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SUMMARY

Optical neuronal imaging often shows ultrafine structures, such as a nerve fiber,
coexisting with ultrabright structures, such as a soma with a substantially
higher fluorescence-protein concentration. Owing to experimental and environ-
mental factors, a laser-scanning multiphoton optical microscope (MPM) often
encounters a high-frequency background noise that might contaminate such
weak-intensity ultrafine neuronal structures. A straightforward contrast
enhancement often leads to the saturation of the brighter ones, and might
further amplify the high-frequency background noise. We report a digital
approach called rapid denoised contrast enhancement (DCE), which digitally
mimics a hardware-based adaptive/controlled illumination technique by means
of digitally optimizing the signal strengths and hence the visibility of such
weak-intensity structures while mostly preventing the saturation of the bright-
est ones. With large field-of-view (FOV) two-photon excitation fluorescence
(TPEF) neuronal imaging, we validate the effectiveness of DCE over state-of-
the-art digital image processing algorithms. With compute-unified-device-archi-
tecture (CUDA)-acceleration, a real-time DCE is further enabled with a reduced
time complexity.

INTRODUCTION

Optical microscopy (Wang and Xia, 2019; Davidson and Abramowitz, 2002; Lichtman and Conchello,

2005), a widely used technique for neuronal imaging, has been helping researchers over the past several

decades visualize and understand various neurological disorders, brain functions and dysfunctions.

Neuronal structures (Yang and Yuste, 2019; Gao et al., 2019; Zheng et al., 2018) often show a wide varia-

tion in structural texture and signal strength. For instance, while imaging a neuron, the soma, that is, the

cell body, is often expected to be substantially brighter than the adjacent fiber structures, such as axons

and dendrites, which can be thinner than even a micron in diameter. This essentially leads to a broad

signal intensity distribution, which is less likely to be properly visualized with a limited dynamic range

of an acquisition and display system. Additionally, various optical, electrical, and environmental factors

often result in a noisy background which contaminates the weaker intensity signals and worsens the

signal-to-noise ratio (SNR) as well as the contrast ratio. Aside from this, to prevent possible photobleach-

ing and/or phototoxicity (Icha et al., 2017), that is, laser-induced damage to tissue under observation, it is

often recommended to maintain a low enough excitation power, which in turn further deteriorates the

signal strength from an ultrafine neuronal structure. Likewise, while performing a three-dimensional

(3D) optical sectioning of a deep volumetric tissue sample (Kobat et al., 2009, 2011), owing to fre-

quency-dependent scattering and absorption issues (Jacques, 2013; Ntziachristos, 2010), the signal-of-in-

terest tends to degrade even further as one penetrates deeper into the tissue. The issue gets even worse

owing to the non-ideal optical performance of a scanning system. Particularly for a large imaging area in a

mesoscopic imaging system (Sofroniew et al., 2016; Bumstead et al., 2018; Pacheco et al., 2017; Kernier

et al., 2019), the optical aberrations (Egner and Hell, 2006) become prominent toward the edges and cor-

ners, unavoidably leading to non-uniform excitation and detection efficiencies across the FOV. This essen-

tially further reduces the signal strengths of the weaker structures residing at the off-axis locations. As a

matter of fact, the weaker intensity signals from the ultrafine neuronal structures tend to get closer and

closer to the noisy background, even when the bright pixels of the image are almost saturated. It thus

becomes a challenging task to retrieve such weaker structures with an adequate SNR and a high contrast
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ratio together with the brighter ones, all amidst a strong noisy background. A straightforward attempt to

enhance the contrast of such weak-intensity structures might lead to the amplification of noise, and addi-

tionally, it is very likely that the brightest structures tend to saturate.

Several hardware-based techniques have been reported over the years to address the dynamic range lim-

itation in optical microscopy, which can locally enhance the weaker structures while preventing brighter

structures from saturating. One promising solution is to regulate the excitation power in real-time. In

such an approach, a feedback mechanism is utilized which monitors the emerging signal strength and

accordingly provides suitable feedback to a tunable excitation source to regulate the excitation power

(Ji et al., 2008; Yang et al., 2017; Chu et al. 2007, 2010; Hoebe et al., 2007). Another approach is to employ

a real-time high dynamic range (HDR) imaging (Vinegoni et al., 2016, 2019; Feruglio et al., 2020), which col-

lects multiple low dynamic range (LDR) images over multiple optically-separated detection channels, and

subsequently fuse them together to form the HDR image. However, implementing these techniques re-

quires dedicated hardware configurations. For instance, a proper feedback electronic circuit, a tunable

excitation source, and at least one dedicated channel for monitoring the output signal strength are

required for a regulated/controlled/adaptive illumination to work. A typically slower response owing to

electronic limitations might, however, lead to a poor effective pixel-sampling rate especially when each

digitized pixel is required to be illumination optimized. A lower effective pixel-sampling rate might lead

to a Nyquist figure-of-merit (NFOM) (Borah et al., 2021) of less than 1, and might in turn result in aliasing

(Pawley, 2006; Heintzmann and Sheppard, 2007), that is, an irreversible loss of digital resolution, especially

when concerning a high spatial resolution over a largemillimeter-scale FOV. Furthermore, such amethod is

often not immune to noise-amplification while locally enhancing a weak-intensity structure. Likewise, in

case of real-time HDR imaging, multiple channels are dedicated to detect the same spectral regime

with different signal strengths, and thus multi-spectrum detection for multi-color imaging becomes com-

plex in the context of optical design implementation.

Quite a few software-based approaches have been developed either to enhance the contrast and/or sharp-

ness of an image while minimizing the non-uniform illumination issue or to perform various image-segmen-

tation operations. A few of the techniques employ the subtraction of a mask/layer, which involves analyzing

the relevant image or image stack, generating subtraction mask(s) accordingly, and finally subtracting the

same from the original image. Traditional and modified unsharp masking methods (Russ, 2006; Kaur et al.,

2021; Ye and Ma, 2018; Duan et al., 2019; Polesel et al., 2000; Joseph et al., 2019), no-neighbor/nearest-

neighbors method (Agard, 1984), rolling ball/sliding paraboloid background subtraction (Sternberg,

1983; Kelley and Paschal, 2019) are some of the popular techniques in this regard. Recently, we have re-

ported a modified unsharp masking algorithm (Borah and Sun, 2021), which was dedicated to suppress

high-frequency noise in the background while mostly preserving useful information. This approach was,

however, limited to suppression of noise and was further constrained by choices of multiple controlling pa-

rameters. There are several other noteworthy algorithms/techniques (Sticker et al., 2020; Liu et al., 2020;

Hassan and Carletta, 2006; Bai et al., 2012; Zhao and Lu, 2017; Sysko and Davis, 2010; Cannell et al.,

2006; Malkusch et al., 2001; Kuru, 2014; Lefkimmiatis et al., 2012; Poon et al., 2008; Syed et al., 2008; Sel-

vaggio et al., 2013) which have been improving the image quality over the past several years. Aside from

them, another widely used approach to eliminate high-frequency noise which can help improve both

SNR as well as contrast ratio is to perform certain morphological operations (Huang and Zhu, 2009),

such as erosion and opening. However, while performing an erosion operation, it is quite possible that

certain high-frequency useful information from the image gets removed. A subsequent dilation operation

(i.e., an opening operation involving erosion followed by dilation) might no longer be able to regenerate

the lost information, and thus might lead to an irreversible resolution loss. Another promising approach to

improve image contrast is to perform a traditional, or an adaptive histogram equalization (HE, or AHE)

(Mustafa and Kader, 2018; Singh et al., 2019; Ismail and Sim, 2011; Zimmerman et al., 1988; Pizer et al.,

1987; Li et al., 2013). However, when an image consists of a noisy background, HE, or AHE might lead to

an amplification of noise and thus SNR might degrade significantly. An improved version of AHE, that is,

contrast limited adaptive histogram equalization (CLAHE) (Stimper et al., 2019; Mohan and Ravishankar,

2013; Pisano et al., 1998) is a widely used state-of-the-art local contrast enhancement technique that can

limit the noise-amplification issue significantly. However, the issue of noise-amplification might still persist

in case of an optical microscopy image owing to the fact that a significant portion of the image might not

possess useful information but might consist of a strong noisy background only, which we do not intend to

amplify or enhance.
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Here we report a dedicated-hardware-free rapid DCE method to locally enhance the visibility of especially

the noise-corrupted weak-intensity structures in terms of both contrast ratio and signal-to-noise ratio while

mostly preventing the saturation of the brightest ones. The proposedmethod involves an efficient high-fre-

quency noise rejection followed by a local intensity enhancement while optimizing the signal strengths or

pixel intensities across a digitized image. As we have stated above, the weak-intensity structures often

reside amidst a strong noisy background leading to low-contrast poor visibility. Our efficient noise rejec-

tion brings the background close to zero virtually resembling a laser-off state in the regions lacking low-fre-

quency retrievable information. At the same time, the method locally preserves and selectively enhances

the low-frequency information resembling selective laser-on states. This combined effect digitally mimics

the hardware-based adaptive/controlled illumination technique and drastically improves the contrast ratio

of the weak-intensity structures. To demonstrate the same in the context of neuroimaging, we performed

large-FOV Nyquist-satisfied (aliasing-free) two-photon excitation fluorescence (TPEF) imaging of brain/

neuronal structures at multiple excitation wavelengths with our custom-developed multiphoton micro-

scope (MPM) (Borah et al., 2020, 2021). The effectiveness of our proposed DCE algorithm is validated by

retrieving weak-intensity ultrafine neuronal structures amidst a strong noisy background, while achieving

simultaneous improvements to the signal-to-noise ratio (SNR), signal-to-background ratio (SBR), and

contrast ratio. To secure real-time applicability, we implement our DCE method via Graphics Processing

Unit (GPU)-assisted NVIDIA’s Compute Unified Device Architecture (CUDA)-acceleration with a <3 ms of

time complexity for a typical 1000 3 1000-sized input dataset in 16-bit unsigned format.

RESULTS

Description and working principle of the proposed rapid denoised contrast enhancement

method

The proposed DCE method involves a noise-suppressed contrast optimization to enable simultaneous

boosts to SNR, SBR, and a contrast ratio of a noise-contaminated MPM image. Let us assume an input

image as INP. The goal of DCE is to first suppress the noisy background and then to locally boost the

structural details.

We employ the subtraction of a layer from INP so as to reject the high-frequency noisy background before

performing the local boost. For efficient suppression of noise, this layer is thus expected to possess high

enough pixel intensities at those regions corresponding to the noisy background in INP. At the same time,

the layer should ensure zero pixel intensities corresponding to the low-frequency structural information in

INP to preserve them well during subtraction.

Note that a straightforward subtraction of a blurred version of INP from INP is not suitable to obtain this

layer, as a blurred version always attains lower pixel intensities compared to the original one, and thus

the regions corresponding to the low-frequency structures in INP would be left with non-zero intensities.

Furthermore, a pixel intensity in this layer corresponding to a noise pixel in INP would be often weaker

than the noise pixel itself, and subsequent strengthening of the layer would make the non-zero intensities

corresponding to the low-frequency details even stronger, leading to loss of low-frequency information

while noise suppression.

Alternatively, if INP is subtracted from its blurred version, it is most likely that the low-frequency regions

would become zero in the layerwhich is, indeed, one of our purposes. However, the intensities correspond-

ing to the noise pixels would also be reduced down to zero which we do not intend. It is, however, notable

that a noise pixel in this casemeans a pixel whose intensity is considerably higher than its neighbors. Owing

to the first blur operation, neighbors of a noise pixel have already attained non-zero values, as a blur oper-

ation helps redistribute a pixel intensity toward its neighbors. Therefore, if a second blur is applied, it be-

comes likely that a pixel corresponding to noise in INP would become non-zero owing to intensity redis-

tribution from the non-zero neighbor pixels. Note that the zero intensity pixels corresponding to the

low-frequencies in INP still remain zero, though the edges would slightly be affected by the second blur.

Note that as the noise pixels in INP showa high-frequency nature, that is, with considerably darker neighbors, the

blur operations would leave much weaker intensities in the layer, which are usually not strong enough to cancel

the noise on subtraction. To improve this situation,weprefer to locally amplify INP close to saturationbefore per-

forming the above steps. It is important thatwedonotmuchamplify a strong-intensity structure/location toavoid

excessive saturation of that entire region. Otherwise, such a highly saturated region would be treated as a single
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low-frequency structure, and the proposedmethod thereaftermight no longer be able to enhance aweak-inten-

sity structure residing inside that specific region. Therefore, aglobal amplificationof INP isnot recommended. To

locally amplify INP, we generate a first amplification layer a (r, c) to be pixel-wise multiplied with INP. As we have

statedabove, the idea is to take the imageclose to saturation, yet notover-saturating the strong intensity regions.

To achieve the same, adequately smooth version of INP is first obtained by subsequent downscaling, Gaussian

blurring, and upscaling operations. a (r, c) is then estimated by diving 90% of maximum intensity level by this

smooth version of INP. The maximum intensity level, in this case, is simply 2 bit-depth -1, that is, 65,535 for a 16-

bit unsigned image, or 255 for an 8-bit unsigned image. Thus, when a (r, c) is multiplied with INP, it will take

the low/moderate intensity regions close to saturation, while the strong intensity locations will remainmostly un-

affected. It is important to note that an adequately smooth version of INP should be used here to obtain a (r, c).

The purpose is tominimize abrupt intensity change resulting frommultiplication, and thereby to avoid probable

image artifacts. Furthermore, note that we propose employing subsequent downscaling, Gaussian blurring, and

upscaling operations to obtain this smooth version. The reason is simply to yield an adequate smoothness with a

practical blur-kernel size.Without the resizingoperations, a typicalGaussianblur alonewouldotherwise requirea

much larger kernel to produce a comparable smoothness, whichmight become computationally expensive and

might not be supported by a standard computer vision library. In our observation, a resize factor of 10 and a

Gaussian kernel size of 293 29 (to be an odd number%31 to be implemented viaOpenCV) should be adequate

to produce a sufficiently smooth version of INP, which can be of course further optimized based on one’s visual

perception.Note that we propose truncatinga (r, c) at a user-defined value amax. Thepurpose of the samewould

beelaborated in the following paragraphs. INP canbe thus locally amplifiedperformingpixel-wisemultiplication

witha (r, c). Let us assume the amplified version tobeg (r, c). As stated in the previous paragraph,g (r, c) is now to

be subtracted from its blurred version which is, however, not required to be excessively smooth like the above

case involving multiplicative amplification. In our observation, a resize factor of three and a Gaussian kernel

size of 29 3 29 should be sufficient, yet can be optimized based on visual perceptions. The subtraction result

would go through a secondGaussian blur yielding non-zero intensities corresponding to the noise components

in INP. Let us consider the resultant image as L=ðr;cÞ. Note that a kernel size of at least 333would be required for

the same.A larger kernel would assist an aggressive noise-rejection, however,might tend to suppress retrievable

informationaswell (especially theweaker andfinerdetails). Inourobservation, a 737 kernel shouldbe suitable for

typical use, which can be further optimized as per visual perceptions.

At the next step, we use the same a (r, c) to obtain a second amplification layer to locally strengthen L=ðr; cÞ
for an efficient noise rejection on subtraction from INP. We do not recommend a global strengthening of

L=ðr; cÞ so as to minimize weakening or loss of especially the high-resolution morphologies with weaker in-

tensities. As we have discussed earlier, for a conventional optical microscopy system especially with a large

FOV, it is unavoidable to experience non-uniform excitation efficiency. Typically, the excitation efficiency is

often higher at the central FOV, which might induce a stronger background as well. Besides, depending on

the type, structural details, and fluorophore concentration distribution of a sample, it might happen that

some regions appear to have a comparatively stronger background than the other. Note that a (r, c) already

holds the information of the intensity distribution, where a higher a value means a lower pixel intensity of

INP. However, to strengthen L=ðr; cÞ at the high-intensity locations, we require an amplification layer where

a higher value corresponds to a higher INP intensity. Therefore, we propose subtracting a (r, c) from 1.25

times amax to get this second amplification layer. Note that the factor 1.25 in our case prevents zeros after

subtraction, as no values in a (r, c) can be higher than amax. This is where the truncating of a (r, c) becomes

helpful. Furthermore, note that a factor other than 1.25, which, however, must be greater than 1, would be

also acceptable for the method to work. A higher factor would, however, more aggressively suppress the

background. L=ðr; cÞ is thus locally strengthened by pixel-wise multiplying with this second amplification

layer and the final layer is subtracted from INP to obtain a noise-suppressed output. Let us assume the

output to be S (r, c).

At the next step, we target local enhancement of the weaker intensity structures. We propose a third

amplification layer again based on the same a (r, c) to be pixel-wise multiplied with S (r, c). We do not intend

to saturate the morphologies already with high intensities. The basic criterion for this third amplification

layer is, therefore, to attain close to unit values corresponding to the bright enough regions, whereas

higher values are expected corresponding to the weaker intensity regions to adequately enhance the

same. There might be numerous ways to achieve such behavior. For instance, we may define an expression

as X + {a (r, c) / Y}n, where X, Y, and n can be carefully chosen to serve our purpose. Let us consider a bright

low-frequency structure with an intensity of more than 70% of the maximum level. This would typically lead
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to an a of less than 2. We thus might assign X = 0.9, Y = 4.0, and n = 2.0, so that the above expression pro-

vides a value close to 1. On the other hand, for a weaker intensity structure, a becomes higher depending

on the choice of amax, and thus a higher amplification factor would be obtained. Again, one might choose,

for instance, Y = 3.0 and/or a cubic power as n = 3.0 to provide an aggressive enhancement of the weaker

intensity structures which might be helpful in some situations, such as reducing a vignetting issue in an

ultra-large FOV imaging scenario as we stated earlier. Nevertheless, the X, Y, and n values can be optimized

or alternative mathematical expression can be defined based on one’s visual perception and specific appli-

cation requirement. Finally, the locally amplified S (r, c) would yield the noise-suppressed contrast-

enhanced output.

Implementation of denoised contrast enhancement in large-field-of-viewmultiphoton optical

microscopy imaging

A basic block diagram representation of our data acquisition, processing, and display strategies is pre-

sented in Figure 1. A simple laser-scanning fluorescence detection unit is shown in the red dashed box

in Figure 1A, where EXC and DBS, respectively, stand for a raster-scanning excitation beam emerging

from a laser source which gets focused onto a biological sample by means of an objective lens, and a

dichroic beam splitter for separating and guiding the generated fluorescence signal as indicated by the

green arrows toward an electronic detection unit comprising of a photomultiplier tube (PMT), a transimpe-

dance amplifier, and a digitizer with an adequate sampling rate. Once a frame is scanned and data become

ready-to-process, the raster-scanning system is free to acquire the next frame, provided the number of

pending frame(s) to process is not more than one and adequate data buffers are available. Note that

most of the state-of-the-art digitizers are capable of providing high-bit-depth data, and therefore, we

will demonstrate our approach for 16-bit unsigned format. Up to this point, tomaintain the data-acquisition

process, single or multiple CPU threads can be dedicated as per the choice of the digitizer and relevant

Application Programming Interfaces (APIs) available.

To comprehend the implementation steps, please refer to Figure 1B. Once a two-dimensional (2D) dataset

was acquired, we first ensured that the previous frame had been processed/displayed, and then started

downloading the previously processed data from GPU in an asynchronous manner. Immediately, the newly

acquired frame was asynchronously uploaded to the GPU and the whole set of subsequent PROCESS tasks

were scheduled thereafter. Following this step, we ensured that the scheduled download was complete

and displayed the downloaded result via a different CPU thread. In the meantime, the main thread re-

armed for the next frame. Figure 1C illustrates the PROCESS tasks in terms of a simplified block diagram.

For a mathematical formulation, let us first assume a noise-affected low-contrast image f (r, c) in 16-bit un-

signed format, marked as INP in Figure 1C with R3C pixels, where r and c stand for row and column posi-

tions, respectively. Applying a 103 downscaling to f (r, c) we obtain f Dðr=; c=Þ with a reduced pixel number

of R/3C/, as depicted in Equation 1 and RES1 in Figure 1C. Note that for all R/3C/-sized images, r/and

c/stand for row and column positions, respectively. Now, a 29 3 29-kernel Gaussian blur is applied to

f Dðr=; c=Þ; and the blurred result is marked as BLR1 in Figure 1C. To avoid division-by-zero in the next

step, each pixel-value of BLR1 is added with 1.0, and the resultant image is denoted as lðr=; c=Þ in Equation 2

and ADD in Figure 1C. With a bilinear interpolation, lðr=; c=Þ is resized back to R3C pixels and the interpo-

lated result is denoted as lU (r, c) in Equation 3 and RES2 in Figure 1C. An inverse of each lU (r, c)-pixel-value

is now multiplied with 90% of the maximum allowed intensity, that is, 0.9 3 (216 -1) in this example, and the

result is given as d (r, c) in Equation 4. Note that d (r, c) involves nothing but a division operation, and is

marked as DIV in Figure 1C. Each pixel value of d (r, c) above amax is truncated to amax, and the resultant

layer is denoted as a (r, c) in Equation 5 and LAY1 in Figure 1C.

f ðr ; cÞ /
R3C / R= 3C=

f D
�
r=; c=

�
; (Equation 1)

l
�
r=; c=

�
=
h
G293 29 5 f D

�
r=; c=

�i
+ 1:0; (Equation 2)

l
�
r=; c=

�
/

R= 3C= / R3C
lUðr ; cÞ; (Equation 3)

dðr ; cÞ = 0:93
�
216 � 1

�
lUðr ; cÞ ; (Equation 4)

aðr ; cÞ =
�
amax ; if dðr ; cÞ>amax

dðr ; cÞ; otherwise : (Equation 5)
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Now, a pixel-to-pixel multiplication of f (r, c) and a (r, c) is performed, and thereby AMP1 in Figure 1C and g

(r, c) in Equation 6 is obtained.With a 33 downscaling on g (r, c) we obtain RES3 in Figure 1C and gDðr==; c==Þ
in Equation 7 with a reduced pixel number of R//3C//, where r//and c//stand for row and column positions,

Figure 1. Block diagram representation of data acquisition, DCE process, and display strategies

(A) A fluorescence detection unit, EXC: raster-scanning excitation beam, DBS: dichroic beam splitter. EXC gets focused

onto the sample via objective lens. DBS separates and guides fluorescence signal (green arrows) toward detection unit

comprising of photomultiplier tube (PMT), transimpedance amplifier, and digitizer.

(B) To ensure a real-time operation, proposed implementation asynchronously downloads the previous frame,

asynchronously uploads the current frame, schedules PROCESS tasks for the current frame, displays the previous frame

via a separate thread, and re-arms.

(C) PROCESS tasks. INP: input data in 16-bit unsigned format, RES1: 103 downscaled INP, BLR1: 293 29-kernel Gaussian-

blurred RES1, ADD: BLR1 added with 1.0, RES2: upscaled ADD, DIV: (90% of (216�1)) divided by RES2, LAY1: truncated DIV

at amax, AMP1: INP multiplied with LAY1, RES3: 33 downscaled AMP1, BLR2: 29 3 29-kernel Gaussian-blurred RES3,

RES4: upscaled BLR2, SUB1: subtraction of AMP1 from RES4, BLR3: 737-kernel Gaussian-blurred SUB1, SUB2 or LAY2:

subtraction of LAY1 from 1.25 times amax, AMP2: BLR3 multiplied with LAY2, SUB3: subtraction of AMP2 from INP, LAY3:

square of one-fourth of LAY1 added with 0.9, AMP3: SUB3 multiplied with LAY3; OUT: output data in 16-bit unsigned

format; controlling parameter recommended range: 3.0 % amax % 8.0. Refer to Figure S1 for the visualization of the

important intermediate steps.
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Figure 2. Demonstration of DCE in fluorescence microscopy imaging

(A and C) TPEF images of Nav1.8-tdTomato-positive mouse dorsal-root-ganglion (DRG) section and Thy1-GFP-positive mouse brain section, respectively,

with FOV of 1 3 1 mm2, scale bar of 150 mm.
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respectively. A 29 3 29-kernel Gaussian blur is applied to gDðr==;c==Þ, and the blurred result is obtained as

Lðr==; c==Þ in Equation 8 and BLR2 in Figure 1C. With a bilinear interpolation, Lðr==; c==Þ is resized back to

R3C pixels and the interpolated result (RES4 in Figure 1C) is denoted as LU (r, c) in Equation 9. Now, a sub-

traction of LU (r, c) and g (r, c) is performed whose result is marked as SUB1 in Figure 1C, and a 737-kernel

Gaussian blur is subsequently applied to SUB1. The blurred result thus obtained is depicted as L=ðr; cÞ in
Equation 10 and BLR3 in Figure 1C.

gðr ; cÞ = f ðr ; cÞ3aðr ; cÞ; (Equation 6)

gðr ; cÞ /
R3C / R== 3C==

gD
�
r==; c==

�
; (Equation 7)

L
�
r==; c==

�
=G293 295gD

�
r==; c==

�
; (Equation 8)

L
�
r==; c==

�
/

R== 3C== / R3C
LUðr ; cÞ; (Equation 9)

L=ðr ; cÞ = G73 75
�
LUðr ; cÞ�gðr ; cÞ�: (Equation 10)

Sðr ; cÞ = f ðr ; cÞ � L=ðr ; cÞ3 ½1:25 3 amax �aðr ; cÞ�; (Equation 11)

Fðr ; cÞ = Sðr ; cÞ3
h
0:9 + faðr ; cÞ= 4:0g2:0

i
: (Equation 12)

Based on a (r, c), a modified layer is obtained as 1.25 3 amax - a (r, c) which is marked as SUB2 or LAY2 in

Figure 1C. Each pixel-value of L=ðr; cÞ is now multiplied with each corresponding pixel-value in LAY2, and

the result is marked as AMP2 in Figure 1C. Subsequently, AMP2 is subtracted from f (r, c) to obtain a noise-

suppressed output S (r, c) as depicted in Equation 11 and SUB3 in Figure 1C. Based on the same a (r, c)

another layer LAY3 in Figure 1C is now obtained as 0.9 + {a (r, c) / 4.0}2.0, and finally each pixel-value of

S (r, c) is multiplied with each corresponding pixel-value of LAY3, and thereby the noise-suppressed

contrast-enhanced output is obtained as F (r, c) in Equation 12 and OUT in Figure 1C.

Demonstration of denoised contrast enhancement via two-photon excitation fluorescence

images of neuronal structures

To demonstrate our approach, we acquire TPEF images of a Nav1.8-tdTomato-positive mouse dorsal-root-

ganglion (DRG) section comprising of somas and fine axon fibers, and a coronal section from a Thy1-GFP-

positive mouse brain cortex region comprising of axons, dendrites, and dendritic-spines, excited at central

wavelengths of 1070 and 919 nm (70MHz, <60 fs), respectively, with an average excitation power of <40mW

in each case (refer to to STAR Methods). Figures 2A and 2C depict two two-photon images of the Nav1.8-

tdTomato and Thy1-GFP samples, respectively, each with a FOV of 1 3 1 mm2, scale bar of 150 mm, how-

ever, each with poor SNR, SBR, and contrast ratio. To improve the same, proposed DCE is applied, and

based on the visual response, the value of amax is adjusted to (A) 8.0 and (C) 6.0, and the corresponding

noise-suppressed contrast-enhanced results are depicted in Figures 2B and 2D, respectively. Note that

we maintain pixel sizes of around 182 and 167 nm for the excitation wavelengths of 1070 and 919 nm,

respectively. We thus satisfy the Nyquist–Shannon criterion (Nyquist, 1928; Shannon, 1949) and ensure

aliasing-free imaging (Pawley, 2006; Heintzmann and Sheppard, 2007) for our 0.95 numerical-aperture

(NA) objective lens with diffraction-limited two-photon resolutions of 429 and 368 nm for the respective

excitation wavelengths.

To visualize the effectiveness of DCE, an adequatemagnification is required. We thus perform a 123 digital

zoom and crop out three 458 3 458-sized regions-of-interest (ROIs) from the original 5500 3 5500 (R3C)-

pixel Nav1.8-tdTomato-image, marked as R1-3 in Figures 2A and 2B with unique colored-dashed boxes.

The magnified ROIs are shown on the right side of Figure 2B, each with a scale bar of 15 mm. Likewise,

another three 4903 490-sized ROIs from the original 60003 5926 (R3C)-pixel Thy1-GFP-image aremarked

as R4-6 in Figures 2C and 2D, which are zoomed alongside, each with a 15 mm scale bar. At this point, the

effectiveness of DCE can be visualized with an observation of the two ROI columns for R1-6, indicating

before- and after-processing scenarios. Remarkably, the cell bodies in R1-3 are enhanced, yet well-pre-

served against saturation while enhancing the nearby weaker fibers.

Figure 2. Continued

(B and D) Noise-suppressed contrast-enhanced results with (A) amax = 8.0 and (C) amax = 6.0, respectively; R1-3 and R4-6: 458 3 458-sized and 490 3 490-

sized regions-of-interest (ROIs), respectively, cropped from A and B, and C and D, respectively, with scale bar of 15 mm; C1-6: 50 3 50-sized ROIs cropped

from red-arrow marked locations in R1-6. (E) Intensity profiles along L1-6 (in C1-6), and (F)-(H) SNR, SBR, and contrast ratio plots for R1-6.

(E–H) Validate significant improvements on SNR, SBR, and contrast ratio; red and gray colors indicate before- and after-process cases, respectively. Refer to

Figures S2 and S3 for two additional examples being demonstrated via the proposed method.
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To better study the effect, we select 503 50-sized ROIs from the red-arrow-marked locations in the before-

and after-process sets of ROIs (R1-6), which are again zoomed as C1-6 sequentially. In Figure 2E, we now

plot intensity profiles along the red-dotted lines L1-6 (marked in C1-6), where red and gray colors indicate

before- (INP) and after-process (OUT) cases, respectively. We observe that in each case (L1-6), DCE effec-

tively suppresses the noise contamination and drastically improves the contrast of the fine and weak-inten-

sity neuronal structures.

Furthermore, extending our demonstration, two 535-sized ROI-1 and ROI-2 are taken from a signal loca-

tion and a noise-affected background location, respectively, for each case of R1-6. For each ROI-1, we

calculate the mean (mROI - 1), and for each ROI-2, we calculate the mean (mROI - 2) and SD (sROI - 2), and

we simply define SNR, SBR, and contrast ratio as (mROI - 1 / sROI - 2), (mROI - 1 / mROI - 2), and ((mROI - 1 - mROI

- 2) / (mROI - 1 + mROI - 2))3 100%, respectively. Following these definitions, the SNRs, SBRs, and contrast ratios

for R1-6 are evaluated and plotted in Figures 2F–2H, respectively. The red and gray bars stand for before-

(INP) and after-process (OUT) scenarios, respectively. These plots essentially validate significant improve-

ments on SNRs, SBRs, and contrast ratios for all the cases. Note that to yield a consistent analysis, we will be

using the same ROI and line locations, and the same definitions of SNR, SBR, and contrast ratio throughout

the following analysis of our article.

Demonstration of single-parametric control: effect of amax over signal-to-noise ratio, signal-

to-background ratio, and contrast ratio

To quantitatively visualize the effect of amax over SNR, SBR, and contrast ratio, we demonstrate Figure 3.

From Figure 2, we take the same ROIs R1 and R2 for the Nav1.8-tdTomato image, and R4 and R5 for the

Thy1-GFP image. The first row (INP) in Figure 3A shows the unprocessed ROIs R1-2 and R4-5, sequentially.

Now, we gradually increase amax from 3.0 to 8.0, and corresponding outputs are depicted in succeeding

rows. The same sets of 535-sized ROIs as stated in the previous section (Figure 2) are considered and

corresponding values of SNRs, SBRs, and contrast ratios are evaluated for R1-2 and R4-5 for each case

of unprocessed input (INP) and corresponding outputs for amax values of 3.0, 4.0, 5.0, 6.0, 7.0, and 8.0.

In Figure 3B, we plot the SNRs, SBRs, and contrast ratios for R1-2 and R4-5 in the first and second columns,

respectively. We observe that as amax gradually increases, all three parameters SNR, SBR, and contrast ratio

tend to improve. SNR and SBR rapidly improve as amax goes above 6.0 in case of R1-2, and 4.0 in case of R4-

5. The contrast ratio tends to improve gradually for amaxR 3.0 for each case. We do observe that both sROI -

2 and mROI - 2 as defined in the previous section become zero for amaxR 9.0 in case of R1-2, and amaxR 7.0 in

case of R4-5. Continuing our assessment, Figure 3C plots the intensity profiles along L1-2 and L4-5 (see Fig-

ure 2, C1-2 and C4-5) for each case of INP (red) and respective outputs with amax values of 3.0 (green), 4.0

(black), 5.0 (orange), 6.0 (blue), 7.0 (magenta), and 8.0 (gray). These intensity profiles essentially illustrate

the progress of simultaneous noise-suppression and contrast enhancement with increasing amax. A simple

observation of the red and gray curves in L1-2, and the red and blue curves in L4-5 justifies the effectiveness

of the proposed DCE algorithm.

Comparison with a few alternative software-based enhancement techniques

To ensure a fair comparison, we apply several alternative image processing methods to the full-FOV un-

cropped image of Nav1.8-tdTomato sample previously shown in Figure 2A. For a convenient visualization,

however, we consider the same ROIs R1, R2, and R3 (marked in Figure 2) and crop them out. The first row (1)

in Figure 4A shows these three ROIs, each with a scale bar of 15 mm. The subsequent rows in Figure 4A show

the results of (2) multiplicative gain enhancement, (3) minimum-maximum range adjustment, (4) histogram

equalization (HE), (5) contrast-limited adaptive histogram equalization (CLAHE), (6) unsharp masking (UM),

(7) morphological erosion, (8) morphological opening, (9)-(10) rolling ball and sliding-paraboloid back-

ground subtractions, and finally, (11) DCE, for each case of R1-3. Now, following the same sets of 535-sized

ROIs used in the previous section (Figure 2), we evaluate the SNR, SBR, and contrast ratio for each case/

method (1)-(11) and for each ROI (R1-3), and subsequently plot them in Figure 4B, where gray, orange,

and cyan bars denote the results for R1, R2, and R3, respectively. Further extending our comparison, in Fig-

ure 4C, we plot the intensity profiles along L1-3 (see Figure 2, C1-3) for each case of (1)-(11).

From both analyses in Figures 4B and 4C, we observe that for morphological erosion (7) and opening (8),

the SNRs tend to increase as they reduce high-frequency noise components resulting in a lower noise SD;

however, SBRs and contrast ratios do not show a substantial improvement. In case of rolling ball and sliding
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paraboloid background subtractions (9)-(10), the contrast ratios tend to improve, however, the signal infor-

mation tends to reduce simultaneously in each case (Figure 4C, 9-10), and no substantial SNR- and SBR-im-

provements are observed. Likewise, CLAHE (5) improves the contrast ratios, however, might still encounter

noise-amplification and might result in poor SNR especially when a higher clip limit is used. Contradicting

such approaches (2)-(10), DCE (11) successfully enhances SNRs, SBRs, and contrast ratios all at the same

time. It is further remarkable that while enhancing the visibility of weaker structures, DCE mostly prevents

Figure 3. Demonstration of single-parametric control: effect of amax over SNR, SBR, and contrast ratio

(A) ROIs R1-2 and R4-5 (from Figure 2), for unprocessed case (INP), and processed cases with amax values of 3.0, 4.0, 5.0, 6.0, 7.0, and 8.0, sequentially, scale

bar: 15 mm.

(B) SNR, SBR, and contrast ratio plots for R1-2 and R4-5 in the first and second columns, respectively; SNR and SBR show rapid improvements as amax goes

above 6.0 in R1-2, and 4.0 in R4-5; contrast ratio improves gradually for amax R 3.0 in each case.

(C) Intensity profiles along L1-2 and L4-5, plotted for INP (red), and respective outputs with amax values of 3.0 (green), 4.0 (black), 5.0 (orange), 6.0 (blue), 7.0

(magenta), and 8.0 (gray), demonstrating simultaneous noise-suppression and contrast enhancement with increasing amax.
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Figure 4. Comparison with a few alternative software-based enhancement techniques

(A) ROIs R1, R2, and R3 (from Figure 2) with a scale bar of 15 mm, depicted for (1) INP (unprocessed), (2) multiplicative gain

enhancement, (3) minimum-maximum range adjustment, (4) histogram equalization (HE), (5) contrast-limited adaptive

histogram equalization (CLAHE), (6) unsharp masking (UM), (7) morphological erosion, (8) morphological opening, (9)-(10)

rolling ball and sliding paraboloid background subtractions, and (11) proposed DCE.
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the saturation of the brighter ones. For instance, the bright cell-bodies in R3 have mostly been saturated in

case of (2) and (3), whereas they are well preserved in our case (11).

Assessment and comparison of time complexity, and validation of real-time applicability

Figure 5A plots the average processing time for DCE in milliseconds with respect to the input image size

(16-bit unsigned format). The red curve depicts average processing time via a conventional CPU Intel i7-

9800X consuming up to �2000 ms for a 10,000 3 10,000-sized input under a single-threaded execution.

The blue and green curves indicate average processing time via two CUDA-enabled GPUs, that is, Quadro

P1000 and Quadro RTX 8000 with CUDA-core numbers of 640 and 4608, respectively. Both these GPUs

show a significant improvement in the processing speed. For instance, RTX 8000 consumes only

�111ms for a 10,0003 10,000-sized input, which seems to be around 18 times a performance boost in com-

parison to 9800X. Likewise, for a 10003 1000-sized input, the processing time for 9800X is�21ms, whereas

RTX 8000 takes <3 ms for the same.

We now compare our processing time with a widely used state-of-the-art technique, contrast limited adap-

tive histogram equalization (CLAHE). For a reasonable comparison, both CLAHE and DCE are tested

through RTX 8000 while using 16-bit unsigned format images. In Figure 5B, the green curve plots the

average processing time for DCE, while the others plot the same for CLAHE at different tile grid sizes. It

is observed that for smaller tile grid size, CLAHE seems to be faster than DCE; however, its performance

reduces gradually as we increase the tile grid size. On the other hand, for a fixed input size, the performance

of DCE is consistent for any recommended value of amax. Note that each reported GPU-processing time in

Figures 5A and 5B includes uploading the input data from host to GPU, processing the data in GPU, and

downloading the output data from GPU to host.

Up to this stage, we do not consider displaying the downloaded (from GPU) data to a computer screen. To

assess the effective performance of DCE, we now implement a real-time displaying of the processed im-

ages to a monitor and measure the total time required for uploading to GPU, processing in GPU, down-

loading from GPU, and displaying to a monitor, for different input image sizes. The gray and green curves

in Figure 5C plot the total time required per frame and the corresponding frame rate, respectively, while

varying the input data size. We observe that for a 10,000 3 10,000-sized input image, a total time of

�154 ms is consumed, thus resulting in a frame rate of >6 frames per second (fps). Likewise, for a

1000 3 1000-sized input image, the total time per frame is found to be �4 ms, and thereby a frame rate

of �248 fps becomes feasible. Note that for our analysis, we employed different image sizes from

1000 3 1000 up to 10,000 3 10,000. However, our display screen was limited with a resolution of 3840 3

2160 and a refresh rate of 60 Hz.

For a high speed and high digital resolution laser-scanning MPM, one can employ a fast enough resonant

scanner to facilitate a fast raster scanning, provided a high repetition-rate laser, a fast sampling-rate digi-

tizer, and a short-lifetime fluorophore are simultaneously accessible to maintain an adequate Nyquist

figure-of-merit (Borah et al., 2021). Assuming a state-of-the-art resonant scanner with a 12 kHz scanning fre-

quency (24 kHz line rate), the mechanical frame rate with a bidirectional scanning is represented by the or-

ange-curve in Figure 5C, where we observe frame rates of 2.4 fps and 24 fps for slow-axis line numbers of

10,000 and 1,000, respectively. It is thus evident that our effective frame rate for DCE is considerably higher

than the mechanical frame rate for such a 12 kHz scanning system. Note that even though we perform this

time complexity assessment up to an image size of 10,000 3 10,000, being an extreme scenario for a 12 kHz

resonant scanning MPM, one would require a pixel rate of at least 240 M/s to secure at least 10,000 pixels

along the fast axis, which is, however, subject to availability of a suitable short-lifetime fluorophore and

associated acquisition electronics as well as a fast enough laser repetition rate. This extreme example sim-

ply indicates that DCE holds the potential to be real-time implemented in most of the typical MPM imaging

applications.

Figure 4. Continued

(B) SNR, SBR, and contrast ratio plots for (1)-(11); gray, orange, and cyan bars denote results for R1, R2, and R3,

respectively. (C) Intensity profiles along L1-3 plotted for (1)-(11). Contradicting (2)-(10) cases, DCE (11) enhances SNRs,

SBRs, and contrast ratios all at the same time. While enhancing weaker structures, DCE prevents the saturation of the

brighter ones, for instance, the cell-bodies in R3 are mostly saturated in (2) and (3), whereas they are well preserved in (11).
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DISCUSSION

In this article, we report a dedicated-hardware-free rapid DCE technique to digitally mimic the effect of a

hardware-based adaptive/controlled illumination. To better comprehend the idea, let us consider the 503

50-pixel ROIs C1-6 (cropped from R1-6) in Figure 2. It is evident that with our fixed illumination scenario

(refer to STAR Methods), we are unable to retrieve the fine nerve fibers with an adequate contrast ratio.

The reason is simply owing to a weak fluorescence signal from a fiber which is most comparable to the noisy

background as being depicted by each red curve in L1-6, Figure 2E. Note that a conventional adaptive/

controlled illumination technique is expected to improve this situation by means of either increasing the

excitation power once the raster-scanning laser spot is focused over the fiber (provided the system can

distinguish the same), and/or reducing the excitation power once the laser spot passes the fiber being

scanned. This process is expected to make the fluorescence signal from the fiber adequately stronger

than the background to enable better visibility. Having said that, with the same fixed illumination scenario,

now consider our DCE-applied versions of C1-6 alongside, where the visibility of the ultrafine fibers has

been improved substantially, further being depicted by the gray curves in L1-6 in Figure 2E. The situation

can be realized as, at the vicinity of a nerve fiber, we successfully enable a laser-off state, while over the fiber

itself (i.e., low-frequency information), we preserve a laser-on state. In other words, we successfully enable

an effect of adaptive illumination control digitally with no physical real-time tuning of the excitation power.

We performed large-FOV aliasing-free TPEF neuronal imaging at multiple excitation wavelengths and vali-

date the effectiveness of the proposed method by retrieving weak-intensity ultrafine neuronal structures

amidst a strong noisy background, while demonstrating simultaneous improvements to the SNR, SBR,

and contrast ratio. A CUDA-assisted reduced time complexity of <3 ms for a 1000 3 1000-sized dataset

(16-bit unsigned format) is secured to enable real-time applicability of the same. For a better DCE perfor-

mance, the input image is expected to be not saturated. One can adjust excitation power, gain of the fluo-

rescence detection system as well as input-range of the digitizer in order to prevent saturation. Note that

DCE tends to suppress a noisy background near the edges of a bright structure more aggressively

compared to that near a weaker structure. That is to say, the contrast of the bright structures will be

boosted first even at a lower amax, and as the value of amax is increased, the contrast of the weak-intensity

structures will gradually improve. For a lower value of amax, this behavior, therefore, might lead to an

Figure 5. Assessment and comparison of processing speed, and validation of real-time applicability

(A) Average processing time in milliseconds per frame plotted for Intel i7-9800X (red), Quadro P1000 (blue), and Quadro

RTX 8000 (green), with respect to input image size (16-bit unsigned format); for 10,000 3 10,000-sized input, 9800X

consumes �2000 ms, whereas RTX 8000 takes �111 ms with an 183 performance boost.

(B) Average processing time in milliseconds per frame with respect to input image size (16-bit unsigned format), plotted

for contrast limited adaptive histogram equalization (CLAHE) at different tile grid sizes and proposed DCE; CLAHE

processing time tends to increase for larger tile grid size, whereas DCE is consistent for any amax.

(C) Average of total processing and display time in milliseconds per frame (left axis) and respective frame rate (right axis)

for proposed DCE, plotted with respect to input image size; observed frame rate (green) is substantially higher than

mechanical frame rate for a state-of-the-art 12 kHz resonant scanner (orange).
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artifact particularly in case of a strong noisy background coexisting with bright enough or saturated struc-

tures. To minimize the same, a higher value of amax is necessary. However, an excessively higher amaxmight

tend to suppress useful low-frequency information along with the noisy background. Based on our obser-

vations, we recommend an amax range of 3.0–8.0. Practically, one should first apply a lower amax value, and

based on visual perception, amax should be increased until a satisfactory result is observed.

We recommend that the data-acquisition system satisfies or exceeds the respective Nyquist–Shannon cri-

terion (Nyquist, 1928; Shannon, 1949), so that a smallest resolvable structure gets digitized with at least four

pixels. One should not downscale the dataset before applying DCE. However, if the sampling pixel size is

much smaller than that required by the Nyquist–Shannon criterion, a suitable pixel-binning can be per-

formed. It is recommended not to apply a conventional low-pass filter to the digitized dataset, before

applying DCE, as the noise components will tend to lose their high-frequency nature and our approach

might treat them as low-frequency information thereafter. Note that DCE boosts the weaker structures

while mostly preventing the brighter ones from getting saturated. Such local enhancement, however,

might not be suitable to be applied in certain quantitative analysis. Furthermore, note that this article is

dedicated to neuronal connectomics, that is, neuronal structural imaging studies utilizing a large-FOV

high-resolution high-NFOM MPM (Borah et al., 2021), and does not report any low-pixel-rate but high dy-

namic range image or imaging system. A poor pixel rate is usually not recommended for a mesoscopic

structural imaging application targeting a centimeter-scale tissue sample especially when a submicron dig-

ital resolution becomes a primary concern. A typical�0.5 MP image comprises around 7003 700 pixels. To

retrieve a typical 500 nm resolution, the pixel size must be%250 nm. Respecting the Nyquist–Shannon cri-

terion, we are thus not allowed to extend the FOV beyond 0.175 3 0.175 mm2. Thus, if we target the whole

connectomics of a typical�500mm3mouse brain, it would require at least 16M tiles at an axial step of 1 mm,

even without considering any overlap of adjacent tiles. This essentially leads to a tremendous computa-

tional load for themillions of stitching operations. On the other hand, a high-pixel-rate laser scanning helps

maximize the number of pixels per fast-axis line, and thus allows us to extend the FOV up to millimeter-

scale yet maintaining a high enough digital resolution with a high NFOM and hence becomes a promising

idea assisting a high-resolution mesoscopic structural imaging with the reduced requirement of stitching

operations. It is typical for a conventional PMT-based laser scanning system to encounter a limited photon

number issue, and hence a low or moderate dynamic range especially when employing a fewer optical

pulse per pixel in high-NFOM imaging scenarios, which, however, can be improved by lowering the

gain, suitably adjusting the excitation power, and integrating multiple frames and/or pixels as per the pur-

pose and requirements of a specific research goal. Nevertheless, the assessment of DCE in a low-pixel-rate

but high dynamic range image has not been addressed in this article, which might be a future potential

implication of the proposed algorithm.

The reported DCE algorithm has a tremendous potential to be applied before the segmentation of

neuronal structures, which can help construct high-resolution 3D neuronal maps for various neuronal con-

nectomics studies targeting ultra-large volumetric brain regions, or even an intact whole animal brain.

While performing ultra-deep mesoscopic volumetric imaging, owing to unavoidable scattering and ab-

sorption issues, the signal-of-interest often tends to degrade as one penetrates deeper into the tissue.

This issue becomes prominent when the depth of penetration is in millimeter scale, thus severely deterio-

rating the signals from the weak-intensity ultrafine neuronal morphologies residing at an ultra-long depth.

In such situation, DCE can be implemented to the acquired images to real-time improve the visibility of the

neuronal structures. Besides such deep-volumetric imaging, DCE holds potential to be applied in two-

dimensional imaging applications as well. For ultra-large centimeter-scale imaging of an optical section,

it is a typical practice to adequately extend the FOV. However, the optical aberrations are typically unavoid-

able especially near the FOV-edges and -corners. This often leads to non-uniform excitation and detection

efficiencies across the FOV. As a result, the signal strengths of the weak-intensity structures residing at the

off-axis locations would often tend to deteriorate. In such situation, DCE can greatly help improve visibility

at the FOV-edges and corners, which can further facilitate an artifact-free digital image mosaic-stitching

operation. Recently, we are working on a post-processing-free sub-minute gigapixel nonlinear optical im-

aging technology providing submicron digital resolution over a centimeter-scale area, where the proposed

CUDA-accelerated DCE greatly helps optimize visibility across our millimeter-scale high-NFOM FOV to

facilitate uniform and artifact-free mosaic-stitching operations all in real-time. This technology would be

dedicated to intra-operative rapid tumor border assessment for excised human brain tumor tissues to pro-

vide histopathological details as an alternative to a traditional frozen section biopsy. In this article, even
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though we have demonstrated DCE in a high-NFOMMPM, the algorithm has the potential to be extended

to other forms of optical linear and nonlinear imaging, as well as clinical applications, such as ultrasound,

CT, X-ray, and MRI.

Limitations of the study

The reported technique performs local enhancements of the weak-intensity structures which might not be

suitable to be applied in certain quantitative analysis. Compared to a hardware-based adaptive/controlled

illumination technique, DCE does not regulate the excitation power to minimize photobleaching and/or

phototoxicity. However, for a large-FOV imaging scenario, the power density over a unit area is lower

compared to a small-FOV case for the same average excitation power. Thus, the issue of photobleaching

and/or phototoxicity can be minimized with a moderate or low average excitation power while imaging

across a millimeter-scale FOV.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Chi-Kuang Sun (sun@ntu.edu.tw).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d The data/images generated and/or analyzed to support the findings of our study are presented in the

paper, STAR Methods, and supplemental information. More details are available from the lead contact

upon reasonable request.

d The codes for DCE implantation are available in supplemental information Data S1.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

One transgenic Thy1-GFP and one Nav1.8-tdTomato male mice used in this study were 8-week-old. The

mice were housed with a 12-hour light/12-hour dark cycle and fed ad libitum. Mice were maintained in

accordance with guidelines approved in the Codes for Experimental Use of Animals of the Council of

Agriculture of Taiwan, based on the Animal Protection Law of Taiwan. All experimental protocols were

approved by the Institutional Animal Care and Use Committee of National Taiwan University, Taipei,

Taiwan. This study does not involve a human subject.

METHOD DETAILS

Two-photon excitation fluorescence imaging of neuronal structures

Two-photon fluorescence imaging (Denk et al., 1990; Carriles et al., 2009) was performed using a high-NA

(>0.9) and low magnification (203) objective lens (Olympus XLUMPlanFl, 203/0.95W). The scanning head

employed a resonant scanner (CRS 4 kHz, driver: 311–149887, Cambridge Technology, MA, USA) and a

galvanometer scanner (8320K, driver: MicroMax 671, Cambridge Technology, MA, USA) for fast- and

slow-axis scanning, respectively. A custom tube lens and a general scan lens (LSM05-BB, Thorlabs, NJ,

USA) with effective focal lengths of 167 and 110 mm, respectively, were used providing a �1.53 beam

magnification.

A 70 MHz, <60 fs fiber laser (Fidelity-2, Coherent, Inc., CA, USA) centered at 1070 nm was utilized directly

with a one-pulse-per-voxel acquisition scheme for excitation of the Nav1.8-tdTomato sample. The 70 MHz

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

OpenCV Intel Corporation, USA https://opencv.org

CUDA toolkit NVIDIA Corporation, USA https://developer.nvidia.com/cuda-toolkit

Microsoft Visual Studio Microsoft Corporation, USA https://visualstudio.microsoft.com/

ImageJ National Institutes of Health, USA https://imagej.nih.gov/ij

Origin OriginLab, USA https://www.originlab.com/

Other

Quadro RTX 8000 NVIDIA Corporation, USA https://www.nvidia.com

Quadro P1000 NVIDIA Corporation, USA https://www.nvidia.com
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sync signal from Fidelity-2 was fed to the external clock input of our digitizer. The sampling frequency was

thus maintained at 70 M/s. For excitation of the Thy1-GFP sample, the central wavelength was shifted to

�919 nm. To achieve the same, output from Fidelity-2 fiber laser was free-space-coupled to a 7 mm-

long photonic crystal fiber to induce a negative dispersion to generate Cherenkov Radiation (Liu et al.,

2015; Li et al., 2016). Long-pass and short-pass filters with cut-on and cut-off at 750 and 1000 nm, respec-

tively, were used to ensure a spectrum centered around 919 nm. A pulse duration of <60 fs was ensured

after the objective lens by means of pulse pre-chirping (Liang et al., 2010) with a grating-pair.

A dichroic beam splitter (FF735-Di02, Semrock) was used to reflect the emerging fluorescence signal into a

detection unit comprising a relay system with two lenses with effective focal lengths of 150 mm (Edmund

Optics: 32–982) and 40 mm (Edmund Optics: 48–654), respectively, producing a 3.753 demagnification,

and subsequently a photomultiplier tube (PMT, R10699, Hamamatsu Photonics, Japan). To ensure detec-

tion of Nav1.8-tdTomato and Thy-1 GFP two-photon fluorescence signals, two band pass filters, FF01-580/

60-25-D and FF03-525/50-25, respectively, were utilized, each placed before the photo-sensitive area of the

PMT. A colored glass filter (FGB37-A, Thorlabs) was additionally placed in series with the band-pass filter in

each case. A transimpedance amplifier C6438-01 (Hamamatsu Photonics, Japan) was employed to perform

current to voltage conversion of the PMT-output signal, which was subsequently digitized with a high-

speed digitizer ATS9440 (Alazar Technologies Inc., Canada). Note that ATS9440 captured only the negative

voltages from C6438-01 utilizing half of its input range, thus the data from ATS9440 was appropriately

scaled to fit a 16-bit unsigned format image as being used in this article for testing and demonstration

of DCE. For more information on our acquisition system, image calibration, and other relevant details,

please refer to our previously published paper (Borah et al., 2021) revealing the idea and construction of

a high-NFOM MPM.

Implementation of the proposed DCE method via GPU-acceleration

For GPU-accelerated image/data processing, an open source computer vision library, OpenCV (version:

4.5.0) was built with CUDA libraries (version: 10.1, update 2). Table S1 depicts detailed implementation

steps for the proposed method. Codes were developed using Microsoft Visual Studio and are available

in Data S1.

Data processing and analysis

All intensity profiles along L1-6 shown in Figures 2, 3, and 4 were obtained via ImageJ (1.53c) software. All

graphs were plotted using OriginPro. In Figure 4, a multiplicative gain enhancement of 2.0 was used in (2);

minimum tomaximum range was set as 20% to 60% of themaximum (i.e., 65535) in (3); a tile grid size of 203

20 and a clip-limit of 4.0 were used for contrast-limited adaptive histogram equalization (CLAHE) in (5); a

radius and a mask-weight of 7-pixels and 0.5, respectively, were used for unsharp masking (UM) in (6); a

5-pixel wide elliptical structure element was employed for both morphological erosion and opening oper-

ations in (7) and (8), respectively; a ball-radius of 70-pixels was used for rolling ball and sliding paraboloid

background subtractions (with enabled smoothing) in (9) and (10), respectively. Each reported processing

time in Figures 5A–5C is an average of 100 measurements performed with standard C++ functions. CUDA

(10.1)-accelerated OpenCV (4.5) built-in functions were employed for both methods in Figure 5B. In each

GPU-processing case in Figures 5A–5C, asynchronous data-transfer was employed in between host and

GPU.

QUANTIFICATION AND STATISTICAL ANALYSIS

Means and/or standard deviations related to SNR, SBR, and contrast ratio measurements in Figures 2, 3,

and 4 were obtained using ImageJ standard functions.

ADDITIONAL RESOURCES

Experimental protocols were approved by the Institutional Animal Care and Use Committee of National

Taiwan University, Taipei, Taiwan (approval number: NTU105-EL-00113).
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