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Unified rheology of vibro-fluidized 
dry granular media: From slow 
dense flows to fast gas-like regimes
Andrea Gnoli1, Antonio Lasanta1,2, Alessandro Sarracino1 & Andrea Puglisi1

Granular media take on great importance in industry and geophysics, posing a severe challenge to 
materials science. Their response properties elude known soft rheological models, even when the 
yield-stress discontinuity is blurred by vibro-fluidization. Here we propose a broad rheological scenario 
where average stress sums up a frictional contribution, generalizing conventional μ(I)-rheology, and a 
kinetic collisional term dominating at fast fluidization. Our conjecture fairly describes a wide series of 
experiments in a vibrofluidized vane setup, whose phenomenology includes velocity weakening, shear 
thinning, a discontinuous thinning transition, and gaseous shear thickening. The employed setup gives 
access to dynamic fluctuations, which exhibit a broad range of timescales. In the slow dense regime 
the frequency of cage-opening increases with stress and enhances, with respect to μ(I)-rheology, the 
decrease of viscosity. Diffusivity is exponential in the shear stress in both thinning and thickening 
regimes, with a huge growth near the transition.

Dry granular materials are collections of macroscopic particles, interacting through frictional contact forces1–3. 
The resistance of a granular aggregate to an applied shearing force is sensitive to many aspects of the experimental 
setup and may present analogies with macroscopic frictional laws, plasticity, soft glassy rheology and the shear 
thinning or thickening phenomena of suspensions4–11. Recently, consensus has been achieved on a certain class 
of steady slow flows which obey the so-called μ(I)-rheology6,12–14. In such a framework the shear stress σ is pro-
portional to normal pressure p through a friction coefficient μ(I) =  σ/p, which slightly depends on the shear rate 
itself through the adimensional “inertial number” I, according to the following formula:
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where μ1, μ2 and I0 are constants. The above formula (see red curve in Fig. 1a) expresses (at constant p) a monotonic 
growth of σ from a minimum yield stress σ1 =  μ1p to a saturation (frictional) stress σ2 =  μ2p. The inertial number 
γ=


I f/ m is the ratio between the shear rate γ


 and the microscopic frequency ρ= ≈ −f p d p m d/ / /m
D /2 1s   

(d the diameter of a grain, ρ its material density, m its mass, Ds the space dimension). Basically fm is the inverse of 
the time needed by a grain to move by d under the acceleration given by the pressure, if starting at rest. The validity 
of the μ(I) scenario has been probed in different setups and is typically associated with a dilatancy effect in the form 
of a I-dependent packing fraction φ(I)12. For this reason the scenario is better appreciated in experiments where the 
volume is not constrained. Note that Eq. (1) corresponds to a monotonic thinning-like reduction of effective viscosity 
η σ γ=


/  which goes from ∞  to 0 as the shear rate is increased.

A more complex picture emerges in the presence of vibro-fluidization, that is, under vertical vibration of the 
granular container15,16. In applications, vibro-fluidization is a renowned technique that enhances homogenization 
and surface of contact at the solid-gas interface for combustion chambers and chemical reactors. A parameter that 
characterizes the intensity of vibration is Γ  =  amax/g, that is the maximum vertical acceleration amax (in the case of 
sinusoidal vibration) normalized by gravity acceleration g (in our experiment we have also used non-sinusoidal 
vibrations and therefore a more general definition of Γ , see Methods). Even at mild values of Γ  (Γ  <  1), an internal 
diffusion of kinetic energy cooperates with the applied stress and softens the discontinuities provided by enduring 
contacts15. The result is the introduction of a thermal-like energy scale (absent in non-fluidized granular media), 
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an evident reduction of the yield stress and a faster fluidization of the material under increasing rates of defor-
mation. Rheological studies in a split-bottom cell under vertical vibro-fluidization demonstrated the existence of 
a thinning transition15, whose exact nature is under scrutiny17,18, recently ascribed to an internal distribution of 
microscopic stresses and a local Herschel-Bulkley rate-stress relation19.

A parallel line of investigation has approached the problem of dry granular rheology by introducing the con-
cept of partial fluidization20,21. In this context there is agreement about the hybrid nature of granular internal 
stress, modelled as a superposition of a frictional contribution, sustained by enduring contacts stabilized by nor-
mal pressure, and a kinetic contribution, where momentum is transferred through instantaneous collisions of 
the fluidized particles. The kinetic contribution is expected to be negligible in the densest and slowest regimes, 
while it emerges in liquid-like flows and finally becomes dominant in gas-like configurations. Notwithstanding 
the immediacy of the concept of partial fluidization, very different recipes and analyses have been suggested in 
the literature, focusing on different aspects and setups. A relevant role in this framework is played by models of 
non-local rheology7,21,22.

Results
A unified rheological model. Our aim, here, is to put under scrutiny a conjecture of ours for a minimal 
rheological model, based upon superposition between frictional and collisional contributions to internal stresses, 
that can embrace the full spectrum of rotationally forced granular flows under vibro-fluidization, specifically a 
large range of values of I ∈  [10−5, 10] and Γ  ∈  [0, 40]. In general, normal stress (pressure) p depends upon the 
degree of fluidization, i.e. upon both I and Γ . For this reason we take as a pressure scale p00 which is the pressure 
at total rest (I =  0 and Γ  =  0): the inertial number I takes the same definition as above, by replacing p with p00. Our 
proposal, illustrated in Fig. 1, takes the following form for a rheological curve at constant Γ :

σ µ α= +

p
I I B I( ) ( ) ( ),

(2)00

where the modified friction coefficient (blue and cyan curves in Fig. 1a) has the form
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the Bernoulli pressure correction function α(I) (see dot-dashed purple curve in Fig. 1b) is defined as
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and finally the Bagnold rheology function (dashed purple curve in Fig. 1b) is simply

Figure 1. Schematic behavior of rheological functions introduced in the text: (a) focus on low values of I;  
(b) focus on larger values of I. In the two plots: μ(I) is the standard I-dependent friction coefficient, µ I( ) is a 
modified version including the effect of activated fluidization (see Eq. (3) in the text), α(I) is the Bernoulli 
pressure correction and finally B(I) is the Bagnold rheology function. Values of the constants are: μ2 =  1, 
μ1 =  0.01 in red, blue and purple curves, μ1 =  0.1 in cyan curve, I0 =  0.05, I1 =  0.001, I2 =  1, I3 =  10, c =  1. The 
three drawings represent three characteristic regimes of fluidization: the original μ(I) rheology describes low (or 
zero) fluidization, the modified µ I( ) rheology includes the first effects of fluidization, the further modifications 
appearing in the full Eq. (2) apply to large values of Γ .
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with μ1, μ2, c, I0, I1, I2 and I3 model parameters. Our proposal is not only supported by a wide agreement with 
experimental data, discussed below, but is substantiated through the following physical arguments.

First, in contrast with the original μ(I) function, a ~ I additional contribution appears at the denominator of µ I( ): 
it represents “activated fluidization”, that is, the enhancement of the breakage rate of enduring contacts due to the 
applied stress. We note that the I-dependence of the friction coefficient μ can be ascribed to the variation of the frac-
tion Ps(I) of enduring “solid”-like contacts, namely μ(I) ∝  Ps(I). A minimal model for Ps(I) consists in neglecting 
memory effects (expected to be important only at very slow shear rates) and writing down a balance equation23 
∂ = → − − →P W f s P W s f P( )(1 ) ( )t s s s, whose stationary state reads =Ps  → → + →W f s W f s W s f( )/[ ( ) ( )]
with W(f →  s) and W(s →  f  ) the transition rates from fluid to solid state and vice-versa, respectively. Comparison 
with the usual μ(I) rheology, Eq. (1), suggests that W(f →  s) and W(s →  f  ) are linear in I. On the contrary, the correc-
tion in the µ I( ), Eq. (3), implies that W(s →  f  ) is enhanced by an additional contribution ~ I . In our experiment 
detailed below, the analysis of fluctuations provides a transparent interpretation of such an additional term as a 
cage-exit frequency. The I-correction can also reproduce rheological behaviors of the kind shown as the cyan curve 
in Fig. 1a, i.e. cases of velocity-weakening (an initial reduction of µ I( ) from the μ1 value) which appear in certain 
experiments in the absence of vibro-fluidization. Weakening cannot be explained by the usual μ(I) function, which 
is necessarily monotonic. The α(I) correction to pressure γ≈ + ∼ − ⋅
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drop in pressure in the presence of finite fluid velocity, in analogy with classical Bernoulli’s principle. Finally, the 
Bagnold rheology function B(I) provides us with the inertial contribution of instantaneous collisions, dominating at 
large I, where one expects a viscous contribution σ ~ γ(I)I and the “thermal” fluctuations underlying effective viscos-
ity are ruled by the shear rate itself, that is γ ~ I. The Bagnold relation is usually indicated as a case of shear thickening, 
even if there is no universal consensus on whether the word “thickening” should be reserved for dense suspensions, 
or it also applies to inertial effects arising in diluted fluids.

Gathering all the pieces together, a general rheological curve is obtained, an instance of which is shown as 
solid purple curve in Fig. 1b. At the transition between the solid-dominated and the kinetic-dominated regions it 
is possible to observe a non-monotonic van der Waals-like behavior of σ which, in stress-controlled experiments, 
appears as a discontinuous thinning15,18. It is straightforward to verify that a continuous change of parameters 
appearing in Eq. (2) transforms the non-monotonic crossover in a monotonic one, as seen in the experiments. We 
underline that the non-monotonic crossover between µ α I I( ) ( ) and B(I) is clearly distinct from the 
velocity-weakening effect discussed above, which belongs to the behavior of µ I( ) alone.

The unified rheological formula, Eq. (2), contains a series of parameters which depend, among other physical 
aspects of the setup, upon the intensity of vibro-fluidization Γ . We remark that in the frictional contribution 
µ α I I( ) ( ) the dependence on Γ  is expected to have a behavior opposite to that in the kinetic contribution B(I). 
Indeed, vibro-fluidization reduces the steady fraction of enduring contacts, while increasing the thermal agitation 
of flying/colliding particles. Such contrasting dependencies neatly reflect our experimental observations, as 
described below.

Comparison with experiments. The theoretical picture of Eq. (2) fairly describes the broad phenome-
nology observed in the experiments we carried out. These are inspired by vane-test tools for the in-situ rheol-
ogy of soils24,25, while the granular medium undergoes mechanical vibro-fluidization in the vertical direction. 
Experiments are detailed in the Methods section. The observed rheological curves σ vs I explore ranges of I which 
depend upon p00. The six frames in Fig. 2 show several representative cases together with their best fits through 
Eq. (2).

Frame (a) illustrates a case at high p00 which provides us with a high resolution at low γ

, i.e. zooming in the 

first part of Eq. (2), where the kinetic contribution is negligible and α(I) ~ c. The ~ I  behavior is evident, as well 
as a small but non-negligible yield stress μ1 >  0. At intermediate values of p00 (frames (b), (c), (d) and (e)) the flow 
curve σ vs I exhibits the crossover from the solid-dominated regime to the collisional-dominated regime, which 
at low Γ  is non-monotonic. Increasing Γ  the parameters change continuously, leading to a point where the curve 
becomes monotonic. The pressure at rest in cases (c), (d) and (e) is low enough to allow a series of data at Γ  =  0 
(see black circles) where a large yield stress can be measured. Finally, frame (f) reports a low pressure situation, 
where the collisional part of Eq. (2) dominates, leading to thickening-like behavior, that is an increasing differen-
tial effective viscosity ∂ σ/∂ I. The six frames confirm what we argued in the above theoretical discussion: when the 
stress is dominated by the solid contribution, an increase of Γ  leads to a reduction of stress, while the opposite 
occurs when the kinetic contribution dominates. At a given p00, the value of I corresponding to the crossover 
between the two regimes does not depend upon Γ : indeed the non-monotonic curves (cases (b), (c), (d) and (e) at 
low Γ ) cross, roughly, at a single point.

In Supplementary Section S1 we discuss the systematic behavior of the fit parameters (which are reported 
in Supplementary Table S2). The physical consistency of the model is corroborated by a general smoothness 
of parameters’ behavior when Γ  is increased. It is more difficult to find a clear connection between the values 
of the parameters and p00 (controlled by material density and by N), an aspect which certainly deserves further 
investigation.

Microrheological properties. Further support for our picture comes from the study of fluctuations, made 
feasible by our vane-test experiment where the rotating blade behaves also as a micro-rheological probe26–28. In 
particular we have measured diffusivity θ θ ω= − − −

−

D t t t tlim {[ ( ) ( )] [ ( )]}t t t t
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0 0
 (where θ(t) is the 
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Figure 2. Experimental stress-strain flow curves. Each series of data with the same colour belongs to a value 
of the shaking amplitude Γ . In frame (a) the results are obtained with N =  2600 spheres of steel, with values of 
Γ  =  3.4, 6.7, 11.6, 18.3, 27.4, 38.4 (from green to purple). In frame (b) N =  1300 spheres of steel, with values 
of Γ  =  2.4, 5, 8.9, 14.6, 22.5, 31.9 (from green to purple). In frame (c) N =  2600 spheres of glass, with values of 
Γ  =  0 (black) and Γ  =  1.1, 8.7, 14.3, 22.1, 32, 43 (from green to purple). In frame (d) N =  1300 spheres of glass, 
with values Γ  =  0 (black) and Γ  =  9, 14.7, 22.5, 32.4 (from green to gray). In frame (e) N =  2600 spheres of 
delrin, with values Γ  =  0 (black) and Γ  =  0.8, 1.3, 3.7 (from green to gray). Finally, frame (f) displays the results 
of N =  600 spheres of steel, with values of Γ  =  6.9, 8.6, 10.7, 13.2, 19.2, 26.2 (from green to purple). Dashed lines 
are best fits with Eq. (2). The values of the fits’ parameters are given in Supplementary Table S2.
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angular position of the blade), the frequency of relaxation of the angular velocity ω(t) defined as fω =  〈 (ω −   
〈 ω〉 )2〉 /D, and the frequency of typical cage exit fcage (which is well defined only in the slow dense cases at high 
p00

26). The precise definition of those quantities is given in the Methods section.
In order to identify the relevant physical quantities responsible for the different regimes observed in our sys-

tem, we define the Péclet number Pe =  〈 ω〉 /D, the Reynolds number Re =  〈 ω〉 /fω and the Mach number 
ω ω ω= −Ma / ( )2 , which are shown in Fig. 3, frame (a), for a set of experiments. For not too high values 

of the inertial number I, we find that, in both cases at high and intermediate p00, Pe 1 (green and red triangles) 
and Re 1 (green and red circles): this behavior can be therefore interpreted as a regime where damping domi-
nates over diffusion.

In the opposite limit, at high values of I, for the case p00 =  540, we find both Pe and Re >  1, with Pe >  Re. This 
regime corresponds to the case where inertia dominates, leading to an increase of friction with a consequent 
thickening behavior, in agreement with the Bagnold contribution appearing in our phenomenological model, and 
with the general picture presented in ref. 29. Interestingly, in the intermediate regime, an inversion occurs - with 
Pe becoming smaller than 1 and Re larger than 1 - at a value of I corresponding to Ma crossing 1, comparable to 
that where the unstable branch of σ(I) begins.

For the low pressure data, p00 =  78, we again find Pe 1 (blue triangles) and Re 1 (blue circles), i.e. a 
regime dominated by damping. The measure of the Mach number allows us to distinguish between the cases at 
high and low pressure: indeed we find the crucial difference that Ma <  1 in the high p00 case (green line) whereas 
Ma >  1 in the low p00 case (blue line). This result reflects the observation that in the latter case the vane can drag 
the surrounding granular medium.

Green diamonds in Fig. 3b indicate fcage ~ exp(σ) which at low values of stress is well approximated by 
fcage ~ 1 +  σ. This observation, together with the behavior σ ~ I  seen in Fig. 2a, is compatible - at low rates I - with 
our interpretation of the denominator of µ I( ): the main responsible factor for the loosening of solid-like contacts 
is the activated escape from trapping cages30. A further observation concerns the dependence of D on σ, again 
displayed in Fig. 3b: in all regimes, excluding the dense-dilute crossover region, we observe a striking exponential 
behavior D ~ exp(σ). This law seems universal and denotes a wide variability of D when σ is varied keeping Γ  
constant. For instance in cases near the transition a variation of more than three decades appears. Those findings 
reveal an extreme sensitivity of micro-dynamics to external disturbances which is critical in designing industrial 
processes or predicting geophysical hazards.

Discussion
We have introduced a novel rheological model, Eq. (2), which merges a corrected μ(I)-like frictional contribution 
dominating at small I and a Bagnold-like term which gives high velocity thickening effects (Eq. (5)). The frictional 
contribution is modified to take into account the fact that the cage-opening rate is I-dependent (Eq. (3)), and that 
(particularly in vibrofluidized experiments) the pressure due to enduring contacts is reduced with increasing I 
(Eq. (4)). The unifield model is able to describe the softening of yield stress with vibro-fluidization, velocity weak-
ening, shear thinning, the often observed discontinuos thinning transition, and shear thickening at large I. We 
have employed a vibrofluidized vane setup to reproduce most of the mentioned phenomena and compare the flow 
curves with Eq. (2), confirming its wide applicability. A microrheological study of experimental fluctuations has 

Figure 3. Frame (a) Peclet, Reynolds and Mach numbers, as functions of the inertial number I, in experiments 
at p00 =  911 Pa (green symbols and lines, 2600 spheres of steel shaken at Γ  =  3.4), at p00 =  540 Pa (red symbols 
and lines, 1300 spheres of steel shaken at Γ  =  2.4), and at p00 =  78 Pa (blue symbols and lines, 600 spheres of steel 
shaken at Γ  =  10.7). Frame (b) diffusivity D, for all three experiments as in frame (a), and cage-exit frequency 
fcage (only for experiment at p00 =  911 Pa), as function of the average measured stress σ. In frame (b) the dashed 
lines represent exponential fits.
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offered further insight, giving solid arguments to the cage-opening interpretation of the ~ I  correction to the 
standard μ(I) formula. We have also observed a striking sensitivity of diffusivity to the shear stress.

Methods
Details of the experiment. The granular medium was made of a number N ∈  [300, 2600] of spheres of 
diameter d =  4 mm made of non-magnetic steel (mass of each sphere: 0.267 g), glass (mass 0.0854 g), or delrin® 
(mass 0.0462 g). They were housed in a plexiglas® cylinder with a conical-shaped floor (diameter 90 mm, mini-
mum height 28.5 mm, maximum height 47.5 mm) in which a plexiglas vane (height 15 mm, width 6 mm, length 
35 mm) was suspended in order to be in contact with the granular medium and not with the container31–33. The 
container was vertically vibrated by an electrodynamic shaker (LDS V450) fed with an acceleration signal a(t). In 
most of the experiments a(t) is a white noise with a band-pass filter between 200 Hz and 400 Hz, while in the 
lowest p00 case (p00 =  78 Pa) we used a sinusoidal signal at frequency 53 Hz. This choice is motivated by two empir-
ical observations: 1) a lower number of particles (as in the case of low p00) requires a larger energy input to be 
homogeneously fluidized and to reach the blade, and this can be obtained by supplying energy through a sinusoi-
dal signal at low frequency; 2) in dense cases a sinusoidal signal induces spurious resonances, while in diluted 
cases such resonances are never observed. We have checked that performing the same experiments with noise 
signal for a(t) (pushing the shaker to its working limits) gives flow curves with the same shape. An accelerometer 
placed on the container side measured a(t), allowing us to define Γ = a t g2 ( ) /2 . The vane, mounted through 
its rotation axis to a rotary encoder, was also connected to a dc motor (typical working voltage 12 V) as the source 
of the driving torque. The motor was directly fed by a dc voltage supply in the range 0 to 7 V. No limit was set for 
the maximum current absorbed by the motor that, averaged on the duration of the experiment, was never higher 
than 450 mA. A data acquisition system collected data for the angular position/velocity of the vane, the effective 
motor voltage, the current circulating in the motor and the root-mean-square vertical acceleration of the con-
tainer. A procedure of calibration allowed us to translate average values of current into average values of applied 
torque. The same procedure helped determining the moment of inertia of the rotating block, 3.2 ×  102 g mm2 (the 
blade with its axis and the gears linking it to the motor). The typical experiment, at a given Γ  and applied motor 
voltage, was 3600 s long, with the granular always “reset” at the beginning of each run for 30 s at high shaking 
intensity (Γ  =  42) and motor off. This procedure - together with periodic replacement of used spheres - guaran-
teed reproducible results at a distance of several weeks. Packing fractions was non-homogeneous (it was larger in 
regions far from the borders of the container): its value at rest was estimated to be in the range 55–70%, while it 
decreased when vibration was switched on. In the analysis we have identified the shear rate γ


 with the average of 

the angular velocity ω(t) of the rotating blade, i.e. γ ω=


t( ) , while the shear stress σ is proportional to the aver-
age of the applied torque T(t) through the shear stress constant κ, i.e. σ =  κ−1〈 T(t)〉  with κ =  2πR2H (with R and 
H the blade half-length and height, respectively)24.

Details of data analysis. Velocity power density spectra (VPDS) are defined as =S f( )  
∫ ω| |πt t e dt(1/(2 ) ( )TOT

t i f t
0

(2 ) 2TOT  with tTOT the time-length of an experiment (= 3600 seconds). Some examples of 
S(f  ) curves are shown in the Supplementary Fig. S4. In ref. 26 VPDS in a similar vibro-fluidized experimental 
setup, without applied torque (σ =  0), has been investigated. In the dilute or gas-like limit, e.g. low number of 
spheres at high shaking, the VPDS takes a simple Lorentzian shape S(f  ) =  D/[1 +  (2πf/fvisc)2], with D the asymp-
totic (long time) diffusivity and fvisc the effective viscosity due to granular gas-vane collisions. When the number 
of particles (density) is increased and/or the intensity of shaking (Γ ) is reduced, the system approaches a slow 
liquid regime and the VPDS develops a wide bump (or smooth peak) with a maximum near f ~ 20 Hz, which is 
associated to oscillations of the velocity autocorrelation induced by liquid cages. At much smaller frequencies the 
VPDS reaches a plateau whose height, limf→0S(f   ), corresponds to diffusivity D: indeed the blade is not trapped in 
a cage forever, eventually it manages to explore a much larger phase space and reaches normal diffusion. From the 
low frequencies plateau of VPDS we have extracted values of D for Fig. 3. We have defined the cage-exit frequency 
fcage as the x-position, in the VPDS plot, of the minimum separating the cage bump from the low-frequency diffu-
sive plateau (see filled circles in Supplementary Fig. S4).

Data availability. The data that support the plots within this paper and all results reported in this study are 
available from the corresponding author upon request.
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