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Abstract: The transition-metal-catalyzed diarylation of isocyanides with triarylbismuthines was
investigated in detail, and rhodium catalysts such as [RhCl(nbd)]2 were found to selectively afford
N-alkyl diaryl ketimines. On the other hand, palladium-catalyzed diarylation proceeded with the
incorporation of two molecules of isocyanide, preferentially yielding N,N’-dialkyl or N,N’-diaryl
α-diimines. In addition, a cascade synthesis of 2,3-diarylquinoxalines starting from the palladium-
catalyzed diarylation of isocyanides with triarylbismuthines was successfully achieved.

Keywords: arylation; isocyanide; imine; triarylbismuthine; 2,3-diarylquinoxaline

1. Introduction

As the chemistry of heteroatom-containing compounds has significantly grown in
recent decades, the properties and reactivities of high-period elements have gradually
attracted more attention [1–12]. Bismuth is the heaviest of the group 15 elements, and its or-
ganic and inorganic compounds are regarded to be nontoxic [13]. However, organobismuth
compounds are generally unstable due to the weakness of the carbon–bismuth bond. An
exception is triarylbismuthines (BiAr3, 1), which are stable and some of them are commer-
cially available. Therefore, synthetic applications of triarylbismuthines [14–16] have been
investigated by many organic chemists [17–25] and N-, O-, S- and C-arylation reactions
have been developed using triarylbismuthines as arylating reagents.

Recently, we developed novel palladium-catalyzed diarylation reactions of isocyanides
2 [26–41] using triarylbismuthines 1 and tetraarylleads 4 (Scheme 1). The use of BiAr3 1
result in α-diimines 3 being selectively obtained (Scheme 1a) [42]. Using PbAr4 4 instead
of 1 led to the formation of α-diimines 3 and/or ketimines 5 (Scheme 1b) [43]. With
aliphatic isocyanides 2 (R = alkyl), N-alkyl diaryl ketimines 5 were preferentially obtained,
whereas N,N’-diaryl α-diimines 3 were formed when electron-rich aromatic isocyanides 2
(R = electron-rich Ar) were used.

However, it is unclear what factors would affect the product selectivity of α-diimines
3 and/or ketimines 5 using BiAr3. Hence, we investigated the transition-metal-catalyzed
diarylation of isocyanides with BiAr3 1 under several reaction conditions for the selective
synthesis of imine derivatives (3 or 5) (Scheme 1c).
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Scheme 1. Transition-metal-catalyzed diarylation of isocyanides.

2. Results and Discussion

In our previous paper [42], we reported that Pd(OAc)2-catalyzed diarylation of iso-
cyanides 2 with BiAr3 1 selectively afforded α-diimines 3 (a representative result is shown
in Table 1, entry 1). When the catalyst was changed to Pd(PPh3)4, a typical zero-valent
palladium complex, the yield of 3aa decreased significantly (entry 2). On the other hand,
other divalent palladium complexes such as PdCl2 and Pd(PPh3)2Cl2 selectively afforded
3aa with good yields (entries 3 and 4). Addition of PPh3 to Pd(OAc)2 resulted in lower
yield of 3aa (entry 5). The zero-valent Pd complex, Pd2(dba)3, gave 3aa in moderate yield
(entry 6). In the absence of a catalyst, barely any diarylation occurred (entry 7).

The reaction conditions for the Pd(OAc)2-catalyzed diarylation of 2a with 1a were
also investigated in more detail (entries 8–18). In all cases, α-diimine 3aa was obtained
as the major product, mostly along with very small amounts of ketimine 5aa. Reducing
the loading of 1a resulted in a decrease in the yield of 3aa (entry 8). The presence of air
did not inhibit the formation of 3aa (entry 9). When the reaction was conducted at room
temperature, the yield of 3aa decreased (entry 10). Decreasing the amount of Pd(OAc)2
resulted in a gradual decrease in the yield of 3aa (entries 11 and 12). Among the solvents
examined (entries 13–16), acetonitrile gave the best result, obtaining 3aa in 84% yield (entry
15). The present diarylation also proceeded even in a shorter time (4 h), affording 3aa in
81% yield (entry 17). A similar result was also obtained under Ar atmosphere as under air
(entry 18 vs. 9).
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Table 1. Influence of reaction conditions on 5aa/3aa selectivity.
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lower yield of 5aa (entry 9 vs. 7). Some other rhodium catalysts, such as RhCl(PPh3)3, 
RhH(PPh3)3, RhBr(PPh3)3, [Rh(dppp)(cod)]+BF4–, RhCl3, and [Rh(OAc)2]2, were ineffective 
for the desired diarylation (entries 10, 11, 12, and 14–16). In addition, the diarylation failed 
when using other transition-metal catalysts, such as [Ru(NH3)5Cl]Cl2, RuCl3•nH2O, 
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no reaction taking place in most cases (these data are not shown in Table 2). Among the 
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Entry Cat. M (mol%) Solv. Time (h)
Yields (%) a

5aa 3aa

1 Pd(OAc)2 (20) C6H6 18 9 90
2 Pd(PPh3)4 (20) C6H6 18 trace 23
3 PdCl2 (20) C6H6 18 5 71
4 Pd(PPh3)2Cl2 (20) C6H6 18 11 62

5 b Pd(OAc)2 (20) C6H6 18 5 66
6 Pd2(dba)3·CHCl3 (10) C6H6 18 trace 56
7 none C6H6 18 0 2

8 c Pd(OAc)2 (20) C6H6 18 trace 58
9 d Pd(OAc)2 (20) C6H6 18 10 82
10 e Pd(OAc)2 (20) C6H6 18 8 59
11 Pd(OAc)2 (10) C6H6 18 4 65
12 Pd(OAc)2 (5) C6H6 18 4 51
13 Pd(OAc)2 (20) THF 18 21 63
14 Pd(OAc)2 (20) EtOH 18 trace 49
15 Pd(OAc)2 (20) MeCN 18 0 84
16 Pd(OAc)2 (20) PhMe 18 9 73
17 Pd(OAc)2 (20) C6H6 4 1 81

18 f Pd(OAc)2 (20) C6H6 18 6 77
a Determined by 1H NMR. Calculated based on the amount of 2a; b triphenylphosphine (40 mol%) was used as a
ligand; c loading of 1a was 0.1 mmol; d air; e room temp; f the reaction was conducted under Ar.

Surprisingly, changing the catalyst to rhodium complexes selectively afforded ketimine
5aa without formation of 3aa (Table 2, entries 1–4). For example, the diarylation using
[RhCl(nbd)]2 exclusively afforded 5aa in 50% yield (entry 1). Reducing the loading of this
catalyst resulted in a lower yield of 5aa (entry 2). In addition, use of excess 1a improved
the yield of 5aa with this catalyst (entry 3). RhH(CO)(PPh3)3, which is an active catalyst for
hydroformylation, was ineffective when used for the present diarylation of isocyanide 2a
(entry 4).

Since several rhodium complexes exhibited good ketimine selectivity, we next inves-
tigated the rhodium-catalyzed diarylation of tert-butyl isocyanide 2a with triphenylbis-
muthine 1a. The Rh-catalyzed diarylation was performed on a 0.4 mmol scale (1a and 2a)
using [RhCl(nbd)]2, and the desired ketimine 5aa was obtained in 51% yield by adding (p-
MeO-C6H4)3P as the ligand (entry 5). The diarylation using 1.0 mL of C6H6 improved the
yield of 5aa to 71% yield (entry 7). Use of 0.6 mmol of 1a resulted in a slightly lower yield
of 5aa (entry 9 vs. 7). Some other rhodium catalysts, such as RhCl(PPh3)3, RhH(PPh3)3,
RhBr(PPh3)3, [Rh(dppp)(cod)]+BF4

−, RhCl3, and [Rh(OAc)2]2, were ineffective for the
desired diarylation (entries 10, 11, 12, and 14–16). In addition, the diarylation failed when
using other transition-metal catalysts, such as [Ru(NH3)5Cl]Cl2, RuCl3•nH2O, [Ir(cod)Cl]2,
Ir(CO)Cl[n-C10F21]PPh2]2, Ir(CO)Cl(PPh3)2, CuI, CuCl2, and CoCl(PPh3)3, with no reaction
taking place in most cases (these data are not shown in Table 2). Among the catalysts
examined, trans-RhCl(CO)(PPh3)3 exhibited a moderate catalytic activity for the diarylation
to give 5aa (entry 13). Overall, when mononuclear Rh complexes were used as catalysts,
many byproducts were formed via polymerization of tert-butyl isocyanide. In contrast,
this polymerization was suppressed by using [RhCl(nbd)]2. These results suggest that
the choice of catalysts is very important for the selective reaction between isocyanides
and BiAr3.
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Table 2. Rh-catalyzed diarylation of t-BuNC with BiPh3.
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Entry Rh Catalyst (mol%) Yield of 5aa (%) a

1 b [RhCl(nbd)]2 (10) 50
2 b [RhCl(nbd)]2 (5) 32

3 b,c [RhCl(nbd)]2 (10) 75
4 b RhH(CO)(PPh3)3 (20) 20
5 [RhCl(nbd)]2/(p-MeO-C6H4)3P (10/20) 51

6 d [RhCl(nbd)]2/(p-MeO-C6H4)3P (10/20) 61
7 e [RhCl(nbd)]2/(p-MeO-C6H4)3P (10/20) 71
8 f [RhCl(nbd)]2/(p-MeO-C6H4)3P (10/20) 57

9 e,g [RhCl(nbd)]2/(p-MeO-C6H4)3P (10/20) 66
10 RhCl(PPh3)3 (10) 12
11 RhH(PPh3)3 (10) 12
12 RhBr(PPh3)3 (10) 17
13 trans-RhCl(CO)(PPh3)3 (10) 55
14 [Rh(dppp)(cod)]+BF4

− (10) 0
15 RhCl3 (10) 2
16 [Rh(OAc)2]2 (10) 6

a Determined by 1H NMR. 1,3,5-Trioxane was used as an internal standard; b 1a (0.2 mmol), t-BuNC (0.2 mmol),
and benzene (2.0 mL) were used; c loading of 1a was 0.4 mmol; d C6H6 (2.0 mL); e C6H6 (1.0 mL); f C6H6 (0.5 mL);
g loading of 1a was 0.6 mmol.

With the optimal reaction conditions in hand (Table 2, entry 7), the scope of the Rh-
catalyzed diarylation of aliphatic isocyanides 2 with BiAr3 1 was examined (Scheme 2).
The reaction of t-BuNC 2a with BiPh3 1a afforded 5aa in 71% yield, whereas cyclohexyl
isocyanide 2c underwent the diarylation to provide 5ac in 40% yield. The reactions of
t-BuNC 2a with p-Me, p-CF3, and p-Cl-substituted triarylbismuthines 1 also proceeded to
give the corresponding N-tert-butyl diaryl ketimines (5ba, 5da, and 5fa) in moderate to
good yields (see Materials and Methods).

As mentioned above, the Pd and Rh catalysts were found to afford α-diimines 3 and
ketimines 5, respectively, with excellent product selectivity. Conceivably, α-diimines 3
might be more important than ketimines 5 as synthetic intermediates. Hence, we examined
the scope and limitations of this catalytic diarylation using the reaction conditions found in
entry 1 of Table 1 (Scheme 3). In the cases of aliphatic isocyanides 2a–2d, the corresponding
N,N’-dialkyl α-diimines 3aa–3ad were successfully obtained in good yields. The diarylation
of electron-rich aromatic isocyanide 2e also afforded the corresponding N,N’-diaryl α-
diimine 3ae in good yield, whereas aromatic isocyanides with electron-withdrawing groups
such as p-nitro and p-cyano groups resulted in the formation of a complex mixture.

In addition, the scope and limitations of the triarylbismuthines were investigated
(Scheme 4). The diarylation of t-BuNC 2a, with BiAr3 1b–1d was conducted, and the
corresponding N,N’-di-tert-butyl α-diimines 3ba–3da were formed in moderate yields.
When the p-methoxyphenyl isocyanide 2e was used for the arylation, similar results
were observed.
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Scheme 2. Substrate scope of the Rh-catalyzed diarylation of aliphatic isocyanides 2 with BiAr3 1.

Scheme 3. Substrate scope of the Pd-catalyzed diarylation of isocyanides 2 with BiPh3 1a.

Scheme 4. Substrate scope of the Pd-catalyzed diarylation of isocyanides 2 with BiAr3 1.
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The Pd(OAc)2-catalyzed diarylation of t-BuNC 2a with Bi(C6H4-F-p)3 1c was carried
out under several different conditions to explore the reason for the lower yield of 3ca
(Table 3).

Table 3. Pd-catalyzed diarylation of t-BuNC with Bi(C6H4-F-p)3.
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Entry 2a (mmol) 1c (Equiv.)
Yields (%) a

3ca 5ca

1 0.2 1.0 37 48
2 0.2 0.75 45 43
3 0.2 0.5 74 2

a Determined by 1H NMR; calculated based on the amount of 2a.

An equimolar reaction of 2a with 1c was found to afford ketimine 5ca in parallel
to α-diimine 3ca (entry 1), while decreasing the amount of 1c resulted in the selective
formation of 3ca (entry 3). Therefore, the molar ratio of 1c to 2a was an important factor for
the selective synthesis of α-diimine 3ca.

The impact of reducing the catalyst loading was then examined to allow for the easy
isolation of α-diimines 3 (Table 4). The catalytic diarylation of isocyanide 2a was conducted
using 5 mol% Pd(OAc)2 and one equivalent of triphenylbismuthine 1a to 2a under an
atmosphere of N2, and α-diimine 3aa was obtained in low yield (entry 1). Interestingly,
under an atmosphere of air, the yield of 3aa was dramatically improved (entry 2). Using
molecular oxygen instead of air was also effective (entry 3). However, the combination
of divalent copper salts was ineffective for the diarylation (entries 4 and 5). Moreover,
the effect of reducing the amount of BiPh3 1a was examined (entries 6–8). Even when
using 1/3 equivalent of 1a, α-diimine 3aa was obtained in satisfactory yield (entry 6).
This clearly indicates that all three phenyl groups on 1a could be used for the formation
of 3aa. When the loading of Pd(OAc)2 was reduced to 1 mol%, the yield of 3aa slightly
decreased (entry 7). However, the use of 2 mol% of Pd(OAc)2 led to the formation of 3aa in
a satisfactory yield (81%). As can be seen from the data in Table 4, the use of a combination
of Pd(OAc)2 and air reduced the loading of both catalyst and triarylbismuthine. Further
examination of reaction conditions for the Pd(OAc)2-catalyzed diarylation in air revealed
that acetonitrile was the best for the present diarylation [42].

In our previous paper, we proposed a possible pathway for the Pd(OAc)2-catalyzed
diarylation of isocyanide 2 with triarylbismuthine 1 to afford α-diimine 3, the essence of
which is shown in Scheme 5.
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Table 4. Influence of oxidants on Pd-catalyzed diarylation of t-BuNC with BiPh3.
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Scheme 5. A possible pathway for Pd-catalyzed diarylation.

Transmetalation between Pd(OAc)2 and BiAr3 1 might generate arylpalladium species
I, into which isocyanide 2 inserts to form the imidoylpalladium species II. The subsequent
ligand-exchange reaction of II with itself then leads to the palladium complexes III and
IV. Reductive elimination from III affords the α-diimines 3 along with the Pd(0) species.
Since the Pd(OAc)2-catalyzed diarylation proceeds smoothly in the presence of oxidizing
agents such as air, the Pd(0) species might be oxidized to the Pd(II) species by air, or by the
bismuth compounds present in the reaction system.

In the case of rhodium catalysts such as [RhCl(nbd)]2, oxidative addition of BiAr3 1,
followed by insertion of isocyanide 2 into the Rh–Ar bond results in the formation of an
imidoylrhodium species. Presumably, the ligand-exchange reaction is less important for the
imidoylrhodium species compared with the Pd(OAc)2-based system. Accordingly, trans-
metalation of imidoylrhodium species with BiAr3 1 might generate aryl imidoylrhodium
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species of the type “ArC(=NR)–RhLn–Ar,” and the subsequent reductive elimination might
selectively afford ketimines 5.

Since α-diimines 3 are expected to be important precursors for the synthesis of nitrogen-
containing heterocyclic compounds, an attempt was also made to synthesize nitrogen-
containing heterocycles without purification of α-diimines 3 prepared by the Pd(OAc)2-
catalyzed diarylation of isocyanides with triarylbismuthines. Hence, we next examined the
synthesis of quinoxaline derivatives (Scheme 6).

Scheme 6. Application to cascade synthesis of 2,3-diarylquinoxalines.

After the catalytic diarylation of t-BuNC 2a with BiAr3 1a was complete, the reaction
mixture was filtered through a Celite pad. The filtrate was then treated with 1 N HCl aq.,
followed by the addition of o-phenylenediamine 8a. The mixture was heated at 60 ◦C for
12 h to successfully afford the corresponding quinoxaline derivative 9a in high yield. 4,5-
Dimethyl-substituted o-phenylenediamine 8b also reacted with the α-diimine 3aa formed
in situ to give the quinoxaline 9b in high yield. In the case of o-phenylenediamine 8c,
which has an electron-withdrawing nitro group, the corresponding quinoxaline 9c was
formed in moderate yield. Moreover, when BiAr3 compounds with p-methyl- or p-fluoro-
groups were employed for this cascade synthesis, the corresponding quinoxalines 9d
and 9e, respectively, were obtained in good yields. The present method of quinoxaline
synthesis is very convenient, because the α-diimines 3 formed in situ can be used directly
without purification.



Materials 2021, 14, 4271 9 of 13

3. Materials and Methods
3.1. General Comments

All solvents were distilled before use. Triphenylbismuthine (1a) was purchased form
a commercial source. The other bismuthines were prepared according to the literature.
All aliphatic isocyanides and 2,6-xylylisocyanide (2f) were purchased from a commercial
source. The other isocyanides were prepared according to the literature. N,N’-dialkyl
α-diimines were isolated by recycle GPC (eluent: CHCl3). N,N’-diaryl α-diimines were
isolated by preparative TLC (eluent: hexane/ethyl acetate). 1H NMR spectra were recorded
on JEOL JNM-ECX400 (400 MHz) FT NMR or JEOL JNMECS400 (400 MHz) FT NMR in
CDCl3 with Me4Si as an internal standard. 13C{1H} NMR spectra were recorded on JEOL
JNM-ECX400 (100 MHz) FT NMR or JEOL JNM-ECS400 (100 MHz) FT NMR in CDCl3.

3.2. Typical Reaction Procedure for Ketimine Synthesis

In a dried 10 mL Schlenk test tube, norbornadiene rhodium(I) chloride dimer (0.04 mmol)
and (p-MeOC6H4)3P (0.08 mmol) were dissolved in benzene (1.0 mL), and the mixture was
stirred for 10 min at room temperature under Ar atmosphere. Then, triarylbismuthine (1;
0.4 mmol) and isocyanides (2; 0.4 mmol) were added to the reaction mixture. The resulting
mixture was heated at 70 ◦C for 18 h. After the reaction, the crude product was filtered
through a Celite pad using AcOMe as the eluent. All volatiles were evaporated under
reduced pressure, and the yields of corresponding ketimines were determined by 1H NMR
spectroscopy (solv.: CDCl3, internal standard: 1,3,5-trioxane) [43].

In this synthetic method, ketimine can be synthesized in a highly selective manner,
and the purity is high even in the crude state. However, when treated with recycled GPC
to remove unreacted starting substrates, the ketimine undergoes hydrolysis to produce
a small amount of the corresponding ketone. Therefore, in order to use this ketimine
synthesis method effectively, it is recommended to use it in one pot without isolating the
ketimine. Ketimine 5da and 5fa could be isolated by recycled GPC (CH2Cl2), and their
characterization data are shown as follows (1H and 13C{1H} NMR spectra are included in
the Supplementary Materials):

N-tert-butyl-1,1-bis(4-(trifluoromethyl)phenyl)methanimine (5da). 43% yield (63.8 mg);
white solid, m.p. 80.0–81.0 ◦C; 1H NMR (400 MHz, CDCl3) δ 7.70 (d, J = 8.2 Hz, 2H), 7.61
(d, J = 8.2 Hz, 2H), 7.54 (d, J = 8.6 Hz, 2H), 7.34 (d, J = 8.2 Hz, 2H), 1.17 (s, 9H); 13C{1H}
NMR (100 MHz, CDCl3) δ 160.6, 144.3, 143.1, 131.5 (d, J = 32.6 Hz), 130.7 (d, J = 32.6 Hz),
130.3 (overlapped), 128.8, 128.3, 125.2 (d, J = 3.8 Hz), 125.1 (d, J = 3.9 Hz), 57.7, 31.6; HRMS
(EI) m/z calcd for C19H17F6N [M]+: 373.1265, found: 373.1268.

N-tert-butyl-1,1-bis(4-chlorophenyl)methanimine (5fa) [CAS: 27126-15-4] [43]. 60%
yield (73.0 mg); white solid, m.p. 104.0–105.0 ◦C; 1H NMR (400 MHz, CDCl3) δ 7.44 (d,
J = 8.6 Hz, 2H), 7.39 (d, J = 8.6 Hz, 2H), 7.24 (d, J = 8.6 Hz, 2H), 7.12 (d, J = 8.2 Hz, 2H),
1.16 (s, 9H); 13C{1H} NMR (100 MHz, CDCl3) δ 161.2, 140.1, 137.8, 135.8, 134.2, 129.8, 129.4,
128.4, 128.2, 57.3, 31.6.

3.3. Typical Reaction Procedure for α-Diimine Synthesis (Schemes 3 and 4)

Triphenylbismuthine (1a; 0.4 mmol) and tert-butyl isocyanide (2a; 0.4 mmol) were
dissolved in benzene (2 mL) in a dried two-necked test tube under a N2 atmosphere.
Palladium diacetate (0.08 mmol) was added to the mixture. The resulting mixture was
stirred for 18 h at 70 ◦C. After the reaction, the crude product was filtered through a Celite
pad. All volatiles were evaporated under reduced pressure, and the NMR spectrum was
measured (solv.: CDCl3). Dioxane was used as an internal standard. 1H and 13C{1H} NMR
spectra are included in the Supplementary Materials.

N,N’-Bis(1,1-dimethylethyl)-1,2-diphenylethane-1,2-diimine (3aa) [CAS: 38015-77-
9] [42]. 88% yield (56.3 mg); white solid; m.p. 107.5–109.0 ◦C; 1H NMR (400 MHz, CDCl3)
δ 7.79–7.76 (m, 4H), 7.36–7.29 (m, 6H), 1.24 (s, 18H).

N,N’-Bis(1,1,3,3-tetramethylpropyl)-1,2-diphenylethane-1,2-diimine (3ab) [CAS:
1800598-80-4] [42]. 78% yield (67.4 mg); white solid; m.p. 108.0–109.0 ◦C; 1H NMR
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(400 MHz, CDCl3) δ 7.78–7.76 (m, 4H), 7.35–7.29 (m, 6H), 1.50 (s, 4H), 1.37 (s, 6H), 1.16 (s,
6H), 1.04 (s, 18H).

N,N’-Dicyclohexyl-1,2-diphenylethane-1,2-diimine (3ac) [CAS: 20586-41-8] [42]. 73%
yield (54.3 mg); white solid; m.p. 89.5–91.0 ◦C; 1H NMR (400 MHz, CDCl3) δ 7.82–7.73 (m,
4H), 7.39–7.30 (m, 6H), 3.23 (tt, J = 9.6, 4.1 Hz, 2H), 1.90–1.82 (m, 2H), 1.75–1.17 (m, 16H),
1.15–0.98 (m, 2H).

N,N’-Dipentyl-1,2-diphenylethane-1,2-diimine (3ad) [CAS: 906560-91-6] [42]. 85%
yield (59.2 mg); pale yellow oil; 1H NMR (400 MHz, CDCl3) δ 7.75–7.73 (m, 4H), 7.41–7.32
(m, 6H), 3.33 (t, J = 7.3 Hz, 4H), 1.73–1.65 (m, 4H), 1.36–1.24 (m, 8H), 0.86 (t, J = 7.3 Hz, 6H).

N,N’-Bis(4-methoxyphenyl)-1,2-diphenylethane-1,2-diimine (3ae) [CAS: 32349-49-8] [42].
80% yield (33.6 mg); yellow solid; 1H NMR (400 MHz, CDCl3) δ 7.87–7.84 (m, 4H), 7.42–7.33
(m, 6H), 6.68–6.62 (m, 8H), 3.71 (s, 6H).

N,N’-Bis(1,1-dimethylethyl)-1,2-bis(4-methylphenyl)ethane-1,2-diimine (3ba) [CAS:
956375-94-3] [42]. 58% yield (40.4 mg); white solid; m.p. 83.5–85.0 ◦C; 1H NMR (400 MHz,
CDCl3) δ 7.65 (d, J = 8.2 Hz, 4H), 7.11 (d, J = 8.2 Hz, 4H), 2.33 (s, 6H), 1.23 (s, 18H).

N,N’-Bis(1,1-dimethylethyl)-1,2-bis(4-fluorophenyl)ethane-1,2-diimine (3ca) [CAS:
884050-44-6] [42]. 27% yield (19.2 mg); white solid; m.p. 99.5–102.0 ◦C; 1H NMR (400 MHz,
CDCl3) δ 7.77–7.72 (m, 4H), 7.03–6.98 (m, 4H), 1.23 (s, 18H).

N,N’-Bis(4-methoxyphenyl)-1,2-di-p-tolylethane-1,2-diimine (3be) [CAS: 86980-71-
4] [44,45]. 47% yield (21.1 mg); 1H NMR (400 MHz, CDCl3) δ 7.75 (d, J = 8.2 Hz, 4H), 7.16
(d, J = 8.2 Hz, 4H), 6.62 (s, 8H), 3.72 (s, 6H), 2.36 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ
163.3, 157.1, 142.6, 141.1, 134.9, 129.4, 128.1, 122.1, 113.6, 55.3, 21.5.

N,N’-1,2-Tetrakis(4-methoxyphenyl)ethane-1,2-diimine (3ee) [CAS: 130440-66-3] [45].
54% yield (25.9 mg); 1H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 9.2 Hz, 4H), 6.87 (d, J = 9.2
Hz, 4H), 6.62 (s, 8H), 3.82 (s, 6H), 3.72 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 162.8,
161.6, 157.0, 142.7, 130.4, 129.8, 122.1, 114.0, 113.6, 55.3.

3.4. Typical Reaction Procedure for Cascade Synthesis of 2,3-Diarylquinoxalines (Scheme 4)

Triphenylbismuthine (1a; 0.4 mmol) and tert-butyl isocyanide (2a; 1.2 mmol) were
dissolved in MeCN (2 mL) in a dried two-necked test tube under air. Palladium diacetate
(0.024 mmol) was added to the mixture. The resulting mixture was stirred for 4 h at 70 ◦C.
After the reaction, the crude product was filtered through a Celite pad. All volatiles were
evaporated under reduced pressure, after which dioxane (5 mL) and 1 N HCl (5 mL)
were added. The mixture was stirred at 60 ◦C for 6 h, then α-diamine (0.6 mmol) was
added and the reaction was stirred at 60 ◦C for 12 h. The mixture was extracted three
times with EtOAc (10 mL), dried over MgSO4, and the desired product was purified by
silica gel chromatography (eluent: hexane/EtOAc). 1H NMR spectra are included in the
Supplementary Materials.

2,3-Diphenylquinoxaline (9a) [CAS: 1684-14-6] [46]. 84% yield (142.1 mg); white solid;
m.p. 124–125 ◦C. 1H NMR (400 MHz, CDCl3) δ 8.20–8.16 (m, 2H), 7.79–7.75 (m, 2H),
7.53–7.51 (m, 4H), 7.39–7.31 (m, 6H).

6,7-Dimethyl-2,3-diphenylquinoxaline (9b) [CAS: 13362-56-6] [46]. 82% yield (152.5 mg);
white solid; m.p. 174–175 ◦C; 1H NMR (400 MHz, CDCl3) δ 7.92 (s, 2H), 7.51–7.48 (m, 4H),
7.36–7.29 (m, 6H), 2.51 (s, 6H).

6-Nitro-2,3-diphenylquinoxaline (9c) [CAS: 7466-45-7] [46]. 55% yield (107.9 mg);
yellow solid; m.p. 188–189 ◦C. 1H NMR (400 MHz, CDCl3) δ 9.08 (d, J = 2.7 Hz, 1H), 8.53
(dd, J = 9.1, 2.7 Hz, 1H), 8.30 (d, J = 9.5 Hz, 1H), 7.58–7.55 (m, 4H), 7.45–7.35 (m, 6H).

2,3-di-p-tolylquinoxaline (9d) [CAS: 3719-84-4] [47]. 76% yield (141.4 mg); m.p. 142–
144 ◦C; 1H NMR (400 MHz, CDCl3): δ 8.16–8.13 (m, 2H), 7.74–7.71 (m, 2H), 7.43 (d,
J = 8.2 Hz, 4H), 7.14 (d, J = 8.2 Hz, 4H), 2.36 (s, 6H).

2,3-Bis(4-fluorophenyl)quinoxaline (9e) [CAS: 148186-43-0] [48]. 63% yield (120.2 mg);
m.p. 134–136 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.16 (dd, J = 6.3, 3.2 Hz, 2H), 7.78 (dd,
J = 6.3, 3.6 Hz, 2H), 7.52–7.49 (m, 4H), 7.05 (t, J = 8.6 Hz, 4H).



Materials 2021, 14, 4271 11 of 13

4. Conclusions

In this study, we describe in detail the transition-metal-catalyzed diarylation of iso-
cyanides with triarylbismuthines. When rhodium complexes were used as the catalyst in
the diallylation reaction, ketimines (with one molecule of isocyanide incorporated) were
highly selectively formed, whereas when palladium-based catalyst was used, α-diimines
(with two molecules of isocyanide incorporated) were formed preferentially. For the pur-
pose of further elucidating the details of this catalytic system, the effects of catalyst, solvent,
and reaction temperature on the diarylation were investigated in detail to optimize the
reaction conditions and determine the byproducts. Furthermore, the palladium-catalyzed
diarylation was successfully applied to the cascade synthesis of quinoxalines via the forma-
tion of α-diimines as key intermediates.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14154271/s1, Figure S1: Copies of 1H and 13C{1H} NMR spectra.
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