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Abstract: The present work introduces the series of thiacalix[4]arenes (H4L) bearing different upper-
rim substituents (R = H, Br, NO2) for rational design of ligands providing an antenna-effect on the
NIR Yb3+-centered luminescence of their Yb3+ complexes. The unusual inclusive self-assembly of
H3L− (Br) through Br . . . π interactions is revealed through single-crystal XRD analysis. Thermo-
dynamically favorable formation of dimeric complexes [2Yb3+:2HL3−] leads to efficient sensitizing
of the Yb3+ luminescence for H4L (Br, NO2), while poor sensitizing is observed for ligand H4L (H).
X-ray analysis of the single crystal separated from the basified DMF solutions of YbCl3 and H4L(NO2)
has revealed the transformation of the dimeric complexes into [4Yb3+:2L4−] ones with a cubane-like
cluster structure. The luminescence characteristics of the complexes in the solutions reveal the pecu-
liar antenna effect of H4L(R = NO2), where the triplet level at 567 nm (17,637 cm−1) arisen from ILCT
provides efficient sensitizing of the Yb3+ luminescence.

Keywords: calix[4]arenes; Yb3+ complexes; luminescence; halogen-bonding; X-ray analysis

1. Introduction

Calix[n]arenes and their thia-analogues continue to excite interest as a promising basis
for design and synthesis of lanthanide complexes, which were successfully applied in
developing nanosensors and contrasting agents [1,2]. The main advantage of a cyclophanic
backbone is the feasibility of the structural diversifications, which allows embedding of
different groups, in turn allowing either complex ability of the calixarene derivatives or
tuning their acid/base and complexing properties through electronic effects of the sub-
stituents [3,4]. Moreover, the presence of the cyclophanic cavity results in unique inclusive
complex formation mainly driven by the electron-donating ability of the cavity [5,6]. The
present work is focused on upper-rim substituted thiacalix[4]arenes since preorganization
of the four phenolic moieties provides excellent chelating properties towards lanthanide
ions, followed by ligand-to-lanthanide energy transfer [1,7–9]. It is worth noting that upper-
rim substitution of thiacalix[4]arenes was already documented as the tool to both increase
their water solubility [9,10] and modify their sensitizing effect on lanthanide-centered
luminescence [1,7–9]. In particular, embedding of the bromine-substituents onto the upper
rim of thiacalix[4]arenes allows to modify the ligand-centered triplet level responsible for
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feeding of the excited lanthanide-centered levels [8]. Incorporation of nitro-groups onto the
upper rim of thiacalix[4]arene has also been reported [11–14].

Ytterbium compounds exhibiting near-infrared (NIR) luminescence are widely applied
building blocks of nanomaterials for bioimaging and photothermal therapy [15–22]. This
is due to the fact that Yb3+-centered luminescence exhibits the greatest intensity among
other NIR-emitting lanthanide ions [23], which, in turn, derives from the large energy gap,
10,250 cm−1, between its emitting level and the ground state [24]. The poor feeding of
the excited 2F5/2-level of Yb3+ due to forbiddance of f -f transitions raises a question of
their feeding through ligand-to-metal [25,26] or metal-to-metal energy transfer and mini-
mizing of radiationless transitions from the excited Yb3+-level to lower laying vibrational
levels of ligands [27–29]. The reports of Iki et al. [30–32] highlight the advantage of the
thiacalix[4]arene backbone in developing NIR-luminescent Yb3+ complexes due to the
specific rigid inner-sphere environment resulting from the sandwich-like coordination of
the Yb3+ ions between two phenolate rims of the thiacalix[4]arene derivatives.

However, an impact of the upper-rim substitution of thiacalix[4]arenes by the bromine
and nitro-groups on the developing of bright NIR Yb3+-centered luminescence has not been
highlighted. A combination of electron-withdrawing (NO2) and electron-donating moieties
(OH, O−) in thiacalix[4]arene molecules should produce an intraligand charge transfer
(ILCT) absorption band in the visible range similar to that in the electronic spectra of
nitrophenolates [33]. Literature data demonstrate fine examples of convenient excitation of
Yb3+ NIR luminescence by means of an ILCT absorption band in the visible range [25,26,34].
Thus, it is worth assuming that combination of the rigid inner-sphere ligand environment of
Yb3+ ions with excitation of an Yb3+-centered luminescence by means of an ILCT absorption
band can be a tool to develop bright Yb3+-centered luminescence.

The present work represents thiacalix[4]arenes H4L(1–3) (Figure 1) with different
upper-rim substituents (R = H, Br and NO2). The structural variation in the upper-rim sub-
stituents is aimed to highlight their impact on producing unique supramolecular structures,
in turn derived from inclusive or coordinating abilities of the bromo- and nitro-substituted
thiacalix[4]arenes. Such structure variation is also aimed at distinguishing different struc-
ture effects on Yb3+-centered luminescence of the corresponding complexes, including: (1)
structure rigidity effect derived from bulky substituents (Br, NO2); (2) interaction of the
lone pairs of NO2 group with π * orbitals of the aromatic ring, which is known to quench
Eu3+ and Tb3+ luminescence through shortening of the triplet excited state lifetime [35];
(3) participation of the triplet level arisen from the ILCT in the feeding of the low-energy
excited states of Yb3+.
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The unique supramolecular structures of bromo-substituted thiacalix[4]arene and
the ytterbium complex of nitro-substituted thiacalix[4]arene determined by single-crystal
X-ray diffraction (XRD) data will be discussed in correlation with the literature data and
experimental results on complexation of Yb3+ with thiacalix[4]arenes in DMF solutions. The
coordination modes of Yb3+ in the complexes will be revealed by computational modelling.
Steady state and time-resolved Yb3+-centered luminescence will be correlated with both
spectral properties and structural features of the ligands in order to recognize the impact of
different factors, including the ILCT, on the luminescence of the complexes.
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2. Results and Discussion
2.1. UV–Vis Absorption Behavior of H4L(3) and Crystal Structure of H3L(2)−

Discussion of the complex ability and antenna-effect of H4L(1–3) ligands in basified
DMF solutions should be preceded by analysis of their acid–base behavior revealed through
their spectral behavior at different concentrations of TEA. Both spectral and acid–base
behaviors of H4L(1,2) in DMF solutions have already been published [7,8], and a corre-
lation between deprotonation and spectral changes for H4L(3) was reported in aqueous
solutions [12,13].

The electronic absorption spectra of 3 recorded in the neutral and basified DMF
solutions are represented in Figure 2a. The enhanced electronic absorbance at 340–400 nm
revealed from the spectrum of 3 in the neutral DMF solution (Figure 2a) is explained by
the enhanced first step deprotonation of H4L(3) since similar spectral behavior of H4L(3)
in the aqueous solutions was correlated with pK1 = 2.75 [13]. The enhanced acidity of
H4L(3) derives from both its cyclophanic structure and the electron-withdrawing effect of
p-nitro-substituents, which differentiates H4L(3) from H4L(1,2).
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The low-energy band of H4L(3) is both red-shifted and more intensive (Figure 2a) than
the shoulder at 340 nm for H4L(2) [8], which, in turn, is more pronounced than that of
H4L(1) [8]. The spectral behavior of H4L(3) in the basified DMF solutions is characterized
by the appearance of electronic absorbance at ~450–500 nm (Figure 2a). The red-shifting
of the low-energy band of H4L(3) versus those of H4L(1,2) derives from the well-known
high electron-withdrawing effect of nitro-substituents, resulting in the appearance of the
ILCT absorption band. It is worth noting that the electronic absorption of H4L(3) in the
basified DMF solutions is in the longer wavelengths range, ~450–500 nm compared to
the absorption of p-nitrophenol (~400–450 nm) in the alkaline solutions [33]. Thus, the
cyclophanic structure of H4L(3) favors lower energy transitions, along with the effect of
the p-nitro-substituents, which is the reason for the peculiar spectral behavior of H4L
versus that of p-nitrophenol. As is evident from the titration plot in Figure 2b, two-step
deprotonation of H4L(3) is realized in the basified DMF solutions, while only one-step
deprotonation was reported for H4L(1,2) [7,8].

The above-mentioned deprotonation of the phenolic rims of H4L(1–3) facilitates the
electron-donating ability of their cavities, which promotes unique intermolecular inclusive
interactions and coordination of metal ions. These interactions are clearly demonstrated by
XRD analysis of the single crystals (H3L(2)−·(CH3)2NH2

+·DMF) grown from the DMF so-
lutions of 2 basified by dimethylamine (Figure 3). The thiacalixarene molecule in an almost
perfect cone conformation with close values of dihedral angles of opposite aromatic rings is
located in the general position of the triclinic unit cell (Figure 3). However, the molecule
loses its own C4 symmetry due to its transformation into salt form, interaction with the
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solvent molecule (Figure 3a) and specific inclusive interactions (Figure 3b). The crystal
structure data (Table S1) and the parameters of the intra- and intermolecular interactions
(Tables S2 and S3 and Figures S1–S4) are represented in the Supplementary Materials.
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An interesting feature of the intermolecular interaction revealed in single crystals is
formation of peculiar centrosymmetric dimers of thiacalix[4]arenes (Figure 3b). Substituent
Br3 participates in the strong C-H . . . Br interaction with the hydrogen H3 of the phenyl
ring of the neighboring molecule; the H3 . . . Br3 distance is 3.03 Å. Pairwise incorporation
of the bromine substituents designated as Br4 of one molecule into the cavity of another can
be stabilized by four Br . . . π contacts with the four phenyl rings of the thiacalix[4]arene.
However, in accordance with the IUPAC criteria [36], only one (Cg2(C9 ÷ C14) . . . Br4) of
the four contacts can be called a halogen bond since the rest of them do not follow the rule
of directionality of such bonds. Moreover, two of them have distances between the centers
of the bromine and the nearest carbon atoms slightly more than the sum of their van der
Waals radii (see Table S3 in Supplementary Materials). However, the formal criteria for
such interactions used in the PLATON program [37] allows to consider all the contacts to
the Br . . . π type (for the contact parameters, see Table S3).

It is worth noting the diversity of the Br . . . π contacts: in particular, the C-Br bond is
directed to carbon C14 (Cg2(C9 ÷ C14) . . . Br4), while, in the contact Cg1(C2 ÷ C7) . . . Br4,
the bromine atom is in an intermediate position between the center of the aromatic cycle
and atom C7. In the case of contacts Cg3(C16 ÷ C21) . . . Br4 and Cg4(C23 ÷ C28) . . . Br4,
the bromine atom is closer to the centers of aromatic rings, which are electron-deficient
regions. The aforesaid provides one more example of the unique ability of the bromine
substituents to interact with both nucleophilic and electrophilic centers, which has gained
great attention in the last decade [38].

The revealed short Br . . . π contacts are predominantly driven by polarized elec-
trostatic attractions between the electron-deficient bromo-substituents and the electron
donating cavity of H3L−(2) as a Lewis base [39,40]. It is worth noting that halogen bonds
have already been highlighted as the driving force of inclusion of halogen-substituted
benzenes into the cavities of calix[4]arene derivatives [41]. A search of the Cambridge
Structural Database (CSD version 5.43, March 2022 release) for all structures containing
upper-rim halogen substituted thia- and calix[4]arenes (68 hits) reveals the only example
of dimeric or cog-like self-inclusion of distal substituted dibromocalix[4]arene bearing
the two propoxy groups on the lower-rim [42]. This indicates that the present inclusive
self-assembly based on halogen bonds is rather rare. Moreover, dimeric self-assembly is
also stabilized by the C-H . . . Br interaction driven by the electron donating capacity of
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the bromo-substituents (Figure 3b and S1). Thus, the Janus-like nature of the bromine sub-
stituents provides additional interactions, which, along with S . . . π and π . . . π interactions,
form the one-dimensional supramolecular motif (Figure S1). Such chains are bound in
a perpendicular direction due to Br . . . π and C-H . . . Br contacts (Figure S2), forming a
two-dimensional supramolecular motif—a layer of thiacalixarene dimeric fragments, where
the dimeric structure shown in Figure 3b serves as a supramolecular synthon. Translation
of such synthon in three directions forms a crystal packing as a whole (Figures S3 and S4).
It is worth noting that the supramolecular packing is characterized by a sufficiently high
packing factor of 0.717, which is closer to the upper limit of the packing factor values for
crystals of organic compounds (0.65–0.75).

2.2. Complex Formation of H4L(1–3) with Yb3+ Ions

Compounds H4L(1,2), previously represented as efficient ligands for Tb3+ ions, pro-
vide their tight coordination followed by efficient sensitizing of terbium-centered lumi-
nescence [7,8]. Discussion of the complex formation of ligand H4L(3) in solutions is worth
preceding by a presentation of the structure determined by XRD analysis of the single crystals
grown from basified DMF solution containing H4L(3) and Yb3+ ions in a 1:1 molar ratio.

The single crystals suitable for XRD analysis were grown through several months
staying of the basified DMF solutions of YbCl3 and H4L(3) mixed in a 1:1 ratio, while no
single crystals appeared in the same conditions for ligands H4L(1,2). Moreover, in the case
of the Yb(NO3)3, we could not succeed in obtaining any crystals.

X-ray analysis of the separated single crystal revealed the large and strongly disor-
dered structure in the monoclinic P21/n space group. A detailed description of the crystal
structure data is in Supplementary Materials (Figures S5 and S6 and Table S4). The cell
unit consists of two individual complexes in its composition with 2:1 (Yb:L) stoichiometry,
although, as has been aforesaid, YbCl3 and H4L(3) were mixed in a 1:1 ratio (Figure 4).
Both of them contain a rather specific dimeric cubane-like structure of complex. The cluster
coordination of four Yb3+ ions with eight phenolates of two completely deprotonated
p-nitro-thiacalix[4]arene anions (L4−) is stabilized by the bridge-like coordination of chlo-
ride ions with the coordination number of Yb3+ ions equal to 6 and 7, according to Figure 4.
Such values are rather scarce in comparison with coordination numbers 8 and 9 predomi-
nantly reported in the literature [43]. However, the data quality is insufficient to reveal such
structural details as a location and number of water molecules supporting the structure.

Stabilization of transition metal ions clusters through coordination by thiacalix[4]arenes
is well-represented by the review [44]. However, the cubane-like lanthanide coordination
(Ln = Gd3+, Eu3+ and Tb3+) has been found only for sulfonylcalix[4]arene, where the cluster
motif is supported by coordination of the lanthanide ions via both phenolates and sulfonyl
oxygen atoms along with four bridging acetate ligands [44,45].

Both stoichiometry and structure of the cubane-like dimeric complex of Yb3+ with
ligand H4L(3) significantly differ from those of the dimeric terbium complexes formed
by ligands 1 and 2 in the DMF solutions [7,8]. Thus, the revealed dimeric structure may
either derive from the complex formation mode in solutions or be mainly affected by the
crystal packing forces. However, the lanthanide contraction may be one more reason for
specificity in the coordinative behavior of Yb3+ versus its counterparts from the middle of
the lanthanide series. Therefore, the complex formation of H4L(3) with Yb3+ ions will be
represented along with that of H4L(1,2) in the DMF solutions.

The intraligand electronic absorbance of H4L(1–3) is a convenient tool to reveal and
compare their complex formation abilities towards lanthanide ions. The UV–Vis spectral
data calculated and represented in the form of the Job’s plots in Figure 5a demonstrate
no specificity of Yb3+ complex formation with ligands H4L(1) and H4L(2) in comparison
with earlier obtained data for their Tb3+ complexes [7,8]. The complex formation of Yb3+ is
accompanied by the deprotonation of two and three protons under their complex formation
with H4L(1) and H4L(2) (Figure 5b), which is also in good agreement with the terbium
complex formation.
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Figure 5. The Job’s plot profiles of DMF solutions at the varied H4L:Yb3+ molar ratios: (a) H4L(1)
(λ = 340 nm), H4L(2) (λ = 350 nm) ([H4L] + [Yb3+] += 0.1 mM, L:TEA (1:8)); (b) ∆A of the DMF
solutions of H4L with Yb(NO3)3 at the varied TEA:L molar ratios: H4L(1) (λ = 340 nm), H4L(2)
(λ = 350 nm). CYb3+ = CH4L = 0.1 mM.

It should be noted that similar data for p-nitro-thiacalix[4]arene H4L(3) have not been
reported. The addition of Yb3+ to the basified solution of H4L(3) results in increased
absorbance at 400 nm with the disappearance of the lower energy absorption bands at
450–500 nm (Figure 6a). Such spectral behavior provides a clear indication of Yb3+ co-
ordination via the lower phenolic rim of H4L as the reason for restricted charge transfer
from phenolate to nitro-groups. The quantitative analysis of the spectral changes resulting
from the concentration variation in both H4L(3) and Yb(NO3)3 through the Job-plotting
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(Figure 6b) indicates that the complex formation of Yb3+ ions with H4L(3) in the basified
DMF solutions predominantly occurs in 1:1 stoichiometry. However, similar with H4L(1, 2),
the non-symmetrical shape of the Job plot (Figures 5a and 6b) indicates that the 1:1 stoi-
chiometry is contributed by the complex forms with 2:1 (Yb:L) stoichiometry. It is worth
noting that the Job plots are indistinguishable in the solutions of Yb(NO3)3 and YbCl3,
which points to predominance of the 1:1 stoichiometry in the recently prepared basified
DMF solutions (Figure S7).
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Thus, similar to the other thiacalix[4]arenes H4L(1,2), the 1:1 complex stoichiometry is
predominant in the complex formation of H4L(3) with Yb3+, followed by deprotonation of
three phenolic moieties (Figure 6c). It is interesting that longer storage of the solutions with
YbCl3 resulted in obtaining crystals having the 2:1 stoichiometry. In accordance with Le
Chatelier’s principle, the phase separation of the crystals is the main driving force for both
further deprotonation of the ligand and transformation of the complex stoichiometry from
1:1 to 2:1. It is also worth noting that the DMF molecule caps the cyclophanic cavities, and
it should be considered as one more factor for stabilizing the structure.

2.3. Diffusion NMR Spectroscopy

The NMR spectral changes of ligands H4L(1–3) resulted from their complex formation
in alkalized DMSO-d6 solutions were analyzed for diamagnetic Lu3+ ions in order to exclude
the broadening of signals due to the paramagnetic effect of Yb3+ ions. The interference
of the signals arising from the different complex forms restricts the correct evaluation of
self-diffusion coefficients in the case of H4L(1). Thus, the self-diffusion coefficients were
obtained for the complexes with H4L(2,3) (Table 1). Their quantitative analysis allows
estimating that the self-diffusion coefficient of ligand H4L(2) decreases by 16% under the
complex formation with Lu3+ (Table 1), while in the case of La3+

, a more significant decrease
(21%) was reported [8]. The self-diffusion coefficient for the thiacalix[4]arene H4L(3) under
the complex formation with Lu3+ becomes lower by 14% (Table 1). According to the
literature data, the decrease of Ds by ~25% testifies to the dimerization of the molecules in
the solutions [46–48]. Therefore, the less pronounced decrease in self-diffusion coefficients
Ds of ligands H4L(2,3) under the complex formation with Lu3+ versus La3+ ions indicates
the greater contribution of the monomeric forms. In particular, the accumulation of dimeric
complex forms is ~65% and 55% for ligands H4L(2) and H4L(3), correspondingly.
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Table 1. Self-diffusion constants, hydrodynamic radii for ligands H4L(2,3) (2.5 mM) in DMSO-d6

solutions before and after addition of Lu3+ (2.5 mM) and TEA (15 mM) at 303 K.

System (Molar Ratio) Self-Diffusion Coefficients
(10−10 m2s−1) Hydrodynamic Radii rH (Å)

2 2.32 5.5
2-TEA (1:6) 2.31 5.3

2- Lu3+-TEA (1:1:6) 1.95 6.6
3 2.37 5.4

3-TEA (1:6) 2.32 5.5
3- Lu3+-TEA (1:1:6) 2.04 6.3

2.4. MALDI-TOF Mass Spectrometry Data

MALDI-TOF mass spectra were recorded for the mixtures Yb3+: L: TEA (1:1:8, 1:1:10)
in DMF solutions with registration of positively charged ions (Figure 7). The intensive
peaks at m/z = 1500–1600 assignable to the dimeric (2:2) complexes ([2L2− + 2Yb3+ + DMF
+ 3H2O + NO3

−]+, [2L2− + 2Yb3+ + 2DMF + H2O + NO3
−]+) are revealed for ligand 1

(Figure 7a). The intensive peaks at m/z 1900–2200 assignable to the monomeric ([2L− + Yb3+

+ 2DMF + H2O]+) and dimeric complex forms ([2L2− + 2Yb3+ + DMF + H+]+, [2L2− + 2Yb3+

+ DMF + H2O + NO3
−]+, [2L3− + 2Yb3+ + 2DMF + NO3

− + Na+ + H]+) (Figure 7b) are
observed for ligand 2. In turn, only the peaks at m/z 1950–2150 ([2L3− + 2Yb3+ + 4DMF +
NO3

− + Na+ + H+]+, [2L3− + 2Yb3+ + 3DMF + 4H2O + TEA + H+]+) (Figure 7c) assignable
to dimeric complexes are registered in the case of ligand 3. Thus, the MALDI-TOF mass
spectra confirm the tendency of ligands H4L(1–3) to form dimeric complexes with Yb3+.
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2.5. Computational Modeling of the Yb3+Complexes with p-Nitrothiacalix[4]arene (H4L(3))

The DFT calculations were successfully applied in recognition of the impact of the
complex stoichiometry and structure on its stability for the lanthanide complexes with
the calix[4]arene and thiacalix[4]arene derivatives, including, in particular, the complexes
with ligands H4L(1) and H4L(2) [7,8]. The DFT calculations of ytterbium complexes with
ligand 3 are based on the previously reported thermodynamically favorable structures of Tb3+

complexes with ligands H4L(1) and H4L(2) with the assumption of the terbium coordination
number (CN) being equal to 8. The CN-value of Yb3+ can be either 8 or 7 in accordance
with the well-known “lanthanide contraction effect”. However, the literature data [49] reveal
relatively small differences in the ionic radii of Yb3+ (1.125 Å) and Tb3+ (1.180 Å) ions. This,
in turn, argues for the realization of CN = 8 for the Yb3+ complexes with H4L(3) in the
solutions [50].

The diversity of the complex formation modes is represented by both monomeric
(1:1) and dimeric (2:2) complex forms. The 1:1 complex formation leading to [YbHL] can
derive from the coordination of Yb3+ via either four oxygens of phenolic/phenolate lower
rim of HL3−(3) ([YbHL(DMF)4]-(I) in Figure 8) or via two oxygen and one sulfur atom
([YbHL(DMF)5]-(II) in Figure 8).
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The formation of [YbHL(DMF)4]-(I) and [YbHL(DMF)5]-(II) from the aqua complex
[Yb(H2O)8]3+ can be designated by Equations (1) and (2), where the Yb3+ coordination
sphere is saturated by four and five DMF molecules, correspondingly:

[Yb(H2O)8]3+ + H4L + 4DMF + 3TEA � [YbHL(DMF)4]-(I)+ 8H2O + 3HTEA+ (1)
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[Yb(H2O)8]3+ + H4L + 5DMF + 3TEA � [YbHL(DMF)5]-(II) + 8H2O + 3HTEA+ (2)

The complexes (I–II) can undergo transformation into the 2:2 complex (III) (Figure 8)
in accordance with Equations (3) and (4):

2[YbHL(DMF)4] -(I) � [Yb2HL2(DMF)4] -(III) + 4DMF (3)

2[YbHL(DMF)5] -(II) � [Yb2HL2(DMF)4] -(III) + 6DMF (4)

The thermochemical parameters of complexes I, II and III are collected in Table 2.
The ∆G0

298-values of monomeric complexes (I,II) formation indicate that they are ther-
modynamically favorable and mainly provided by the enthalpy contribution (Table 2).
However, the dimeric complex formation (equilibriums 3, 4) is an entropically driven
process, which differentiates it from the formation of monomeric complexes (I,II). The 2:2
complex formation undergoes coordination of each Yb3+ ion via two oxygen and one sulfur
atom of H4L(3), with further saturation of the coordination sphere of Yb3+ by two DMF
molecules (structure [Yb2HL2(DMF)4]-(III) in Figure 8).

Table 2. The calculated thermochemical parameters (∆H0
298, ∆S0

298 and ∆G0
298) of formation of

complexes I–V with ligand H4L(3) in the DMF solutions.

Reaction Composition ∆H0
298, kJ ∆S0

298, J/K ∆G0
298, kJ

1 [YbHL(DMF)4]-(I) −234.1 157.2 −281.0
2 [YbHL(DMF)5]-(II) −232.8 61.3 −251.1
3 [Yb2HL2(DMF)4]-(III) 41.1 217.3 −23.7
4 [Yb2HL2(DMF)4]-(III) 35.9 400.5 −83.4
5 [YbHL(OH)(DMF)3]-(IV) −193.3 157.2 −240.1
6 [Yb2HL2(OH)(DMF)3]−-(V) −27.0 99.7 −56.7

Lanthanide contraction may be the reason for specificity in the coordinative behavior
of Yb3+ or Lu3+ versus their counterparts from the beginning and middle of the lanthanide
series. The specificity is in the enhanced acidity of the inner-sphere water molecules, in turn
resulting in their transformation into hydroxyls. The formation of the hydroxyl-containing
complex forms [YbHL(OH)(DMF)3]-(IV) and [Yb2HL2(OH)(DMF3]−-(V) in the presence of
TEA can be described by the following equilibriums:

[[Yb(H2O)8]3+ + H4L + 3DMF + 4TEA � [YbHL(OH)(DMF)3]−-(IV) + 7H2O + 4HTEA+ (5)

[YbHL(OH)(DMF3]−-(IV) + [YbHL(DMF)4]-(I) � [Yb2HL2(OH)(DMF)3]−-(V) + 4DMF (6)

In accordance with the ∆G0
298-values (Table 2), the formation of hydroxy-form (IV) is less

profitable in comparison with complexes (I) and (II) in the solution. However, the assembly of
[YbHL(OH)(DMF)3]-(IV) and [YbHL(DMF)4]-(I) into [Yb2HL2(OH)(DMF)3]−-(V) is both
thermodynamically favorable and entropically driven (Table 2). Thus, complex forms III
and V are more thermodynamically favorable than I, II and IV. Nevertheless, the NMR
diffusion results (Table 1) reveal that the aforesaid complex forms are in equilibrium with
the diverse monomeric complex forms.

2.6. Luminescence Spectroscopy

The complex formation in the solutions is followed by the sensitizing of Yb3+-centered
luminescence derived from 2F5/2→ 2F7/2 transition, with the main emission band centered
at 980 nm and the secondary lines at 971, 996, 1025 and 1040 nm arisen from the main
crystal field splitting (Figure 9) [16,17,51]. The spectra in Figure 9 demonstrate that the
Yb3+-centered luminescence is the greatest for the complexes with p-nitro- and p-bromo-
substituted thiacalix[4]arenes H4L(2,3) versus the complex with H4L(1). The intensity ratios
of the bands at 971 and 996 nm, as well as of those at 1025 and 1040 nm, are well-known for
their sensitivity to any changes in the inner-sphere ligand environment of Yb3+ ions [51].
The ratios at 971 and 996 nm deviate within 1.56–1.72 for the studied ligands, while the
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ratio of the lower energy luminescence bands (1025 and 1040 nm) is somewhat greater for
the complexes with ligand 3 versus those with 1 and 2, which argues for some peculiarity
in the inner-sphere environment of Yb3+ in the case of 3. It is worth noting the equilibration
of the above-mentioned 2:2, 1:1 and 2:1 complexes as the factor influencing the inner-sphere
environment of Yb3+ ions in the complexes with ligands 2 and 3. Thus, the aforesaid
deviation between the spectral patterns of the complexes and ligands 2 and 3 (Figure 9) can
be explained by the different ratios of the dimeric to monomeric complex forms.
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The average excited state lifetime (τav) values of Yb3+ in the complexes with ligands 2
and 3 are 17.68 µs and 23.58 µs (Table 3). The τ-value of the complex with 1 is significantly
shorter; thus, its correct measuring lies out of the present work’s scope since the lowest
limit of correct lifetime estimation is around 10 µs for a flash lamp used as the excitation
source. Altogether, these facts argue for the small number of solvent molecules in the
inner sphere environment of Yb3+ ion for H4L(2,3) complexes, pointing to the significant
contribution of 2:2 form in contrast to 1:1 form for H4L (1). The steady state intensities of
the complexes correlate with their excited state lifetimes (Table 3), thus indicating that the
radiationless losses are significantly lower for the complexes with H4L(2,3) versus those
with H4L(1). It is worth noting that the similarity in τav-values of Yb3+ in the complexes
with ligands 2 and 3 allows to exclude the significant dissipation of the excitation energy
in H4L(R = NO2) caused by the presence of the nitro-substituents as it was found for the
lanthanide complexes with nitrobenzoates [35].

Table 3. Energies of lowest triplet states (T1) of ligands H4L(1–3) in the 2:2 complexes, average
lifetimes of the Yb3+-centered luminescence (<τ> 1) and ligand-centered phosphorescence of the Gd3+

complexes (<τ> 2).

H4L
Triplet Level, T1
λ, nm (ν, cm−1)

at 146 K

<τ> 1 (µs)
at 298 K

<τ> 2 (µs)
at 146 K

1 417 (23,981) 3 - 1437 3

2 458 (21,834) 4 24 301 4

3 567 (17,637) 18 421
1 for Yb3+ complexes. 2 for Gd3+ complexes. 3,4 the previously reported values [7,8].

The excitation spectra of the complexes also reveal the difference between the ligands
H4L(1–3) (Figure 9). In particular, the maximums of the excitation bands exhibit red shifting,
which increases in the following series: H4L(1) (367 nm) < H4L(2) (386 nm) < H4L(3) (476 nm).
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Low temperature phosphorescence measurements of [Gd2L2]2− for H4L(3) were per-
formed to evaluate the energy of the triplet level at 567 nm (17,637 cm−1) (Figure S8) and
average lifetimes of the ligand-centered phosphorescence of the Gd3+ (<τ> = 753 µs). The
value is much lower than the previously reported triplet level energies for the complexes
with ligands H4L(1) and H4L(2) (417 nm (23,981 cm−1) and 458 nm (21,834 cm−1), accord-
ingly [8]. The energies of the triplet levels of the ligands increase in the following series:
H4L(1) (417 nm) < H4L(2) (458 nm) < H4L(3) (567 nm) (Table 3), which is in good correlation
with the above-mentioned red-shifting of the excitation bands.

Visible light excitation is especially important for NIR emitting materials employed
in biochemistry and cell biology since living tissues are sensitive to UV irritation [34].
This indicates that the advantage of H4L(3) versus H4L(2) is the excitation of the bright
NIR-luminescence by the lower energy irradiation. Nevertheless, the energy of the triplet
level provides a relatively small impact on the Yb3+-luminescence of the complexes with
ligands H4L(2,3). This argues for the effect of the upper-rim substituents R = NO2, Br
on the restricted flexibility of the outer-sphere environment of Yb3+ ions versus ligand
H4L(1,R = H) as the main reason for the longer excited state lifetimes (Table 3) and brighter
NIR luminescence (Figure 9).

3. Materials and Methods

N,N-dimethylformamide (DMF) (Acros Organics) was distilled over P2O5. CDCl3
(99.8% isotopic purity) and DMSO-d6 (99.5% isotopic purity) from Aldrich were used for
NMR spectroscopy. Triethylamine (Acros Organics), terbium nitrate (Yb(NO3)3·5H2O)
and terbium chloride (YbCl3·6H2O) (Sigma-Aldrich) were used as commercially received
without further purification. The structural formulae of the investigated compounds
are shown in Figure 1. Tetrathiacalix[4]arenes 1 [52], 2 [53] and 3 [12] were obtained as
described in the literature.

3.1. Synthesis of Complex 3 with YbCl3
The 2.85 mL of 4.5 mM solution of H4L (3) in DMF was mixed with 0.135 mL (0.1 M)

of solution of ytterbium chloride hexahydrate in DMF. To this mixture, 0.015 mL (7.2 mM)
of solution of TEA was added. The resulting solution was stored at room temperature for a
few months and resulted in formation of yellowish needle-like crystals, which have been
used for X-ray analysis.

3.2. Physical Measurements and Methods

Detailed descriptions of physical measurements and methods (electronic absorption,
NMR experiments, MALDI-TOF mass spectrometry, crystal structure data, luminescence
spectroscopy and quantum-chemical modeling) are presented in Supplementary Materials.

4. Conclusions

The present work revealed the impact of the bromo- and nitro-substituents embedded
at the upper rim of thiacalix[4]arenes on a supramolecular package in crystals and solution
behavior of both tetra-bromo and tetra-nitrothiacalix[4]arenes as well as their ytterbium
complexes. It was shown that the upper-rim substituents (R = Br, NO2) enhance deprotona-
tion of the phenolic rims and generate the unusual inclusive self-assembly of H3L−(R = Br),
revealed through single-crystal XRD analysis. Similar to non-substituted thiacalix[4]arenes,
both tetra-bromo and tetra-nitrothiacalix[4]arenes coordinate Yb3+ ions into 1:1, 2:2 and
2:1 (Yb:L) complex forms, but the antenna effect of the thiacalix[4]arene-based ligands on
the Yb3+-centered luminescence is greatly enhanced by the bromo- and nitro-substituents.
Quantum chemical study revealed thermodynamic favorableness of the formation of dimeric
2:2 (Yb:[HL]−) complexes with a rigid structure as one of the reasons for efficient sensitizing
of the Yb3+ luminescence. X-ray analysis of the single crystal separated from the basified DMF
solutions of YbCl3 and H4L (R = NO2) revealed transformation of the dimeric complexes into
[4Yb3+:2L4−] ones with a cubane-like cluster structure.
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Analysis of the time-resolved luminescence in correlation with the triplet energy levels
revealed peculiarity in the antenna effect of H4L(R = NO2), which is efficient sensitizing
of the Yb3+ luminescence by the triplet level of the ligand at 588 nm arisen from the ILCT
without a significant decrease in the lifetime of the excited state caused by dissipation of
an excitation energy in H4L(R = NO2). However, the tetra-brominated ligand provides
similar sensitizing due to the smaller radiationless losses of the ligand environment. Never-
theless, the red-shifting of the excitation wavelengths from 360–380 and 370–420 nm for
H4L(R = H, Br) to 460–500 nm for H4L(R = NO2) provides an advantage of H4L(R = NO2)
versus H4L(R = H, Br) in further bio-applications.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules27206793/s1: Structural formulae of the investigated
compounds H4L(1–3); NMR spectroscopy [54]; crystal structure data [55–64]; the crystal structure
data and the parameters of the intra- and intermolecular interactions for H3L(2)−·(CH3)2NH2

+·DMF;
crystal structure data and parameters of the intermolecular interactions for complex H4L(3) with
YbCl3 [65], UV-absorption spectroscopy; MALDI-TOF mass spectrometry; luminescence spectroscopy
and determination of the T1 state energy of the ligand H4L(3) in its Gd3+ complex [66]; computational
methodology [67–80]; optimized coordinates of atoms for ligand H4L(3) and its Yb3+ complexes.
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