
Branch-recombinant Gaussian processes

for analysis of perturbations in biological

time series

Christopher A. Penfold1,2,*,†, Anastasiya Sybirna1,3,4,†, John E. Reid5,6,

Yun Huang1,4, Lorenz Wernisch5, Zoubin Ghahramani7, Murray Grant8

and M. Azim Surani1,2,3

1Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental

Biology, Cambridge CB2 1QN, UK, 2Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK,
3Wellcome/MRC Stem Cell Institute, University of Cambridge, CB2 1QR, UK, 4Department of Physiology,

Development and Neuroscience, University of Cambridge, Cambridge, 5MRC Biostatistics Unit, University of

Cambridge, Cambridge Institute of Public Health, Cambridge Biomedical Campus, Cambridge, CB2 0SR, UK, 6The

Alan Turing Institute, London, NW1 2DB, UK, 7Department of Engineering, University of Cambridge, Cambridge,

CB2 1PZ, UK and 8School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, UK

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Abstract

Motivation: A common class of behaviour encountered in the biological sciences involves branching

and recombination. During branching, a statistical process bifurcates resulting in two or more poten-

tially correlated processes that may undergo further branching; the contrary is true during recombin-

ation, where two or more statistical processes converge. A key objective is to identify the time of this

bifurcation (branch or recombination time) from time series measurements, e.g. by comparing a con-

trol time series with perturbed time series. Gaussian processes (GPs) represent an ideal framework

for such analysis, allowing for nonlinear regression that includes a rigorous treatment of uncertainty.

Currently, however, GP models only exist for two-branch systems. Here, we highlight how arbitrarily

complex branching processes can be built using the correct composition of covariance functions

within a GP framework, thus outlining a general framework for the treatment of branching and re-

combination in the form of branch-recombinant Gaussian processes (B-RGPs).

Results: We first benchmark the performance of B-RGPs compared to a variety of existing regres-

sion approaches, and demonstrate robustness to model misspecification. B-RGPs are then used to

investigate the branching patterns of Arabidopsis thaliana gene expression following inoculation

with the hemibotrophic bacteria, Pseudomonas syringae DC3000, and a disarmed mutant strain,

hrpA. By grouping genes according to the number of branches, we could naturally separate out

genes involved in basal immune response from those subverted by the virulent strain, and show

enrichment for targets of pathogen protein effectors. Finally, we identify two early branching genes

WRKY11 and WRKY17, and show that genes that branched at similar times to WRKY11/17 were

enriched for W-box binding motifs, and overrepresented for genes differentially expressed in

WRKY11/17 knockouts, suggesting that branch time could be used for identifying direct and indir-

ect binding targets of key transcription factors.
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1 Introduction

A common class of behaviour encountered in the biological sciences

involves branching. In a branching process, often driven by a

biological perturbation, a statistical process bifurcates at a specific

time, leading to two potentially correlated processes that may, them-

selves, undergo further branching (Poincaré, 1885). Reciprocal be-

haviour is encountered in recombination processes, where two or

more statistical processes converge.

Such branching and recombination are frequently encountered in

transcriptional time series data involving host-pathogen interac-

tions. The initial response to infection is the activation of innate

immunity, a highly conserved response based upon perception of

non-self. Subsequently, pathogens can deliver protein effectors

which collectively suppress immunity, and later collaborate to re-

configure plant metabolism for pathogen nutrition. Thus, initially,

the expression dynamics of key infection marker genes will be iden-

tically distributed in both infected and uninfected host cells.

Expression patterns will begin to diverge as the host mounts immun-

ity; in many cases, this innate immune response is suppressed by the

pathogen, potentially driving expression levels of certain genes back

to uninfected levels. Indeed nearly 50% of the transcriptome is

observed to be differentially expressed during some plant infections

(Lewis et al., 2015; Windram et al., 2012). More complex patterns

of branching and recombination may exist in such datasets due to

the ongoing evolutionary arms race between pathogens and their

hosts (Boller and He, 2009; Jones and Dangl, 2006).

The ability to infer the timing of bifurcations in individual genes

should reveal important information about the onset and development

of infection. The inference of branching and recombination processes

from systems level measurements, such as collections of microarray or

RNA-sequencing data, remains a difficult challenge, partially due to

datasets being noisy in nature, with (potentially) missing observations

or uneven temporal sampling. The dynamic nature of different biologic-

al systems may also vary significantly, frustrating efforts to find a ro-

bust, broadly applicable approach to the inference of branching and

recombination. Nonparametric Bayesian approaches to inference would

therefore be advantageous, addressing these key issues. Gaussian proc-

esses represent a flexible Bayesian nonparametric approach to nonlinear

regression able to gracefully cope with uncertainty, uneven sampling

and a diverse range of dynamic behaviour (Rasmussen and Williams,

2006). However, currently, Gaussian processes treatments for branch-

ing processes have only been developed for the two-branch case (Stegle

et al., 2010; Yang et al., 2016). Here, we develop an approach to infer-

ence of arbitrarily complex branching and recombination processes, in

the form of branch-recombinant Gaussian processes (B-RGPs). In

Section 2 we first introduce B-RGPs, highlighting their key limiting be-

haviour. In Section 3, we demonstrate the advantages of B-RGPs over

GPs on a variety of simulated datasets, and in Section 4, we demon-

strate the utility of our approach on genome-scale time-course micro-

array data, by identifying transcriptional branching and recombination

in Arabidopsis thaliana infected with the bacterial pathogen

Pseudomonas syringae. Finally, in Section 5, we discuss a variety of

possible applications for B-RGPs and future avenues for research.

2 Materials and methods

Within a Bayesian setting, Gaussian processes (GPs) can be used to

represent prior distributions over smooth functions, providing a

flexible framework for regression and classification with robust

treatment of uncertainty (Rasmussen and Williams, 2006). This

makes GP-based approaches ideal frameworks for quantifying the

dynamics of gene expression from biological observations (Breeze

et al., 2011; Hensman et al., 2013; Kalaitzis and Lawrence, 2011;

Stegle et al., 2010). For regression, we typically have a set of obser-

vations, y, assumed to be noisy instances of a continuous underlying

function at input locations t: y ¼ f ðtÞ þ �; where e represents

Gaussian additive noise. In our applications, y will typically be used

to denote a vector of the observed expression levels for a given gene

at times, t. We can assign the unknown function a GP prior, denoted

f ðtÞ � GPðlðtÞ; kðt; t0ÞÞ, and analytically evaluate the posterior dis-

tribution at a set of new input locations, t�. The marginal likelihood,

too, may be analytically evaluated, making GPs a flexible and effi-

cient framework for both prediction and model comparison.

Previous GP-based approaches to branching have been outlined for

the two-dataset case, i.e. where there exists two biological processes

following branching. These include the studies by Stegle et al.

(2010), who developed a GP two-sample approach, based on mix-

tures of GPs, and the more recent work of Yang et al. (2016), who

demonstrate explicitly how a two-branch process can be encoded

within a joint GP model. To our knowledge, the generalisation of

GPs to >2 branches has not been addressed, whilst no explicit

closed-form solution to recombination has been outlined.

A useful extension to the GP framework is the multiple output

hierarchical Gaussian process (HGP; Hensman et al., 2013), in

which a basal process is defined by a zero-mean GP with covariance

function k1ðt; t0Þ, with a subsequent process having mean f1ðtÞ and

covariance function, k2ðt; t0Þ:

f1ðtÞ � GP
�

0;k1ðt; t0Þ
�
;

f2ðtÞ � GP
�

f1ðtÞ; k2ðt; t0Þ
�
:

Within this framework, we assume noisy observations of the

functions, y1 ¼ f1ðtÞ þ �, and y2 ¼ f2ðtÞ þ �, and may analytically

evaluate the posterior distribution at a new set of input locations for

prediction, or the marginal likelihood for model comparison. A class

of branching behaviour can naturally be encoded within this HGP

framework, assuming the basal (main branch) process is defined by

a zero-mean GP with covariance function kb1
ðt; t0Þ, with a subse-

quent process having mean fb1
ðtÞ and an appropriate covariance

function that ensures the two processes are identically distributed

prior to an arbitrarily chosen time point, tb:

f1ðtÞ � GP
�

0; k1ðt; t0Þ
�
;

f2ðtÞ � GP
�

f1ðtÞ;CPtb
ðK0; k2ðt; t0ÞÞ

�
;

where K0 ¼ K0ðt; t0Þ denotes a zero-kernel, and CPtb
ðk1; k2Þ

denotes a change-point kernel (Lloyd et al., 2014), defined as:

CPtb

�
k1ðt; t0Þ; k2ðt; t0Þ

�
¼ rðtÞk1ðt; t0Þrðt0Þ

þ
�

1� rðtÞ
�

k2ðt; t0Þ
�

1� rðt0Þ
�
;

where
�

1� rðtÞ
�
¼ 1þ tanh tb�t

s

� �
=2. Here, we introduce two

hyperparameters: tb, which represents the branch time, and s, which

controls how fast the second branch diverges from the basal process

to the potentially correlated branch process. Note that each data

point must be assigned a branch label, z 2 ½1; 2�; according to

which branch it belongs to, e.g. z ¼ 1 will be used to denote data

belonging to the control or wildtype branch, with z ¼ 2 referring to

the perturbed dataset. For a two branch case observations are a pri-

ori Gaussian distributed, y1; y2j t; z � Nð0;Kðt; t 0; z; z0ÞÞ, where:

i1006 C.A.Penfold et al.



Kðt; t0; z; z0Þ ¼ k1ðt; t0Þ þ CPtb

�
K0; k2ðt; t0Þ

�
dz;2dz0 ;2 þ bdt;t0dz;z0 ;

and the delta function dz; 2dz0 ;2 ensures the change-point kernel only

operates over the second branch, i.e. where the branch label

z ¼ 2 and z0 ¼ 2. Within this framework, we may again make a pre-

diction y� at a new set of input locations, ðt�; z�Þ, and analytically

evaluate the marginal likelihood, allowing us to compare the good-

ness of fit between different branching processes.

We can allow further branches that independently diverge from

the main branch, with each data point assigned a branch label. For a

n-component system z 2 ½1; . . . ;n� and we have the following covari-

ance function:

Kðt; t0; z; z0Þ ¼ Kb1
ðt; t0Þ þ

Xn

i¼2

CPti

�
K0; kbi

ðt; t0Þ
�
dz;idz0 ;i þ bdtzdt0z0 :

Alternatively, rather than each branch diverging from the main

process, each branch could itself give rise to further branches in a

recurrent manner, e.g. a basal (main branch) from which a second-

ary branch diverges, with a third branching from the second and

so forth. For an n-component recurrent branching system we

have:

Kðt; t0;z;z0Þ

¼

k1ðt; t0Þ þ bdt;t0dz;z0 ; minðz;z0Þ ¼ 1;

k1ðt; t0Þ þCPt2

�
K0;k2ðt; t0Þ

�
þ bdt;t0dz;z0 ; minðz;z0Þ ¼ 2;

..

.

k1ðt; t0Þ þ
Xn�1

j¼2

CPtj

�
K0;kjðt; t0Þ

�
þ bdt;t0dz;z0 ; minðz;z0Þ ¼ n� 1;

k1ðt; t0Þ þ
Xn

j¼2

CPtj

�
K0;kjðt; t0Þ

�
þ bdt;t0dz;z0 ; z¼ n; z0 ¼ n:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

When observation data for all branches are specified over identi-

cal time points, the covariance matrix can be expressed in a more

compact notation:

Kðt; t 0; z; z0Þ ¼
Xn

j¼1

AðjÞ � kjðt; t 0Þ þ Að1Þ � bI;

where � denotes the Kronecker product and:

kjðt; t0Þ ¼
k1ðt; t 0Þ; j ¼ 1

CPtj

�
K0; kjðt; t0Þ

�
; otherwise;

8<
:

where m represents the number of unique time points, I represents

an ðm�mÞ identity matrix and AðjÞ ¼ u u>, with u representing a

column vector of length n, with ones in elements j through n and

zeros everywhere else. Far more complex branching patterns can

easily be built via the correct composition of independent and recur-

rent branching covariance functions.

As well as building branching structures of arbitrary complexity,

we further note that the dynamic behaviour of the individual

branches themselves may themselves be arbitrarily complex, com-

prised of any linear combination of positive semi-definite kernels. In

Supplementary Figure S1a, we indicate example behaviour of simple

branching GPs.

2.1 Recombinant Gaussian processes
Recombinant processes can be defined in a reciprocal fashion to branch-

ing processes. Notable examples might include the reprogramming of

different terminally differentiated cell lineages to iPSCs (Gurdon, 1962;

Takahashi and Yamanaka, 2006). We can describe a two-component

system via the following composition of covariance functions:

Kðt; t0; z; z0Þ ¼ k1ðt; t0Þ þ CPrb

�
k2ðt; t0Þ;K0

�
dz;2dz0 ;2 þ bdt;t0dz;z0 ;

which encodes the main branch process, with a second (potentially

correlated) process that recombines after time rb. Multiple processes

can again independently recombine with the main branch, or

recurrently recombine via a series of parental branches, analogously

to branching GPs. Example recombinant GPs are shown in

Supplementary Figure S1b.

2.2 Branch-recombinant Gaussian processes
Another important process exists where a statistical process transi-

ently branches into two or more processes, before recombining back

into a single process. Such combinations of branching and recom-

bination may be encountered during development when there exists

>1 route to a terminal cell fate, as may be the case in certain neuron-

al lineages (Zawadzka et al., 2010), as well as in certain diseases,

such as during dedifferentiation of cancer cells (Friedmann-

Morvinski and Verma, 2014). An example two-component system

can be encoded by the following covariance function:

Kðt; t0; z; z0Þ ¼ k1ðt; t0Þ þCPr2

�
CPb2

�
K0; k2ðt; t0Þ

�
;K0

�
dz;2dz0 ;2

þ bdt;t0dz;z0 :

Again, more complex patterns, with arbitrary numbers of

branches and recombination, can readily be built with GPs via the

correct composition of covariance functions, with more complex

examples shown in Supplementary Figure S1c.

2.3 Optimisation, run time and limiting behaviour
A key advantage of the B-RGP framework outlined here over existing

approaches (Yang et al., 2016) is the ability to fit arbitrarily complex

branch-recombinant structures, i.e. >2 branches. Furthermore, un-

like the earlier work of Yang et al. (2016), all hyperparameters

including those relating to branch and recombination times can be

directly optimized via gradient based approaches, e.g. type II ML

estimators. Example B-RGPs have been implemented in MATLAB

using the gpml package (Rasmussen and Williams, 2006). In general,

we note that inference with B-RGPs scales as any other GP, with

complexity Oðn3Þ, where n is the number of observations; for larger

datasets full GP inference becomes unfeasible, but sparse approxima-

tions are possible (Quinonero-Candela and Rasmussen, 2005), with

existing support in gpml. The time required for optimisation of

hyperparameters via type II ML estimates varied: for a dataset with

300 observations, 1000 steps of the gpml minimize function took ap-

proximately 30 s on a Desktop computer (2.5 GHz Intel Core i7), al-

though it should be noted that, in many cases, full convergence could

require >1000 steps. This makes B-RGPs slightly slower than the

time taken for DEtime (Yang et al., 2016), which, for the same data-

set and default parameters, ran in around 10 s.

Depending upon the branch time hyperparameters and other

hyperparameters in the change-point kernel, the behaviour of

B-RGPs can naturally tend towards either an independent GP or a

HGP. Specifically, for a branching GP, when rðtÞ ! 1, as may be

the case when ðtb � tÞ=s is very large, such as when a branch occurs

much later than the last data point, then a BGP will behave as single

joint GP with behaviour defined by the main branch kernel only.

When rðtÞ ! 0, as may be the case when ðtb � tÞ=s has increasingly

low values, such as when branching occurs much earlier than the
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first observations, then the BGP will behave as a HGP. Similar limit-

ing behaviour applies for recombination processes.

3 Results

As a preliminary test of the B-RGP framework we fitted five simu-

lated labelled time series datasets, and evaluated the predictive accur-

acy over a range of test locations, comparing the accuracy to that

achieved using DEtime (Yang et al., 2016), independent Gaussian

process regression (IGP) over the individual branches, joint Gaussian

process regression (JGP) over the union of data, and splines. We first

evaluated the ability to fit the following branching process:

f ðt; zÞ ¼

0; if t� � p=2;

cos ðtÞ; if � p=2 < t�0; z ¼ 1;

1; if t > 0; z ¼ 1;

�cos ðtÞ; if � p=2 < t�0; z ¼ 2;

�1; if t > 0; z ¼ 2:

8>>>>>>>><
>>>>>>>>:

where z indicates the branch label. Random input locations were

sampled, t � Nð0; 3IÞ, with branch labels assigned with equal

probability, zi 2 ½1; 2�. Observations were generated as noisy

instances, yjt; z � N
�

f ðt; zÞ;r2
nI

�
; where rn 2 ½0:1; 0:3�. A three-

component branching process, comprised of a (latent) main process

from which two observed branches diverge, was fitted to the simu-

lated data, with hyperparameters optimized using type II maximum

likelihood (ML). The base kernel and all kernels were set a squared-

exponentials. Branch time hyperparameters were tied, i.e. tb1
¼ tb2

,

with initial values set as tb1
¼ 4, log sb1 ;b2

¼ 0:5, rn ¼ 0:2, and all

other hyperparameters h ¼ ½lb0
;rb0

; lb1
;rb1

; lb2
;rb2
� initiated as i.i.d.

random variables hi � Uð0:1; 1Þ. In Figure 1a, we indicate an ex-

ample posterior fits to the data using a BGP, IGPs, JGPs and splines,

respectively. In Figure 1b, we indicate the log mean sum squared

error (SSE) over 50 randomly initiated runs using N¼50 and

N¼300 training points and for different noise levels. The B-RGPs

shows superior fits (reduced SSE) and decreased negative log mar-

ginal likelihood compared to other approaches. The fits obtained

using DEtime also appeared to perform well in all cases, outper-

forming independent GPs, and demonstrating the usefulness of using

more accurate generative models for inference of branching data.

Next we evaluated the ability of branching GPs to estimate the

branch time. In Supplementary Figure S2b, we plot the branch time

versus inferred branch time for 50 instances and compare to that

achieved using DEtime (Yang et al., 2016). We note that the correl-

ation for our approach (R¼0.9999) indicates good ability to infer

branch times, and was greater than that the correlation when using

DEtime with default settings (R¼9007). Here, the increased

(a)

(b)

(c)

(d)

Fig. 1. (a) Fits to a two-component branching process using a branch GP outlined here, the branching GP outlined in Yang et al. (2016), independent GPs, a joint

GP and independent splines. (b) We indicate the log mean sum squared error for each of the methods for different number of training points and for different

noise levels. (c) Fits to a two component branch-recombinant process using branch-recombinant GPs, branch GPs of Yang et al. (2016), independent GPs, joint

GPs and splines. (d) Log mean sum squared error for the different approaches for different number of data points and noise levels

i1008 C.A.Penfold et al.
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accuracy partly comes from the ability to directly optimise the

branch time hyperparameters via type II ML estimates, rather than

relying on a grid search of inferred branch times. To further explore

the ability to infer branch times for datasets with missing observa-

tions, we repeated this experiment, but excluded observations close

to the true branch point, specifically removing any data points

where jt
b̂
� toj < 2, where, t

b̂
represents the true branch time, and

to is the time of the data point. Even with missing observations cen-

tred at the true branch time, the inferred branch times were found to

be highly correlated with the true branch time (R¼0.9649;

Supplementary Fig. S2c).

In dataset 2, we assumed the following branch-recombinant process:

f ðt; zÞ ¼

0 if jtj > p=2

cos ðtÞ if jtj �p=2; z ¼ 1

�cos ðtÞ if jtj �p=2; z ¼ 2

8>><
>>:

where z indicates the branch label. Again, randomly determined

input locations were sampled as before. A three-component branch-

recombinant GP comprised of a (latent) main process from which two

branches diverge and recombine, was fitted to the simulated data, with

hyperparameters optimized using type II ML estimates. Example fits are

shown in Figure 1c, with the log mean sum square error shown in

Figure 1d. Again, branch-recombinant GPs outperformed all other

methods, with branching GPs DEtime performing next best.

To test for robustness to model mismatch, we used B-RGPs on

two other datasets. In dataset 3, a non-branching, three-component

process was used to generate data, corresponding to a HGP, f0ðtÞ
� GP

�
0;K0ðt; t0Þ

�
; f1ðtÞ � GP

�
f0ðtÞ;K1ðt; t0Þ

�
; f2ðtÞ � GP

�
f0ðtÞ;

K2ðt; t0Þ
�
; with squared-exponential covariance functions used

throughout. A B-RGP was fitted to the data with hyperparameters

initialized as tb1
¼ �4; tr1

¼ 4, log sb1 ;b2r1 ;r2
¼ 0:5, and log rn ¼ 0:2,

and all other hyperparameters initiated as hi � Uð0:1; 1Þ. In this

case, there exists a model mismatch between the data, which has no

explicit branching or recombination, and the branch-recombinant

covariance function used for inference. Nevertheless, we note that

informally, if the branch point occurs much earlier than the

first data point and the recombinant point occurs much later than

the last data point, the behaviour over the range of observations is

identical to that of a HGP, f1ðtÞ � GP
�

0;Kb1
ðt; t0Þ þ Kb2

ðt; t0Þ
�
;

f2ðtÞ � GP
�

0;Kb1
ðt; t0Þ þKb3

ðt; t0Þ
�
: Tuning of the branch/recom-

bination time hyperparameters should therefore allow a good fit

over the regions of observation despite the model mismatch. In

Supplementary Figure S3a, we plot example fits to the function

using a B-RGP, BGPs, IGPs, a JGP and splines. In Supplementary

Figure S3b and c, we indicate the sum of squared errors and negative

log marginal likelihoods. As expected, B-RGPs and IGPs were more

accurate than other approaches, due to the increased flexibility to fit

the two processes, rather than fitting the general underlying trend.

In most cases B-RGPs performed comparably to IGPs, although in a

few instances the B-RGP appeared to suffer from numerical instabil-

ity and failed to converge, with the resulting mean SSE and negative

log marginal likelihood distributions heavy tailed and not as favour-

able as for IGPs. These results suggest that B-RGPs offer comparable

performance to IGPs, although performance depends on sensible ini-

tialisation of hyperparameters.

To further evaluate the effect of model mismatch, we fit to

data from a single, noisy process. Specifically, we used the

same three-component HGP as in dataset 3, with noisy observation

data generated from the first process only, i.e. representing two

replicates y1 � N
�

f1ðtÞ; r2
nI

�
, y2 � N

�
f1ðtÞ; r2

nI

�
. As before, we

fitted the data using a three-component branch-recombinant

process, with squared-exponential covariance function assumed

for all branches, and hyperparameters initiated tb1
¼ �4; tr1

¼ 4.

Informally, we note that, despite the model mismatch, when

branching and recombination both occur much earlier than the first

observation, or much later than the last observation, the fit over the

range of observations should correspond to that of a JGP with co-

variance function corresponding to that of the main branch proc-

ess, f1; 2ðtÞ � GP
�

0;K0ðt; t0Þ
�

. In Supplementary Figure S4a, we

indicate example fits to the function using a B-RGP, IGPs and a

JGP, whilst in Supplementary Figure S4b and c, we indicate the SSE

and negative log marginal likelihood. In general, both the B-RGP

and JGP outperform the other approaches.

Finally, we performed inference on a four-branch system, in

which we have one latent basal branch, from which two intermedi-

ate latent branches emerge. For comparison, we evaluate the sum

squared error for the B-RGP, IGPs a JGP and splines, with the

results indicating B-RGPs provide better overall performance

(Supplementary Fig. S4).

Together, analysis of datasets 1 – 4 indicate B-RGPs offer superior

performance compared to other approaches when the underlying data

is branch-recombinant, with good ability to estimate the timing of

bifurcations. Crucially, all hyperparameters can be optimized directly

using type II ML. Therefore, branch and recombination time hyper-

parameters can be tuned, which, due to their limiting behaviour,

means that they can gracefully cope with datasets where no branching

structure exists, provided hyperparameters are sensibly initialized.

3.1 Inference for partially labelled datasets
In our previous examples, inference relied on the existence of expli-

cit branch labels. In some cases, however, branch labels may be in-

complete or missing entirely. For example, in a collection of single

cell transcriptomics data there may be various cell types, including

some that cannot be unambiguously assigned to a particular branch

a priori. We can attempt to infer the branch labels, z, using Markov

chain Monte Carlo (MCMC). Here, we assume partially labelled

data, with a subset of branch labels know, and the remainder un-

known, denoted z ¼ ½zðlabelledÞ; zðunlabelledÞ�. When branch labels are

known, they can be fixed, whilst unknown branch labels are

initialized stochastically, and updated via a Gibbs sampler, similar

to the usage in Stegle et al. (2010). For an n-component branching

process, the unknown label for cell i, is Gibbs sampled conditional

on the observation data and branch assignment of all other cells:

Pðzi ¼ Ijt; znzi; y; hÞ ¼
Pðyjzi ¼ I; znzi; t; hÞXn

k¼1
Pðyjzi ¼ k; znzi; t; hÞ

;

with hyperparameters updated conditional on all branch labels using

hybrid Monte Carlo (HMC):

h � Pðhjt; z; yÞ

To test the accuracy of our B-RGPs on partially labelled data we

generated observations from the simple branching process outlined

in Supplementary Section S2. We first generated a set of test input

locations, t � Nð0; 5IÞ, with observation data generated as noisy

instances of the process. We then attempted to infer branch labels

and hyperparameters within an MCMC scheme, with labels updated

via Gibbs sampling, and hyperparameters sampled using Hybrid

Monte Carlo. A subset of data points, n, were assigned the correct

branch label, where n=N 2 ½0; 0:1; 0:25; 0:5� and N indicates the
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total number of observations, with the remaining data points ran-

domly assigned to either branch with equal probability and updated

within the MCMC. Five randomly initiated runs were used, with

20 000 steps in the MCMC chain, and the first 5000 discarded for

burn-in. An example of the initial branch assignment is shown

in Supplementary Figure S6a, with red indicating data points

initially assigned to branch 1, and blue assigned to branch 2.

An example fit (and updated branch labels) is shown for step 20 000

in Supplementary Figure S6b. The accuracy of classification is

summarized using receiver operating characteristic (ROC) curves in

Supplementary Figure S6c and d. We note good overall ability to

infer branch labels even for the unlabeled case.

4 Arabidopsis thaliana transcriptional branching
in response to Pseudomonas syringae

To evaluate the utility of B-RGPs on a genome scale applications,

we used our framework to investigate transcriptional branching in

model plant organism A. thaliana in response to infection with hem-

ibiotrophic bacterial pathogen Pseudomonas syringae. Recent stud-

ies by Lewis et al. (2015) (GEO GSE56094) have provided highly

temporally resolved transcriptional datasets for Arabidopsis follow-

ing inoculation with disease-causing Pseudomonas syringae pv.

tomato DC3000, and a disarmed mutant strain hrpA using bulk

microarray measurements. The DC3000 variant delivers 28 effector

proteins that subvert the plant’s immune response; the disarmed

hrpA mutant lacks the apparatus for effector delivery and thus elicits

a classical immune response. Yang et al. (2016) developed a two-

component branching GP to investigate transcriptional bifurcations

between time series of hrpA- and DC3000-inoculated cells. Here,

we extend this analysis by simultaneously deciphering the branching

structure that exists between all 3 time series [mock/control, virulent

(DC3000) and innate immune (hrpA) responses].

For each gene in the three datasets, we consider a number of pos-

sible branching structures: hrpA branches from the control, with

DC3000 branching from hrpA at a later point (Group 1), or hrpA

and DC3000 independently branch from the control (Group 2),

which collectively represent immune response genes that are tar-

geted by effectors; DC3000, but not hrpA, branches from control

(Group 3), representing host susceptibility genes that have been tar-

geted by effectors; hrpA, but not DC3000, branches from the con-

trol (Group 4), likely representing immune genes that have been

targeted by effectors prior to their natural immune response times;

both DC3000 and hrpA jointly branch from the control, but not

from one another (Group 5), representing core immune response

genes not targeted by effectors; no branching exists (Group 6),

(a) (b) (f)

(g)

(h)(e)(d)(c)

Fig. 2. Branching processes were fitted to the three Arabidopsis time series, with hyperparameters optimized to MAP values, and the BIC used to select optimal

branching structure. (a) Example expression profile plots for each of the different classes of branching. (b) Example expression profile of a branch-recombinant

structure within the dataset. (c) The prevalence of each of the six groups within the dataset, compared to the breakdown of non-Pseudomonas effector targets

(d), and Pseudomonas-effector targets show a clear enrichment of effector genes (e). (f, g) The Euclidean distance of branching times of genes from that of

WRKY11/17 is statistically lower in genes that are DE in WRKY11/17 knockouts versus those that are NDE, indicating that perturbation times are predictive of dir-

ect and indirect targets of WRKY11/17. (h) The prevalence of Wbox motifs decreases amongst sets of genes whose branch times are increasingly distant from

WRKY11
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representing genes unaffected by plant immunity or pathogen viru-

lence strategies. Example expression patterns of individual genes

from each of the six groups are shown in Figure 2a.

For Group 1, we assume that the hrpA-infected time series

branches from the mock-infected time series, with the DC3000-

infected time series branching from hrpA-infected:

fmockðtÞ � GP
�

c; kmockðt; t0Þ
�
;

fhrpAðtÞ � GP
�

fmockðtÞ;CPtb1

�
K0; khrpAðt; t0Þ

��
;

fDC3000ðtÞ � GP
�

fhrpAðtÞ;CPtb2

�
K0; kDC300ðt; t0Þ

��
;

where observation data was assumed to be a noisy instances of these

functions, e.g. ymockðtÞ ¼ fmockðtÞ þ e. For Group 2, we have hrpA-

infected and the DC3000-infected time series independently branch-

ing from the mock-infected time series:

fmockðtÞ � GP
�

c;kmockðt; t0Þ
�
;

fhrpAðtÞ � GP
�

fmockðtÞ;CPtb1

�
K0;khrpAðt; t0Þ

��
;

fDC3000ðtÞ � GP
�

fmockðtÞ;CPtb2

�
K0;kDC300ðt; t0Þ

��
:

Collectively Groups 1 and 2 should represent immune response

genes targeted by effectors, and therefore associated with the onset

of disease. For Group 3, we have mock-infected and hrpA-infected

datasets drawn from an identical process, with the DC3000-infected

branching from this:

fmock;hrpAðtÞ � GP
�

c; kmock;hrpAðt; t0Þ
�
;

fDC3000ðtÞ � GP
�

fmock;hrpAðtÞ;CPtb1

�
K0; kDC3000ðt; t0Þ

��
:

This group represents genes not associated with the immune re-

sponse that are nonetheless targeted by effectors, and may therefore

represent those functioning in metabolism. For Group 4, we have

mock-infected and DC3000-infected datasets drawn from an identi-

cal process, with the hrpA-infected branching from this:

fmock;DC3000ðtÞ � GP
�

c;kmock;DC3000ðt; t0Þ
�
;

fhrpAðtÞ � GP
�

fmock;DC3000ðtÞ;CPtb1

�
K0; khrpAðt; t0Þ

��
:

These genes likely reflect downstream immune response genes

that are targeted very early by effectors. For Group 5, we have

hrpA-infected and DC3000-infected datasets drawn from an identi-

cal process that branches from mock-infected:

fmockðtÞ � GP
�

c; kmockðt; t0Þ
�
;

fhrpA;DC3000ðtÞ � GP
�

fmockðtÞ;CPtb1

�
K0;khrpA;DC3000ðt; t0Þ

��
:

These genes represent immune response genes not targeted by

effectors. Finally, for Group 6, we have all datasets drawn from an

identical process:

fmock;hrpA;DC3000ðtÞ � GP
�

c; kmockðt; t0Þ
�
;

representing genes that are unbranched, i.e. not differentially

expressed. Because these datasets correspond to bulk observations

from microarrays with well-defined measurement times we assumed

smooth functions throughout, and therefore, in all cases, the covari-

ance functions were taken to be squared-exponentials, e.g.

kmockðt; t0Þ ¼ SEhmock
ðt; t0Þ ¼ r2

mockexpððt � t0Þ=2lmock
2Þ, where hmock

¼ ½lmock
2;r2

mock� denotes a set of mock dataset-specific hyperpara-

meters, and hyperparameters were optimized to their ML or

MAP values. We assumed the following prior distributions: the first

branch time was Gamma distributed, tb1
� Cð2; 2Þ, with the second

branch also Gamma distributed, tb1
� Cð4; 2Þ, and the change-

point transition rate was Gaussian distributed, s � Nð0; 0:5Þ: All

other hyperparameters were optimized to their ML values. Finally,

we selected the optimal group based on the Bayesian information

criterion (BIC).

In Supplementary Figure S7a, we indicate the branch time be-

tween control and hrpA time series using B-RGPs versus that

obtained using the Gaussian process two-sample (GP2S; Stegle

et al., 2010; Supplementary Fig. S7b). Here, the GP2S approach in-

correctly identified a peak perturbation time at t ¼ 0, before

Arabidopsis could mount an immune response. This peak was not-

ably absent in our B-RGP approach. To further gauge the accuracy

of our approach, we compared the estimated branch times between

hrpA and DC3000 using B-RGPs (Supplementary Fig. S6c) to that

obtained using the perturbation times previously estimated in Yang

et al. (2016) (Supplementary Fig. S6d). The analysis in Yang et al.

(2016) provide 90% confidence intervals for branch time estimates,

and we note that our MAP estimation falls within these bounds in

67% of cases. Of the remaining genes, 27% of our MAP estimates

lie to the right of the confidence bounds, and 5% to the left of the

confidence bounds, suggesting that our approach has a tendency to

estimate later branch times than that of Yang et al. (2016). This is

likely due to differences in the prior distributions over branch times.

Indeed, if we plot the estimated branch time using our method ver-

sus the PT approach for the 27% of genes noted above, we see a

strong correlation (R¼0.8507). Together, these results suggest that,

although there is good agreement between the methods for a large

fraction of cases, inference of branch time in a subset of the observa-

tions may be unidentifiable.

Our results indicate that approximately 50% of genes were un-

perturbed by either the hrpA or DC3000 strains, in agreement with

previous studies based on pairwise comparison of the time series

using mixtures of Gaussian Processes (Lewis et al., 2015), where

52% of genes were identified as being differentially expressed in

control versus hrpA or control versus DC3000.

Since DC3000 is known to subvert the basal immune response of

Arabidopsis, we hypothesized that the expression of a subset of

genes in the DC3000-infected dataset might converge fully back to

control levels later in the infection process. To identify such genes,

we also fitted a two-component branch-recombinant GP using the

control and DC300-infected time series only, again using the BIC to

distinguish between genes undergoing branching and recombination

from those undergoing branching alone.

fmockðtÞ � GP
�

c; kmockðt; t0Þ
�
;

fDC3000ðtÞ � GP
�

fDC3000ðtÞ;CPtr1

�
CPtb1

�
K0;kmockðt; t0Þ

�
;K0

��
:

An example branch-recombinant expression profile is shown in

Figure 2b. We note that relatively few genes were identified as hav-

ing their expression levels fully converge back to control levels. Of

those that did, none were identified as being targets of effectors or

previously implicated in the response to P. syringae, suggesting that

the full suppression of early immune response genes to control levels

is not required for infection to advance.

Gene Ontology analysis identified several highly enriched terms

across the first five groups (see Supplementary Table S1), suggesting

distinct biological functions relating to pathogen response and
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metabolic reprogramming. Prior to 3 h, the ontologies represent

some of the earliest transcriptional processes targeted by effectors.

Consequently, there is a diverse array of GOs represented. Notable

are the combination of proteolytic, ribosome, vitamin and amino

acid metabolic and transport processes. This is indicative of assem-

bly of the processing machinery to enable effector mediated reprog-

ramming of core cellular processes. Between 3 and 5 h post infection

(hpi) the impact of effectors was evident by the number of GOs iden-

tified, with processes associated with nuclear processes, in particular

chromatin remodelling, nuclear transport and transcription, most

highly enriched. Other GO processes, such as hormone responses

and primary metabolism, were, unexpectedly, less abundant. While

Lewis et al. (2015) also reported evidence for chromatin remodelling

in this dataset, B-RGPs provided much better temporal resolution.

As the effector-driven virulence programme proceeds, but prior to

bacterial multiplication (5–8 hpi), there is a strong enrichment of

terms related to adenyl ribonucleotide binding, reflecting the high

energy demands at this phase of the infection process, when

Pseudomonas effectors have suppressed immune responses and are

reconfiguring the metabolism to facilitate pathogen growth.

To further investigate the nature of these groups, we looked for

enrichment of known targets of effectors of various pathogens

(Mukhtar et al., 2011). We first checked for enrichment of targets of

non-Pseudomonas effectors, hypothesizing that the Arabidopsis im-

mune response to different pathogens might be conserved (Mukhtar

et al., 2011). Figure 2c and d, shows that these groups were indeed

enriched. Next, we checked for enrichment of Avr and Hop effectors

that are present in several strains of Pseudomonas syringae, and

were again enriched in DC3000-responsive groups (Fig. 2c and e).

We next looked for enrichment of genes with known pathogen-

response phenotypes, using TAIR (Huala et al., 2001) to query for

genes using the terms ‘Pseudomonas’, ‘Botrytis’ and ‘Peronospora’.

In Supplementary Figure S8, we indicate the frequency of pathogen-

response genes within various groups, and our results show a

distinct enrichment for Pseudomonas-related and Botrytis-related

genes amongst the various immune responsive and disease-

responsive groups.

Finally, we investigated whether inferred branch times of key

regulators were predictive of branching of the direct and indirect tar-

gets of key regulators. Here, we focused on WRKY11 and

WRKY17, known to be amongst the earliest branching transcription

factors (TFs) implicated in the Arabidopsis response to P. syringae

(Journot-Catalino et al., 2006). Both genes showed branching be-

tween control and hrpA, and between hrpA and DC3000 consistent

with (i) their immune-responsive expression and (ii) their suppres-

sion by DC3000 effectors. Genes that branched between control and

hrpA and between hrpA and DC3000 were assigned a Euclidean dis-

tance (d) based on the position of their branch times with respect to

that of WRKY11 or WRKY17. We then compared the distributions

of these Euclidean distances for the subset of genes identified as

being differentially expressed (DE) in knockout mutants of

WRKY11/17 (Journot-Catalino et al., 2006) versus the distribution

of the subset of genes that were not differentially expressed (NDE)

in those mutants. Our results show that DE genes had significantly

smaller Euclidean distances than NDE genes (p<0.05 for WRKY11

and P<0.005 for WRKY17 using two-sided Student’s t-test; Fig. 2f

and g), suggesting that genes that branched at similar times to

WRKY11/17 were likely to represent a core set of genes targeted by

the pathogen’s virulence strategy. WRKY11/17 are TFs and could

exert direct regulation of their targets by binding to their regulatory

elements. To check this, we searched for the presence of WRKY

motifs within a 1 kb promoter region using FIMO (Grant et al.,

2011); specifically, the stringent WRKY binding site (Wbox) motif,

TWGTTGACYWWWW, identified by Ciolkowski et al. (2008).

Here, we looked at the frequency of Wbox motifs (P<0.0001)

in sets of genes whose branch times were increasingly distal

from WRKY11. These groups were based on: (i) genes whose

Euclidean distance d<1, representing the closest 156 genes (see

Supplementary Fig. S9); (ii) genes whose Euclidean distance d<2,

representing the closest 454 genes; and (iii) the closest 2000 genes. As

positive and negative controls, we also included the 157 genes that

were identified as DE in the WRKY11 knockout line compared to

control, and 2000 genes randomly selected from Group 6 (genes with

no branching). Our results showed a clear trend of increasing fre-

quency of Wbox motifs in sets of genes whose branch times were clos-

est to that of WRKY11 (Fig. 2h; see also Supplementary Table S2).

Altogether, these results suggest that estimation of branch times may

be useful for identifying direct and indirect targets of perturbed genes,

and more generally demonstrate the efficacy of B-RGPs for extracting

temporally resolved information from complex biological datasets.

5 Discussion

The ability to identify and quantify branching and recombination

processes from systems-level measurements has a variety of import-

ant applications in the biological sciences. Here, we have outlined a

general framework for the composition of covariance functions that

allow for the prior specification of branch-recombination processes

of arbitrary complexity, both in terms of the number of branches

and richness of dynamics, via simple compositional of covariance

functions within a HGP framework. As well as specifying arbitrarily

complex processes, all hyperparameters could be optimized via gra-

dient based approaches, resulting in more accurate inference of

branch times compared to existing approaches, although inference

took slightly longer.

Here, we applied B-RGPs to a time-series microarray data

of Arabidopsis thaliana infected with a bacterial pathogen

Pseudomonas syringae. By explicitly enumerating over all possible

branch structures, i.e. all 1, 2 and 3 branch structures, and using the

AIC as a selection criterion, we were able to infer the branch struc-

ture for each gene. Whilst exhaustive iteration will not necessarily

be possible for more complex datasets with >3 time series, we note

that greedy approaches based on merging of time series could in-

stead be used.

More generally, B-RGPs represents a flexible approach for the ana-

lysis of branching and recombination in time series datasets. This ap-

proach can be thought of as a natural extension to two-sample based

approaches, allowing analysis of arbitrary numbers of time series.

Whilst here we focused on branching as a function of time, our

approach is equally amenable to branching as a function of any

other variable, such as expression level of a specific regulator. An

intriguing possibility is therefore to incorporate B-RGPs into exist-

ing GP-based approaches for the inference of nonlinear dynamical

systems (Penfold and Wild, 2011; Penfold et al., 2012; Penfold

et al., 2015a, b; Äijö and Lähdesmäki, 2009), which would naturally

allow inference of nonstationary nonlinear dynamical systems, such

as temporally or spatially varying networks.

In addition, we envisage that B-RGPs could also be used to cap-

ture transcriptional dynamics underpinning cell fate decisions from

single cell transcriptomics data. For this, cells are first pseudotem-

porally ordered along a developmental axis using a combination of

dimensionality reduction techniques and curve-fitting or graph-

theoretic approaches (Bendall et al., 2014; Ji and Ji, 2016; Marco
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et al., 2014; Setty et al., 2016; Trapnell et al., 2014). Once ordered

along pseudotime, B-RGPs could capture the branching dynamics of

individual genes, thus identifying the earliest molecular events con-

trolling cell fate decisions. Alternatively, B-RGPs could be used to

directly model cell fate decisions. Recent studies by (Reid and

Wernisch, 2016) have shown how Gaussian process latent variable

modes (GPLVMs), can be used to pseudotemporally order genes

along a developmental axis, with a key advantage over other pseu-

dotime approaches: the incorporation of capture time into the infer-

ence procedure. However, due to a previous lack of treatment for

branching in GP models, the approach of Reid and Wernisch (2016)

did not explicitly allow for pseudotemporal ordering of datasets

with branching behavior. The incorporation of B-RGPs into a

GPLVM model naturally allows for pseudotemporal ordering over

branching process, whilst retaining the ability to leverage highly in-

formative data, such as capture time (Penfold et al., 2017).
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