables [𝑠(1, 𝑙), . . . , 𝑠(𝑚, 𝑙), . . . , 𝑠(𝑀, 𝑙)] that are
non-Gaussian and mutually independent [9]. Consider the
following:
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(1)

In the matrix notation, this can be written simply as

𝑋 = 𝐴𝑆, (2)

(see [18]), where 𝑋 = [𝑥(1, 𝑙), 𝑥(2, 𝑙), . . . , 𝑥(𝑇, 𝑙)]𝑇 is a
vector of observed variables, 𝑆 = [𝑠(1, 𝑙), 𝑠(2, 𝑙), . . . , 𝑠(𝑀, 𝑙)]𝑇
is a vector of latent independent sources, and 𝐴 =
[𝑎
𝑡1
, 𝑎
𝑡2
, . . . , 𝑎

𝑡𝑀
] is the mixing matrix.

In sICA, the row of 𝑋 corresponds to the voxels in fMRI
signals and the column denotes time series. 𝑙 = 1, 2, . . . , 𝐿
is the spatial index of voxels in one volume, where 𝐿 is the
total number of voxels, 𝑡 = 1, 2, . . . 𝑇 is the temporal index
of fMRI time series, and 𝑚 = 1, 2, . . . ,𝑀 is the component
index. In addition, the total time points of fMRI signals 𝑇 are
no less than the total number of components𝑀 according to
the problem-solving processes of blind-source separation.

2.2. The Energy and the Instantaneous Power of fMRI Signals.
Suppose that 𝑃
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sent the energies of observed fMRI signals 𝑥(1, 𝑙), . . . ,
𝑥(𝑡, 𝑙), . . . , 𝑥(𝑇, 𝑙), respectively. Because 𝑥(𝑡, 𝑙) represents the
signal in one voxel at time 𝑡, the energy term 𝑃

𝑥
(𝑡, 𝑙) is an

instantaneous value and can be expressed by
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where 𝑃
𝑠
(1, 𝑙), 𝑃

𝑠
(2, 𝑙), . . . , 𝑃

𝑠
(𝑚, 𝑙), . . . 𝑃
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taneous powers of signals 𝑠(1, 𝑙), . . . , 𝑠(𝑚, 𝑙), . . . , 𝑠(𝑀, 𝑙),
respectively. The overall energy of observed data in each
voxel can then be represented by

𝐸
𝑥
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𝑇
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𝑃
𝑥
(𝑡, 𝑙) . (4)

Because the mixing matrix is a normalized weight matrix [9],
the energy of observed data is nearly equal to the energy of
source signals (supposing that the spatially and temporally
white noise are eliminated from observed data) and can be
written as

𝐸
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Therefore, even if source signals are nonlinear, their energy
signals 𝑃

𝑠
(1, 𝑙), 𝑃
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which satisfies the requirement of the “latent variable” model
of sICA. Then, the remaining question is how to define the
energy and instantaneous power of fMRI signals.

To give the definitions, the concept of electric energy can
be used as an analogy. In fMRI, if the observed 𝑇∗

2
signals

are taken as the instant voltage or current fluctuation of the
resistance, we can define the energy of𝑇∗

2
signals by the inner

product of the signals, which can be written as

𝐸
𝑇
∗

2

(𝑙) = ⟨𝑥, 𝑥⟩ = ∫𝑥
2

(𝑡, 𝑙) 𝑑𝑡. (6)

Because the energy of fMRI signals is associated with the
variations of 𝑇∗

2
signals [8], the temporal variance of 𝑇∗

2

signals can be used to define the overall energy of fMRI
signals by

𝐸BOLD = ∫ [𝑥 (𝑡, 𝑙) − 𝑥 (𝑙)]
2

𝑑𝑡, (7)
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where 𝑥(𝑡, 𝑙) is the voxel-wise fMRI signal intensity. 𝑥(𝑙) =
∫ 𝑥
𝑟
(𝑡, 𝑙)𝑑𝑡/𝑇 is the signal baseline value, which is the mean

BOLD value crossing the time course in fMRI during an
experimental resting condition and can be obtained through
a temporal normalization procedure [19]. According to (5),
the instantaneous power of fMRI signals can then be repre-
sented by

𝑃BOLD (𝑡, 𝑙) =
𝜕𝐸BOLD (𝑙)

𝜕𝑡
= [𝑥 (𝑡, 𝑙) − 𝑥 (𝑙)]

2

. (8)

Given that BOLD signals are composed of 𝑀 independent
components of brain activity according to the basic hypoth-
esis underlying the ICA approaches used in fMRI studies,
the instantaneous power of BOLD signals can be partitioned
into 𝑀 independent instantaneous powers of brain activity
by sICA, as expressed by

𝑃BOLD (𝑡, 𝑙) = 𝑎𝑡1𝑃activation 1 (1, 𝑙) + 𝑎𝑡2𝑃activation 2 (2, 𝑙)

+ ⋅ ⋅ ⋅ 𝑎
𝑡𝑚
𝑃activation 𝑚 (𝑚, 𝑙)

+ ⋅ ⋅ ⋅ 𝑎
𝑡𝑀
𝑃activation 𝑀 (𝑀, 𝑙) .

(9)

Because the instantaneous power of fMRI signals can be
considered as a linear mixture of each instantaneous power
of brain activity and normally meets with the latent variables
model of sICA, it is more suitable to use instantaneous power
of fMRI signals partitioned by sICA than to use original fMRI
signals.

3. Materials and Methods

3.1. Participants. Eighteen healthy volunteers (11males;mean
age 27.5 years; age range: 22–35 years) participated. The
healthy subjects had no history of neurological or psychiatric
disorders andwere not on anymedication for at least amonth
before the experiment. All the participants were right-handed
as assessed using the Edinburgh handedness inventory [20].
The study was approved by the local Ethical Committee of
Jinling Hospital, and written informed consent was obtained
from all subjects prior to participating.

3.2. Experimental Paradigms. In the experiment, healthy
subjects were scanned when performing a hand flexion task
using their nondominant (left) hand [21]. The subjects were
trained to grip the hand with a frequency of 1Hz, and they
practiced for 100 sec before the scan. A block design was
used in the paradigm and the overall task consisted of 10
blocks, 5 task blocks alternating with 5 resting blocks, lasting
for 200 sec with each block of 20 sec. During the functional
scan, the subjects were instructed to grip the left hand when
seeing a stationary cross presenting on the center of the screen
throughout each task block and to remain still and fixate
on a stationary asterisk throughout each resting block. The
paradigm has been expounded in our precious study [21].

3.3. MRI Acquisition. Imaging data were acquired using a
1.5T GE MRI system (Signa) at Jingling Hospital, Nanjing,
China. Foam padding was used to minimize head motion

and improve participants comfort. fMRI time series of 100
repeated whole brain images were acquired in an orientation
parallel to the AC-PC plane using a 𝑇∗

2
-weighted GRE-EPI

sequence. The sequence parameters were TR = 2000ms,
TE = 40ms, FA = 80∘, FOV = 24 × 24 cm2, 21 continuous
slices with a thickness of 4mm (no gap), and matrix size =
3.75 3.75mm2. Anatomical images using a T1-Flair sequence
(TR = 2019.3ms, TE = 25.3ms, interslice gap = 0.5mm,
and slice thickness = 4mm) were acquired to facilitate the
precise determination of the structures corresponding to the
functional regions.

3.4. Preprocessing of Data. The fMRI data of each sub-
ject were first preprocessed using SPM8 software package
(http://www.fil.ion.ucl.ac.uk/spm/), and spatial realignment
was performed to remove head motion artifacts, and the
functional scans were spatially normalized to a standard
template (Montreal Neurological Institute) and resampled to
2 × 2 × 2mm3. If the head motion and rotation parameters of
a subject exceeded ±0.5mm and ±0.5∘, respectively, the data
was excluded from further analysis. To increase the signal-to-
noise ratio (SNR), the data were smoothed spatially using an
isotropic Gaussian filter with a full width at half-maximum
(FWHM) of 8mm kernel.

3.5. ICA Analysis. Data from all participants were concate-
nated into a single dataset and reduced using two stages of
principal component analysis (PCA) [7]. The optimal num-
ber of ICs was determined by a dimension estimation using
the minimum description length (MDL) criterion [22]. ICA
was then conducted to decompose the data from all subjects
into different spatially independent components (ICs) with
the FAST-ICA algorithm. For each IC, the time course cor-
responded to the waveform of a specific pattern of coherent
brain activity, and the intensity of the pattern across the voxels
is expressed in the associated spatial map. This analysis was
repeated 50 times for assessing the repeatability of ICs [23].
To display the voxels that contributed most strongly to a
particular IC, the intensity values in each spatial map were
converted to 𝑍-values (standard deviation of image) map
[24]. The voxels with absolute ICA amplitudes larger than a
specified amplitude threshold (i.e., |amplitude| > 2.5) were
selected as the voxels with significant changes in brain activity
[25].

3.6. Simulation. A simulation was conducted to evaluate the
performance of ICA decomposition of ip-fMRI. A slice of
resting-state EPI scans (79 × 95 voxels) was replicated 200
times in order to simulate 200 time points of noise-free
fMRI data. Nine 8 × 8 square blobs of voxels were selected
for the simulation of localized activity changes (Figure 1(a)).
The simulated time courses used in this section are shown
in Figure 1(b). Three simulated signals (Signals (A)–(C))
were constructed to represent the brain hemodynamics for
event-related activation (Signal (A)), resting-state activities
(Signal (B)), and activation in block-designed paradigm
(Signal (C)). A slowly varying baseline (Signal (D)) was
added to all the voxels. To simulate the noisy environment in

http://www.fil.ion.ucl.ac.uk/spm/
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Figure 1: (a) AnEPI scan image with the selected nine regions of interest and simulated fMRI time courses. (b) Signals (A) and (B) (0.08Hz)
are the series of gamma variate functions simulating event-related and resting-state brain hemodynamics, respectively. Signal (C) is the
convolution of an HRF and a square wave simulating a block-design fMRI signal. Signal (D) (0.005Hz) is a sine wave simulating a slowly
varying global baseline. Signal (E) is a Gaussian signal simulating the random white noise. Signal (F) (with a mean frequency of 1.2Hz) is
a cardiac signal simulating the structured noise. (c) Spatial components extracted by traditional fMRI. (d) Spatial components extracted by
ip-fMRI. Voxels with amplitude values above threshold 2.5 are shown as the points in red to yellow color on the image.

the brain, random noise and structured noise were mixed in
the simulated data (all voxels in the brain area). The random
noise (Signal (E)) follows a Gaussian distribution with a
mean of 0 and a variance of 1. To simulate the structured
noise, a cardiac signal (Signal (F)) which has an average
frequency of 1.2Hz was generated. The magnitudes of the
signals and noises have been varied to adjust the contrast-to-
noise ratio (CNR ≡ Δ𝑆/𝜎noise). The CNRs ranged from 0.5
to 2, consistent with the CNR values reported in the fMRI
literature [26].

The ip-fMRI and fMRI datasets were decomposed sepa-
rately into spatially independent spatial patterns. Each pat-
tern was associated with a temporal waveform, and only the
components with the closest correlation between waveform
and simulated true sources were considered. Examples of
the spatial components decomposed by the two approaches
are shown in Figures 1(c) and 1(d) with the CNR of 0.75.
A receiver-operating characteristic (ROC) analysis was then
conducted based on the spatial maps to determine the
optimal component number, accuracy, and specificity of the
two approaches.

4. Results

4.1. Simulation Results. The accuracy was calculated for both
the fMRI and ip-fMRI approaches based on our simulated
dataset at different ICA amplitude levels and CNRs. Under
almost all the conditions tested, ip-fMRI produced more
suited results than the traditional fMRI, which was espe-
cially evident with low CNRs (Figure 2). In addition, each
individual component separated from ip-fMRI was almost
consistent when being used to localize the ROIs. Further

comparisons of the ROC curves showed that those of ip-fMRI
plotted were always over those of traditional fMRI (Figure 3).
In terms of specificity, the AUC value of 1 represents a perfect
test; while an AUC value of 0.5 or below just gives a chance
discrimination. When CNR was set to be 0.5, the traditional
fMRI failed to produce reliable results (AUC = 0.4896) while
ip-fMRI still performed well (AUC = 0.9751). The simulation
results indicate that the ICA decomposition from ip-fMRI
outperforms that from the traditional fMRI, even though
both of the approaches have an equal AUC value (i.e., = 1)
when CNRs are set above 1.

4.2. Experimental Results

4.2.1. Identification of the Functional Network Underlying
Hand Movement. The performance of the ICA decomposi-
tion of ip-fMRI was further evaluated for the detection of
task-induced brain activation. A motor network underlying
the left hand flexion taskwas identified using either approach,
which consists of the contralateral primary motor (M1) and
sensory (SI) cortices and the supplementary motor area [27].
However, the spatial component extracted from ip-fMRI
from each subject became more anatomically focused or
more specific to motor function than those from traditional
fMRI. For the visualization, the motor component from
a randomly selected subject was shown in Figure 4. Fur-
thermore, the correlation coefficient between the temporal
waveform associated with each spatial motor component
and the designed ON-OFF paradigm was calculated. Two-
sample 𝑡-test was employed to compare the results between
ip-fMRI and traditional fMRI methods. Compared with the
traditional fMRI, the result obtained from the two-sample
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Figure 2: The accuracy analyses of ICA decomposition from ip-fMRI and traditional fMRI at CNRs of 0.5, 0.75, 1, and 2. The plots are the
average accuracy curves of the fifty repeated procedures.

𝑡-test clearly showed significant difference (𝑡 = 3.0486,
𝑃 = 0.0055, uncorrected). This enabled the identification of
significant changes in the ip-fMRI method as compared with
the traditional fMRI.

5. Discussion

ICA provides a method to separate signals “blindly” into spa-
tially independent components, enabling exploratory analy-
sis of fMRI data [2]. The key assumptions in sICA are that an
fMRI dataset consists of a number of spatially independent
components that are linearly mixed and spatially fixed.
However, fMRI signals are actually nonlinear and are affected
by many other artifacts such as those induced by head

motion or physiological noises. Thus, fMRI signals may not
automatically satisfy the commonly used latent ICA variables
model.

To provide a better solution to this problem,we present an
instantaneous power approach to resolving the ICA problem
in fMRI analysis. We used instantaneous power to regularize
fMRI signals such that the distribution of fMRI signal
changes follows the temporal pattern in power distribution
(defined in (8)). Then, the decompositions separated by
ipICA can be simultaneously used to extract a variety of
spatially independent components.The spatially independent
but temporally coherent components represent the instanta-
neous power of each fMRI source signal (i.e., changes in brain
activity). In other words, because the power of fMRI signals
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Figure 3: The ROC curves for ICA decomposition of ip-fMRI and traditional fMRI. Plotted are the mean ROC curves of the fifty repeated
procedures. For the simulation with a CNR set to be 0.5, the area under the ROC curve (AUC) is 0.9751 and 0.4896 for ip-fMRI and traditional
fMRI, respectively. Briefly, CNR = 0.75, AUC = 0.9932 (ip-fMRI) and 0.9723 (traditional fMRI); CNR = 1, AUC = 1 (ip-fMRI) and 0.9993
(traditional fMRI); CNR = 2, AUC = 1 (ip-fMRI) and 1 (traditional fMRI).

can be considered as a linear mixture of each instantaneous
power, the components separated by ip-fMRI naturally satisfy
the addition theorem to reflect different patterns of brain
activity.

We have used a relatively realistic simulation based on a
single volume of resting-state EPI data. This simulation has
correct noise structures and spatial and temporal correlations
with three artificial components added, which are shown in
9 dominant square blobs of the regions simulated. To make
a visual comparison between the ICA results decomposed
by ip-fMRI and traditional fMRI, Figures 1(c) and 1(d) show

the components correlated to the simulated time series,
respectively. For a given amplitude threshold, the ICA map
from traditional fMRI tends to be noisier than that from ip-
fMRI with the CNR of 0.75. Our results from the accuracy
curves (Figure 2) and ROC curves (Figure 3) indicate that the
performance of ip-fMRI is superior to that of the traditional
fMRI under different CNRs or ICA amplitude values.

The proposed new ip-fMRI approach has been further
validated using human data. A task-related fMRI experiment
was provided for evaluating the new approach. When the
actualmixtures are regularized through instantaneous power,
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Figure 4: The motor functional networks of a random selected subject detected by ip-fMRI and traditional fMRI methods, respectively. (a)
Motor networks detected by ip-fMRI. (b) Motor networks detected by traditional fMRI. The numbers beneath the axial MR image refer to
Talairach coordinates.

the extracted spatial sources from the regularized results
become more anatomically focused than those without the
regulation (Figure 4) and their time courses become more fit
into the designed paradigm for hypothesis testing.

In summary, we introduce a new ICA method based
on the instantaneous power of fMRI signals to improve the
decomposition and interpretation of fMRI data. The decom-
posed components by ip-fMRI represent the distribution of
instantaneous power changes in fMRI signals. Combining the
simulated and in vivo fMRI data, our results indicate that
the spatially independent components decomposed from ip-
fMRI are superior to those decomposed from the traditional
fMRI in both accuracy and specificity for detecting the brain
activity changes. We conclude that the ICA decomposition of
ip-fMRI approach may provide a tool for the localization of
energy changes in the brain, which may potentially be used
to detect altered brain functions.
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