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Blue cone monochromacy (BCM; OMIM 303700) is an 
X-linked retinopathy caused by mutations in the OPN1LW 
(OMIM 300822)/OPN1MW (OMIM 300821) gene cluster, 
encoding the red (long wavelength-senstitive [L]) and green 
(middle wavelength-sensitive [M]) cone opsins [1-3]. The 
most common mutations reported to cause BCM are large 
deletions at the OPN1LW/OPN1MW gene cluster, affecting the 
locus control region in most cases, and the p.C203R missense 
mutation [2,4]. Genes that express blue cone opsin (short 
wavelength-sensitive [S]) and the rod pigment are autosomal 
and normal in BCM [5,6].

The estimated BCM prevalence is 1 in 100,000 individ-
uals [7]. The clinical presentation of BCM can be variable and 

is similar to that of achromatopsia (rod monochromacy), and 
the blue-yellow filtered glass test can differentiate between 
the two entities [8]. Male patients with BCM usually present 
with myopia, reduced visual acuity (VA) ranging from 20/80 
to 20/400, severely abnormal color vision, photophobia, and 
mild to severe nystagmus [3,9]. Typically, patients with BCM 
show numerous errors along the protan-deutan axis, as can 
be seen in the Farnsworth D-15 panel test. Electroretinog-
raphy (ERG) recordings show diminished cone and retained 
rod responses [3]. The disease is considered stationary with 
minimal fundus changes such as granularity within the 
macular area, but recent studies have shown progressive 
macular atrophic changes among old patients [10,11]. In addi-
tion, thinning of the photoreceptor outer nuclear layer within 
the foveal region and shortening of the cone outer segments, 
which led to a lack of umbo, and residual L/M-cones that 
were presumably non-functional within the central 1.5 mm 
of the retina were observed [6].
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Purpose: Blue cone monochromacy (BCM) is an X-linked retinopathy caused by mutations in the red and green cone 
opsin genes. The aim of this study was to establish the clinical, genetic, and electrophysiological characteristics of a 
specific form of BCM.
Methods: Patients harboring mutations in the OPN1LW/OPN1MW genes underwent a full clinical examination, including 
ocular examination, color vision, full-field electroretinography, color fundus and autofluorescence photography, and opti-
cal coherence tomography. Genetic analysis was performed using whole-exome sequencing, duplex PCR, PCR/restriction 
fragment length polymorphism, and Sanger sequencing. IBM SPSS Statistics v. 21.0 was used for the data analysis.
Results: Twenty-five patients harboring various haplotypes in exon 3 of the OPN1LW/OPN1MW genes were recruited. 
They showed a milder incomplete phenotype of BCM than the typical BCM control group. They presented significantly 
better visual acuity (logarithm of the minimum angle of resolution [logMAR] 0.48 ± 0.26 vs. 1.10 ± 0.54; p < 0.0001) 
and a highly myopic refraction (−7.81 ± 5.81 D vs. −4.78 ± 5.27 D; p = 0.0222) compared with the BCM control group. 
The study group had higher 30-Hz cone flicker responses (28.60 ± 15.02 µv; n = 24), whereas the BCM group had none 
(0.66 ± 2.12 µv; n = 21; p < 0.0001). The Lanthony 15-HUE desaturated test was variable for the exon 3 haplotype group, 
with a tendency toward the deutan-protan axis.
Conclusions: The present study included genetic and clinical data from the largest cohort of patients with exon 3 hap-
lotypes that were previously shown to cause missplicing of the OPN1LW and OPN1MW genes. Analysis of the clinical 
data revealed better best-corrected visual acuity, more severe myopia, and higher 30-Hz cone flicker responses in the 
patients with exon 3 haplotypes than in those with typical BCM.
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Besides the set of mutations that cause the classic BCM 
phenotype, a group of haplotypes (a combination of specific 
amino acid residues) based on common single nucleotide 
variants residing in exon 3 has recently received special 
attention [12-21]. By using in vitro splicing assays, certain 
combinations of these variants have been shown to lead to the 
complete or partial skipping of exon 3 or other missplicing 
events [13,15,22].

Herein, we report the clinical and molecular genetic find-
ings from the largest reported cohort of patients harboring 
various OPN1LW/OPN1MW exon 3 haplotypes and compare 
them with those of patients with typical BCM-causing vari-
ants. The phenotype of the group harboring haplotype vari-
ants was milder than that of the typical BCM group.

METHODS

Patient recruitment: The tenets of the Declaration of Helsinki 
were followed in the conduct of this study. Prior to blood 
sample donation, all individuals who participated in this study 
provided written informed consent after receiving an explana-
tion of the nature and possible consequences of the study. The 
research was approved by the institutional review boards of 
Hadassah Medical Center and Rambam Health Care Campus. 
In this study, we included male patients who were clinically 
diagnosed with BCM (or mild BCM) suggested as the major 
phenotype or as one of the possible phenotypes (usually when 
young male patients were clinically tested and unequivocally 
determining whether the phenotype was indeed BCM or 
another cone-dominated disease was challenging).

Clinical evaluation: Ocular evaluation was performed with 
a full ophthalmological examination, including family 
history, ocular and systemic histories, best-corrected visual 
acuity (BCVA) tested for both distance and proximity (from 
a reading distance), Goldmann perimetry, full-field ERG 
(ffERG), color vision test using the Ishihara 38-panel and 
Farnsworth-Munsell D-15 tests, color and infrared fundus 
photography, spectral domain optical coherence tomography 
(SD-OCT), and fundus autofluorescence imaging. ffERG 
responses were recorded in accordance with the International 
Society for Clinical Electrophysiology of Vision standard 
using corneal electrodes and a computerized system (UTAS 
3000, LKC Technologies, MD) as previously described [23]. 
Clinical data are presented as mean ± standard deviation (SD).

Genetic analyses: DNA samples were extracted from the 
index patients and other affected and unaffected family 
members by using the FlexiGene DNA kit (QIAGEN, 
Hilden, Germany). Genetic analysis included whole-exome 
sequencing as previously detailed [24] and Sanger sequencing 

using specific primers designed using the Primer3 software 
and University of California Santa Cruz website, as detailed 
in Appendix 1.

In addition, the basic structure and integrity of the 
OPN1LW/OPN1MW gene cluster were analyzed using PCR 
and PCR/restriction fragment length polymorphism, and 
the BCM-causing point mutations and exon 3 haplotypes of 
the OPN1LW/OPN1MW genes were screened with Sanger 
sequencing as previously described [9,15]. For the subjects 
with a structurally intact array, OPN1LW- or OPN1MW-
specific long-distance PCRs were performed and used for the 
reamplification of exon 3 followed by Sanger sequencing [15].

RESULTS

Identification of patients harboring mutations in the cone 
opsin cluster: We identified two groups of patients with 
pathogenic sequence variants in the OPN1LW/OPN1MW gene 
cluster: 25 patients (from 14 unrelated families) with various 
exon 3 haplotypes (exon 3 group; see below for more details 
and Appendix 2) and 21 patients (from three unrelated fami-
lies) with other pathogenic variants (the BCM group). The 
genetic and clinical information of some of the patients was 
reported in our previous studies [12,25]. Of the 21 patients 
from the BCM group, 20 had a large deletion removing most 
exons of the red and green opsin genes (Table 1), and one 
harbored a single hybrid gene with the previously reported 
p.C203R mutation. Patients who belonged to the exon 3 group 
had various combinations of sequence variants within exon 
3, as detailed in Table 1.

Visual acuity and refraction: Detailed clinical information for 
each participating subject is presented in Appendix 2. BCVA 
± SD data are available for all patients in the exon 3 group, 
who were examined at a mean age of 13.83 ± 12.64 years 
(range, 4–61 years) and presented a mean BCVA of Snellen 
of 0.369 ± 0.172 (logMAR, 0.48 ± 0.26). The mean BCVA 
of Snellen of 0.14 ± 0.19 (logMAR, 1.10 ± 0.54) is available 
for 17 patients in the BCM group, who were examined at a 
mean age of 18.44 ± 15.33 years (range, 3.5–51 years; Table 
2). The study group had significant better BCVA than the 
BCM group (p < 0.0001). The patients in the exon 3 group 
were also more myopic than the patients with BCM (mean 
spherical equivalent, −7.81 ± 5.81 D [range, 9.875 to −15.75 
D; n = 21] vs. −4.78 ± 5.27 D [range, 0.25 to −18.0 D], n = 13; 
p = 0.0222; Table 2).

Near VA was available for 11 patients, most of whom 
demonstrated a good near VA, which was usually better than 
the distance VA for the same patients. Nine of the 11 patients 
had Jager 1 (J1) in at least one eye (Appendix 2).
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Table 1. Information regarding the participating families and their genetic results.

OPN1LW/OPN1MW mutation/ exon 3 haplotype* Gene Genetic method Family No.
Blue cone monochromacy (BCM)

chrX:g.153409766_153455982del Cone opsin cluster Sanger Sequencing MOL0110

p.C203R OPN1LW/OPN1MW single 
hybrid gene Sanger sequencing MOL0432

chrX:g.153409766_153455982del Cone opsin cluster Sanger sequencing MOL01405
Exon 3 haplotype blue cone monochromacy

G-C-G-A-T-C-G-G (RLVIAVA) 
A-A-C-G-G-T-G-G (RMVVVVA)

OPN1LW 
OPN1MW

WES and PCR, PCR/
RFLP, LD-PCR, 
Sanger sequencing

MOL0048

G-C-G-A-T-C-G-G (RLVIAVA) OPN1LW/OPN1MW single 
hybrid gene Sanger sequencing MOL0057

G-C-G-A-T-C-G-G (RLVIAVA) 
A-A-C-G-G-T-G-G (RMVVVVA)

OPN1LW 
OPN1MW Sanger sequencing MOL0152

G-C-G-A-T-C-G-T (RLVIAVS) OPN1LW Sanger sequencing MOL0267

G-C-G-G-G-C-G-G (RLVVAVA) 
A-A-C-G-G-T-G-G (RMVVVVA)

OPN1LW 
OPN1MW

PCR, PCR/RFLP, 
LD-PCR, Sanger 
sequencing

MOL0298

G-C-G-G-G-C-G-G (RLVVAVA) 
A-A-C-G-G-T-G-G (RMVVVVA) 
A-A-C-G-G-C-G-G (RMVVAVA)

OPN1LW 
OPN1MW 
OPN1MW

PCR, PCR/RFLP, 
LD-PCR, Sanger 
sequencing

MOL0961

G-C-G-A-T-C-G-G (RLVIAVA) 
A-A-C-G-G-T-G-G (RMVVVVA)

OPN1LW 
OPN1MW

PCR, PCR/RFLP, 
LD-PCR, Sanger 
sequencing

MOL1215

G-C-G-G-G-C-G-G (RLVVAVA) 
A-A-G-G-G-T-G-G (RMVVVVA)

OPN1LW 
OPN1MW

WES and Sanger 
sequencing MOL1231

G-C-G-A-T-C-G-G (RLVIAVA) 
A-A-G-G-G-T-G-G (RMVVVVA)

OPN1LW 
OPN1MW

PCR, PCR/RFLP, 
LD-PCR, Sanger 
sequencing

MOL1383

G-C-G-A-T-C-G-G (RLVIAVA) 
G-C-G-A-T-C-G-G (RLVIAVA) 
A-A-C-A-T-T-G-G (RMVIVVA)

OPN1LW 
OPN1MW OPN1MW Sanger sequencing MOL1434

G-C-G-A-T-C-G-G (RLVIAVA) 
A-A-G-G-G-T-G-G (RMVVVVA)

OPN1LW 
OPN1MW

PCR, PCR/RFLP, 
LD-PCR, Sanger 
sequencing

MOL1459

G-C-G-G-G-C-G-G (RLVVAVA) 
A-A-C-G-G-C-A-G (RMVVAIA)**

OPN1LW 
OPN1MW

PCR, PCR/RFLP, 
LD-PCR, Sanger 
sequencing

MOL1611

G-C-G-A-T-C-G-T (RLVIAVS) OPN1LW WES and Sanger 
sequencing MOL1654

G-C-G-A-T-C-G-T (RLVIAVS) OPN1LW Sanger sequencing MOL1736

*- The haplotype in exon 3 is composed of the following variants: c.453A/G (p.151R/R), c.457A/C (p.153M/L), c.465C/G (p.155V/V), 
c.511G/A and c.513G/T (p.171V/I), c.521C/T (p.174A/V), c.532A/G (p. 178I/V), c.538G/T (p.180A/S). Based on this order, nucleotides 
are presented as “G-C-G-A-T-C-G-G” that corresponds to the protein haplotype that is shown in parenthesis “(RLVIAVA)”- the amino 
acids in bold represent the five missense variants that are part of the haplotype. **- This haplotype is not considered pathogenic, but 
cosegregates in a family that includes 3 distantly related affected individuals.
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Color vision: The color vision tested using the Lanthony 
15-HUE desaturated test was performed for 10 of the 25 
patients included in this study. Four patients showed deuter-
anopic color vision deficit, two presented with protanopia, 
and two had normal results. In another two patients, the exact 
dyschromatopsia profile was difficult to determine (Appendix 
2). None of the subjects had tritanopic axis errors.

ERG responses: ffERG data were collected for both groups of 
patients in relation to the age at which the test was performed. 
The cone flicker responses at a mean of 30 Hz and the implicit 
time of the exon 3 group were 28.60 ± 15.02 µv (n = 24) 
and 34.10 ± 3.84 ms (n = 22), respectively, at a mean age of 
14.372 ± 13.25 years. However, the patients with BCM who 
underwent ffERG at a similar mean age of 16.39 ± 15.52 years 
showed significantly diminished cone responses of 0.66 ± 
2.12 µv (n = 21) and a longer response time of 39.5 ± 5.65 (n 
= 2). In line with these findings, 92% (22/24) of the patients 
with exon 3 haplotypes had measurable cone responses 
compared with 10% (2/21) of the patients with typical BCM. 
These findings are compatible with the BCVA findings and 
highlight the fact that the patients with exon 3 haplotypes 
presented with milder retinal phenotypes. The mixed cone-
rod and rod responses were reduced but not significantly 
different between the two groups of patients (Table 2).

Ocular findings: The anterior segments were within the 
normal limits in all the patients with BCM in this study, 

except one patient (aged 57 years) who presented with a cata-
ract; all the other patients had clear lenses. Around half of the 
patients presented with mild changes of the retinal pigment 
epithelium in the fovea at an early age (12/25), and two 
patients had foveal atrophy (MOL1459–1 and MOL1736–1; 
aged 37 and 57 years, respectively). In addition, most of 
the patients were highly myopic, presenting myopic fundus 
characteristics, including peripapillary atrophy (13/25), tilted 
optic disc (5/25), and myopic appearance (7/25; Figure 1 and 
Appendix 2).

Spectral domain OCT: SD-OCT scans were available for 
12 of the 25 patients, five of whom demonstrated SD-OCT 
scans within the normal limits, whereas the remaining seven 
patients showed a variable extent of ellipsoid zone disrup-
tion, which led to foveal thinning (Figure 1 and Appendix 2). 
No choroidal neovascularization or cystoid macular edema 
was evident. However, retinal “cavitation” secondary to 
atrophy (MOL1654–2 and MOL1736–1) and subretinal fluid 
secondary to a dome-shaped macula (MOL0057–3) were 
observed (Figure 1).

Short-wavelength fundus autofluorescence: Short-wavelength 
fundus autofluorescence images were available for nine of the 
25 patients in the study group. Four patients demonstrated a 
normal autofluorescence pattern, whereas five had variable 
disrupted autofluorescence without a characteristic pattern 
(Figure 1).

Table 2. Visual acuity, refraction and electrophysiological responses of 
Exon 3 and BCM-control groups included in this study.

Blue -wave rod 
response [µv] 

(n)

b-wave mixed 
response [µv] 

(n)

a-wave mixed 
response [µv] 

(n)

Time [msec] 
(n)

Cone 
Flicker- 30 

Hz [µv] 
(n)

Spherical 
Equivalent 

[D] 
(n)

Snellen 
VA±SD (n)

Variables and 
study group

18.24±14.05 14.372±13.25 13.83±12.64
Age at exami-
nation ± SD 
[years]

236.32±104.37 
(17)

320.03±100.68 
(17)

148.97±74.02 
(17)

34.10±3.84 
(22)

28.60±15.02 
(24)

−7.81±5.81 
(21)

0.369±0.172 
(24)

Incomplete 
BCM

22.76±16.71 22±16.31 16.39±15.52 18.44±15.33
Age at exami-
nation ± SD 
[years]

216.03±44.66 
(13)

290.92±57.44 
(14)

162.46±49.48 
(14)

39.5±5.65 
(2)

0.66±2.12 
(21)

−4.78±5.27 
(13)

0.14±0.19 
(15)

Complete 
BCM

0.8128 0.3358 0.29 0.28 <0.0001 0.0222 <0.0001 p-value

GraphPad prism 7.0 was used for statistical analysis. Non-parametric Mann–Whitney test was used to compare between two groups. Data 
represent average between both eyes. Full-field ERG results include the following details: Dark-adapted mixed cone-rod a- and b-wave 
amplitudes (in μV, normal a-wave 90–350 μV, normal b-wave 380–630 μV). Light-adapted cone flicker amplitude (Amp., in μV, normal 
60–144 μV) and implicit time (IT, in ms, normal 27–33 ms); Dark-adapted rod response b-wave amplitude (in μV, normal range 200–500 
μV). Age is provided for the detailed clinical tests.

http://www.molvis.org/molvis/v28/21
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Figure 1. Color fundus, fundus autofluorescence (FAF), and spectral-domain optical coherence tomography (SD-OCT) images of the patients 
with exon 3 haplotype blue cone monochromacy. (A–F) MOL0057–3, (G–L) MOL1383–1, (M–R) MOL1434–1, and (S–X) MOL1736–1. (A, 
B, G, H, M, N, S, and T) Color fundus photos showing peripapillary atrophy, temporal pallor of the optic disc, normal-looking peripheral 
retina, and disrupted foveal reflex, except MOL1383–1. The parallel FAF images (C, D, O, P, U, and V) demonstrate a hyperfluorescent 
foveal reflex complementary with foveal ellipsoid zone atrophy in the SD-OCT horizontal cross-sections (E, F, Q, R, W, and X). (I, J) 
Normal FAF reflex for MOL1383–1 reflecting the preserved ellipsoid zone in the SD-OCT cross-sectional images (K, L).

http://www.molvis.org/molvis/v28/21
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DISCUSSION

Sequence variants in the X-linked OPN1LW/OPN1MW gene 
cluster can cause various ocular phenotypes. The milder 
form presents with color vision deficiency of either the red 
(less commonly protan) or green (more commonly deutan) 
cone function and is usually caused by deletions of either 
the OPN1LW or OPN1MW gene, with or without the forma-
tion of hybrid genes due to a non-homologous recombina-
tion [26]. The most severe phenotype related to alterations 
and mutations at the OPN1LW/OPN1MW gene cluster is 
BCM, in which both genes are nonfunctional. The classic 
BCM phenotype is described as a congenital disease with a 
severely reduced VA, severely impaired color discrimination, 
nystagmus, photophobia, and no detectable cone function by 
ERG testing [9]. BCM is caused by one of three types of 
mutations: (1) deletion of the locus control region upstream 
of the OPN1LW/OPN1MW gene array [1]; (2) deleterious 
point mutation in a single gene or in all genes of the array, 
including the common missense variant c.607T>C;p.C203R 
[13,27]; and (3) exon 3 haplotypes leading to exon skipping of 
exon 3 [15,22]. However, other phenotypes such as Bornholm 
eye disease (OMIM 300843) [17], X-linked cone dysfunction, 
and X-linked cone dystrophy (COD5; OMIM 303700) have 
been described. All phenotypes result from sequence variants 
in the OPN1LW/OPN1MW genes.

The specific combinations of the common sequence vari-
ants (termed “haplotypes”) in exon 3 have been reported to 
cause milder BCM. In minigene studies on cell lines, these 
haplotypes were shown to affect the correct splicing of exon 
3 [13,15,22].

We report a large cohort of patients with various 
combinations of exon 3 haplotypes who demonstrated high 
myopia, relatively preserved VA, and decreased but not 
extinguished 30-Hz cone flicker responses. Other authors 
and we have previously suggested a correlation between this 
group of haplotypes and the unique phenotype that partially 
resembles BCM [12-17,22]. By analyzing the largest cohort 
of patients with exon 3 haplotypes, we provide further and 
more comprehensive evidence of a distinct clinical entity. 
Although the present study did not contain follow-up data 
(mainly because of the young age of the patients), no indica-
tions of a progressive disease were found. Additional studies 
with long-term follow-up are needed to determine whether 
the disease progresses with age. The exon 3 group shows a 
milder BCM phenotype on average, similarly to milder forms 
of other inherited retinal diseases such as incomplete achro-
matopsia [28] and incomplete congenital stationary night 
blindness [29]. A previous study [17] suggested that most 

analyzed cases of Bornholm eye syndrome had rare exon 3 
haplotypes in OPN1LW.

Most (25/45, 56%) of the patients with OPN1LW/
OPN1MW gene cluster mutations included in our cohort 
(with more than 2,000 inherited retinal disease families) had 
a milder BCM phenotype due to exon 3 haplotypes. To better 
characterize this phenotype, we compared its clinical features 
with those of typical BCM. Our analysis revealed that the 
most efficient parameter for distinguishing between the two 
groups is cone flicker ERG responses, which were measur-
able in 92% of the exon 3 cases and in only 10% of the typical 
BCM cases. The value was reduced to approximately 50% of 
the normal value in the exon 3 group and practically extin-
guished in the typical BCM group. Moreover, the combina-
tion of relatively better VA, higher myopia, and higher 30-Hz 
cone flicker responses strongly indicates an exon 3 haplotype. 
However, rod function was reduced in both groups to similar 
levels.

The color vision test results were variable among the 
patients with exon 3 haplotypes with a tendency toward 
deuteranopia-protanopia deficit. This information was avail-
able for the older patients with BCM in our cohort but missing 
for the younger patients. The Mollon-Reffin minimal test is 
expected to be more useful in the characterization of the color 
deficit in patients with exon 3 haplotypes than in patients with 
BCM who failed the protan-deutan axes but retained good 
discrimination on the tritan axis in the Mollon-Reffin test [3]. 
Fundoscopic findings were similar between the two groups 
and included tilted optic disc and peripapillary atrophy, 
reflecting the high myopic refraction of the patients together 
with minimal retinal pigment epithelium changes in the fovea 
[14]. SD-OCT and FAF imaging were consistent in showing 
the fundoscopic changes as an ellipsoid zone disruption and 
disrupted foveal autofluorescence, respectively.

To conclude, the exon 3 variant haplotypes of the 
OPN1LW/OPN1MW genes might cause a milder variant of 
the BCM phenotype. The indications of this group are male 
patients (isolated cases or with a family history of X-linked 
inheritance) with congenital high myopia, low VA, and 
reduced (but detectable) 30-Hz cone flicker ERG ampli-
tudes. As whole‐exome sequencing is not a good tool for 
BCM analysis (owing to the high intragenic and intergenic 
sequence conservation and possible large number of opsin 
genes in the cluster), long-range PCR distinguishing between 
OPN1LW and OPN1MW exon 3 should be used for PCR and 
Sanger sequencing.

APPENDIX 1. PRIMERS USED IN THIS STUDY.

To access the data, click or select the words “Appendix 1.”

http://www.molvis.org/molvis/v28/21
https://www.ncbi.nlm.nih.gov/omim/?term=300843
https://www.ncbi.nlm.nih.gov/omim/?term=303700
http://www.molvis.org/molvis/v28/appendices/mv-v28-21-app-1.doc
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APPENDIX 2. CLINICAL DATA OF EXON 3 
HAPLOTYPE PATIENTS INCLUDED IN THIS 
STUDY.

To access the data, click or select the words “Appendix 2.”
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