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Abstract

Background: Resource partitioning is facilitated by adaptations along niche dimensions that range from morphology to
behaviour. The exploitation of hidden resources may require specially adapted morphological or sensory tools for resource
location and utilisation. Differences in tool diversity and complexity can determine not only how many species can utilize
these hidden resources but also how they do so.

Methodology and Principal Findings: The sclerotisation, gross morphology and ultrastructure of the ovipositors of a seven-
member community of parasitic wasps comprising of gallers and parasitoids developing within the globular syconia (closed
inflorescences) of Ficus racemosa (Moraceae) was investigated. These wasps also differ in their parasitism mode (external
versus internal oviposition) and their timing of oviposition into the expanding syconium during its development. The
number and diversity of sensilla, as well as ovipositor teeth, increased from internally ovipositing to externally ovipositing
species and from gallers to parasitoids. The extent of sclerotisation of the ovipositor tip matched the force required to
penetrate the syconium at the time of oviposition of each species. The internally ovipositing pollinator had only one type of
sensillum and a single notch on the ovipositor tip. Externally ovipositing species had multiple sensilla types and teeth on
their ovipositors. Chemosensilla were most concentrated at ovipositor tips while mechanoreceptors were more widely
distributed, facilitating the precise location of hidden hosts in these wasps which lack larval host-seeking behaviour.
Ovipositor traits of one parasitoid differed from those of its syntopic galler congeners and clustered with those of
parasitoids within a different wasp subfamily. Thus ovipositor tools can show lability based on adaptive necessity, and are
not constrained by phylogeny.

Conclusions/Significance: Ovipositor structure mirrored the increasingly complex trophic ecology and requirements for
host accessibility in this parasite community. Ovipositor structure could be a useful surrogate for predicting the biology of
parasites in other communities.
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Introduction

Resource partitioning and niche separation may require special

adaptations which could be morphological, physiological, and/or

behavioural [1–8]. The ovipositors of parasitic Hymenoptera have

been critical in their exploitation of physical niches and host

species for egg laying [9–14]. While host partitioning by

Hymenoptera has been examined in several galler or parasitoid

communities [15–17], this has rarely been examined for

communities of both gallers and parasitoids that are parasitic on

a single host plant species [18,19]. Furthermore, the ovipositor

adaptations that facilitate such partitioning of a single host plant

species have not been considered, except for separation along the

dimension of ovipositor length [13,20–25]. Hymenoptera that

parasitise hidden hosts buried within plant tissue also require tools

and sensory structures on the ovipositor to cut into plant tissue and

guide the ovipositor towards its target [12,26]. This is especially

important for those Hymenoptera whose first instar larvae are

relatively immobile and do not engage in host-seeking behaviour

[27,28]. In such cases and especially with hidden hosts, eggs have

to be precisely laid on/in suitable hosts using only the sensory

guidance systems available on the ovipositor since first instar

larvae cannot employ host-seeking behaviour as exhibited in some

Hymenoptera, i.e. Perilampidae, Eucharitidae (Chalcidoidea) and

Eucerotinae (Ichneumonidae) [27,28]. Besides physical structure

and the chemosensory apparatus, the degree of sclerotization of

the ovipositor may also affect the stiffness of the ovipositor [29,30]

and may be important in providing access to hidden hosts

protected by tough tissues. The structure and sclerotisation of the

hymenopteran ovipositor as well as the arrangement of chemo-

sensory or mechanosensory structures, i.e. sensilla, on it are critical

for the utilization of the right host [10,12,26]. When the host plant

is subject to parasitism by several hymenopteran parasites, inter-

specific differences in all these ovipositor properties could facilitate

partitioning within the single resource.

Knowledge of ovipositor structure and host-reaching capabili-

ties especially in parasitic species is fundamental in determining

enemy-free space for the host species which in turn has an impact
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on host and parasite community structure [31,32]. Inter-specific

differences in ovipositors may be exaggerated when the commu-

nity of interacting hymenopterans is both highly host plant and

prey specific, as well as closely related [13,33]. Investigations of

such communities would, therefore, also afford greater under-

standing of the extent of evolutionary lability versus conservatism

in ovipositor structure depending on niche specificity. The

community of wasps associated with fig plants is ideal for such

an investigation. This community is characterized by high species

specificity, close relatedness, and includes a variety of plant gallers

as well as parasitoids/inquilines all of which develop within the

same plant structure called the syconium which is a globular and

enclosed inflorescence [34–36]. Furthermore, fig wasp larvae do

not exhibit host-seeking behaviour; consequently egg deposition

has to be precise. Also, the syconium is a physically and chemically

crowded space [37] within which hundreds of wasps of the various

species develop. Such a closed community would therefore afford

a critical examination of how wasp species, in order to coexist,

might need to differ in their ovipositors to locate and reach

different hosts or host stages within the syconium, a question

which is not so easily answered in open communities.

Fig wasps may oviposit by entering the syconium, or oviposition

may occur from the outside using the ovipositor to penetrate the

syconium (Fig. 1A–D). Pollinating fig wasps entering into the

syconium insert their ovipositors into the style of female flowers to

deposit their eggs [38] and here the target is not hidden as they

can also have antennal and tarsal contact with the flowers.

However, all wasps that oviposit from the outside of the syconium

are seeking hidden hosts; the only way of assessing the suitability of

a host for egg laying is through the ovipositor which has to drill

through the fig wall to reach it. Here, we attempt to understand

host location mechanisms and corresponding ovipositor adapta-

tions using light and electron microscopy for the entire fig wasp

community associated with a single Ficus species. We describe the

morphology of the ovipositors including the types and distribution

of their sensilla. We measure the degree of sclerotisation of each

ovipositor and also the toughness of the figs across various stages of

fig development. Wasps ovipositing into small/young and soft figs

or those that enter into the syconia (i.e. pollinators) may be

expected to have lesser sclerotisation of their ovipositor tips

compared to those wasps ovipositing into larger/developmentally

older and tougher figs. Also, wasps at a lower trophic level (e.g.

early-arriving gallers) might be expected to have fewer types of

ovipositor sensilla compared to wasps at a higher trophic level (e.g.

later-arriving parasitoids) because the ovipositors of later-arriving

wasps need to navigate through increasing chemical diversity as

the syconium gets populated by various developing wasp species.

Within this chemically diverse landscape, parasitoids need to find

the appropriate development stage of their specific host insect

species, possibly necessitating greater sensory precision in

parasitoids compared to the early-arriving gallers that may only

need to locate floral tissue. To the best of our knowledge, this is the

first study on host resource partitioning via varied ovipositor tools

in a closed parasitic community. We expected to find an increase

in complexity of tools from internal to external ovipositing species

and also from early ovipositing species to late arriving species.

Figure 1. Oviposition strategies of fig wasps. Representative wasp species of the Ficus racemosa community demonstrating internal and
external oviposition. (A) internally ovipositing pollinator Ceratosolen fusciceps, (B) externally ovipositing Apocryptophagus testacea, (C) externally
ovipositing Apocrypta sp. 2 and (D) schema illustrating internal and external oviposition modes.
doi:10.1371/journal.pone.0023642.g001

Ovipositor Structure and Niche Partitioning
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Materials and Methods

Natural History of the Study System
The fig syconium (globular enclosed inflorescence) is the

structure within which seeds are produced and wasps (Hymenop-

tera: Agaonidae) develop. In typical monoecious figs, pollinating

female wasps enter the syconium through an opening called the

ostiole, pollinate some female flowers resulting in seeds, and gall

other flowers into each of which an egg is laid [38]. The pollinator

offspring develop within the galled flowers. The non-pollinating fig

wasps (NPFWs), i.e. parasites, usually do not enter the fig

syconium but oviposit into the syconium from the outside, using

long ovipositors [23] (Fig. 1). The parasites could be flower gallers,

parasitoids, cleptoparasites or inquilines [25,34], and arrive for

oviposition into the syconium either before or after the pollinator

in a specific sequence [6,23,39].

The fig wasp community of Ficus racemosa L. (Section:

Sycomorus) from South India (Indian Institute of Science campus,

Bangalore, Karnataka, 12u589N and 77u359E) was chosen for the

study as this species has been a model system for investigations on

resource partitioning via differences in life history and chemistry

[6,25,37,39,40]. The community comprises one pollinating wasp

species (Ceratosolen fusciceps Mayr: Agaonidae) and six species of

NPFWs within the Sycophaginae (Apocryptophagus) and the

Sycoryctinae (Apocrypta) (Apocryptophagus stratheni Joseph, Apocrypto-

phagus testacea Mayr, Apocryptophagus fusca Girault, Apocryptophagus

agraensis Joseph, Apocrypta sp. 2, Apocrypta westwoodi Grandi) [25]. All

species differ in their timing of oviposition during syconium

development, arriving either at the pre-pollination (A phase),

pollination (B phase) or wasp development (C phase) periods but

their offspring leave the syconium at the same time (D phase) when

male pollinators cut an exit hole through the syconium wall. The

Figure 2. Ovipositor sclerotisation using light microscopy. Ovipositor sclerotisation (A–G) lower valve, (H–N) upper valve. (A, H) Pollinator
C. fusciceps, (B, I) A. stratheni, (C, J) A. testacea, (D, K) A. fusca, (E, L) A. agraensis, (F, M) Apocrypta sp. 2, (G, N) Apocrypta westwoodi. Scale = 0.02 mm in
all cases.
doi:10.1371/journal.pone.0023642.g002
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wasps arrive in the following sequence for oviposition: A. stratheni

(A phase), A. testacea (A phase), C. fusciceps+A. fusca (arrive

concurrently in B phase), Apocrypta sp 2 (B and C phases), A.

agraensis (C phase), and Apocrypta westwoodi (C phase) [25,39].

Ceratosolen fusciceps, A. stratheni, A. testacea and A. fusca are gallers

[6,41], A. agraensis is most likely a parasitoid [25,39,41], while

Apocrypta sp. 2 and A. westwoodi are definitely parasitoids [6,41].

Ovipositor Traits
While sclerotisation and melanization are independent process-

es [42], and both can contribute to the stiffening of biomaterials

such as the ovipositor cuticle [43], the relative darkening of the

ovipositor whether by sclerotisation and/or melanisation may be

taken to indicate the relative extent of its stiffness [30]. The

ovipositor consists of three valves; the upper valve and a pair of

lower valves are connected by a joint and groove or olisthether

mechanism [12,26]. These together form the egg canal. The

ovipositor sheath [12,26] was not considered in this study since it

does not enter plant tissue. The valves of each ovipositor were

photographed using a light microscope (Zeiss Axioskop 2);

photographs were taken up to a distance of 0.15 mm from the

ovipositor tip since sclerotisation (i.e. darkening), if any, only

occurred within this distance from the tip. Uniform lighting was

maintained for all photography. Microscope images were

imported to GIMP 2.6.8 (open access image manipulation

software) and converted to grey scale pixels. Degree of darkening

(intensity of sclerotisation) of the tip was quantified on an RGB

scale (0 = absolute black, 255 = pure white). Thus a darker

ovipositor tip would get a mean value closer to zero and a lighter

one would be placed closer to 255. For measuring the percent area

sclerotised, values between 0–254 were considered as being

representative of sclerotisation, since a value of 255 indicates pure

white. A non-parametric correlation, using Kendall’s rank

correlation test, was performed between the mean percent area

of sclerotisation and the oviposition timing of each wasp species in

terms of the first and last day (i.e. range) from the initiation of

syconium development when the species was observed to be

ovipositing (data from ref. [25]). A Kendall’s rank correlation test

was also performed between the oviposition timing of each wasp

(as above) and the intensity of sclerotisation. We expected wasps

ovipositing into softer syconia (e.g. A phase) to have less

sclerotisation of their ovipositor tips compared to those ovipositing

into harder syconia (e.g. C phase). We therefore measured the

force required to penetrate the wall of A-, B- and C-phase syconia.

Since the C phase is of long duration, we specifically measured

penetration forces for syconia in early C phase at the time when

Apocrypta sp 2, the most common parasitoid (Ghara & Borges,

unpublished data), was observed ovipositing into the figs. For the

penetration measurements we used a standard entomological pin

(Asta Ento Pins, 3860.45 mm, Newey Goodman Ltd. England)

and measured the force (in newtons) required by the pin (moving

at a constant speed of 0.05 mm s21) to penetrate syconia of A, B

and C phases (N = 6 in each phase) using an INSTRON 5567

force testing instrument. For these measurements, figs in A and B

phases were obtained from one tree and those in C phase from

another tree; thus there was no inter-tree variation for measure-

ments within a phase.

Scanning electron microscopy (SEM) was used to elucidate the

ultrastructure of the wasp ovipositors. Desiccated ovipositors were

sputter-coated with gold and viewed in a FEI Quanta 200 ESEM.

Measurements of various ovipositor features including sensilla

dimensions were made using ImageJ software (version1.40 g) from

these SEM images. We have designated sensilla to types based on

the literature available on sensilla morphology (e.g. [44,45,46]).

The distance of each type of sensillum from the ovipositor tip was

also measured.

Assembling the Fig Wasp Community Using the Tools of
the Ovipositor Trade

We used the morphological features of the ovipositor such as the

area sclerotised, intensity of sclerotisation, presence of teeth on the

upper and lower valves, and types of sensilla to perform a

hierarchical cluster analysis using Euclidean distance and Ward’s

method. Ward’s method uses ANOVA to evaluate distance

between clusters and is considered to be very efficient, especially

since it can determine clusters of small sizes, and thus at finer

scales [25]. We provide the approximately unbiased (AU) as well

as bootstrapping (BP) values for these clusters. The data matrix

used binary characters for teeth on the valves and types of sensilla,

and continuous characters for percent and intensity of sclerotisa-

tion. Clusters were built in R (version 2.11.1) (R Development

Core Team 2009) [47] using the pvclust algorithm to determine

whether ovipositor traits mirror what is already known about the

ecology of the members of this fig wasp community.

Results

Ovipositor Sclerotisation
The degree of ovipositor sclerotisation increased from the early-

arriving gallers to the later-arriving parasitoids with negligible

sclerotisation (i.e. darkening) observed in the pollinator ovipositor

(Fig. 2). Percent area of sclerotisation and first day of arrival for

oviposition by each wasp species were significantly related (Fig. 3;

Kendall’s t = 0.73, P = 0.05, N = 6) as also the last day of arrival of

each wasp species (Fig. 3; Kendall’s t = 0.86, P = 0.01, N = 6),

indicating that the ovipositors of later-arriving wasps were

sclerotised over greater areas. The pollinator was excluded from

Figure 3. Relatioship between ovipositor sclerotisation and
wasp arrival time. Relationship between mean percent area of
sclerotisation and oviposition sequence for externally ovipositing wasp
species. Open symbols and dashed line indicate first day of arrival of
each wasp species for oviposition; closed symbols and solid line
indicate last day of arrival of each wasp species for oviposition. The x-
axis depicts temporal progression in syconium development.
doi:10.1371/journal.pone.0023642.g003
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this analysis since it oviposits internally and it had negligible

sclerotisation. There was a trend (although not significant) towards

greater intensity of sclerotisation (i.e. darkening) of the ovipositor

with both first (Kendall’s t = 20.46, P = 0.27, N = 6) and last day

of arrival of each wasp species (Kendall’s t = 20.6, P = 0.13, N = 6)

(t values are negative since 0 in RGB = black; any value closer to

zero indicates greater darkening). We found a significant

difference between the maximum force required to penetrate the

syconium from A to C phases (Fig. 4A; Mann-Whitney

comparisons: A versus B phases: U = 1, P = 0.006, N = 12; B

versus C phases: U = 0, P = 0.004, N = 12; A versus C phases:

U = 0, P = 0.004, N = 12); therefore the hardness of syconia

increased from A to C phases (Figs. 4A, B). In all phases the

required penetration force was seen to decline after 2–4 mm of

penetration distance (Fig. 4B) indicating that ovipositors (especially

their tips) need to overcome considerable initial resistance to

penetration. Thus, the increase in sclerotisation of the ovipositor

tips with the lateness of arrival of the wasps for oviposition

matched the increasing hardness of syconia from A to C phases.

Ovipositor Ultrastructure and the Fig Wasp Community
The internally-ovipositing pollinator was the only wasp that had

only a single notched tooth on the upper ovipositor valve while all

externally-ovipositing NPFWs (gallers and parasitoids) had multi-

ple teeth on the upper valve (Table S1, Fig. 5). All gallers were

characterised by the absence of teeth on the lower ovipositor

valves (pollinator and NPFW gallers) while all parasitoids had teeth

on the lower valves (Table S1) including Apocryptophagus agraensis.

Teeth height increased in the parasitoids relative to the gallers

(Fig. 5). The number and types of sensilla increased from the early-

arriving gallers to the later-arriving parasitoids (Tables S1 and S2).

The ovipositor of the internally ovipositing C. fusciceps had only a

single type of sensillum that occurred in a triad on each lower

valve (Fig. S1). All galling NPFWs in the genus Apocryptophagus had

various types of campaniform sensilla and several unidentified

sensillum types (Table S1, Fig. S1). The putative parasitoid

Apocryptophagus agraensis had only basiconic sensilla besides an

unidentified type (Table S1, Fig. S1). The diversity of sensilla was

highest in the Apocrypta parasitoids with basiconic, campaniform,

coeloconic as well as several unidentified sensilla types (Table S1,

Fig. S1). Most sensilla were found concentrated at the tip of the

ovipositors (Table S2); however, campaniform and coeloconic

sensilla in the Apocrypta parasitoids were also found farther away

from the tip (e.g. up to 174 mm from the tip in campaniform

sensillum type 4 (CS4) in A. westwoodi; Table S2).

Assembling the Fig Wasp Community Using the Tools of
the Ovipositor Trade

Ovipositor traits generated clusters with uniformly high

approximately unbiased (AU) values (Fig. 6) indicating good

Figure 4. Strength of the fig syconium estimated through needle penetration study. (A) Maximum force (newtons) required to penetrate
the syconium (A–C phases), and (B) a representative data sample of force required to penetrate the syconium with increasing distance from the
syconium exterior (A–C phases).
doi:10.1371/journal.pone.0023642.g004
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resolution of functional groupings (i.e. gallers versus parasitoids);

the BP values were not as high. AU values are considered better

than BP values as indicators of the stability of clusters since the AU

method involves multi-scale bootstrapping [47]. All Apocryptophagus

gallers were grouped into one cluster with a second cluster that

included the two Apocrypta parasitoids along with the putative

parasitoid Apocryptophagus agraensis (Fig. 6). While these clusters were

performed without including the galler pollinator, the results of the

clustering relationships did not change when the pollinator was

included (results not shown).

Discussion

The gross morphology as well as the ultrastructure of the

ovipositors of the wasps of F. racemosa showed adaptations that

mirrored their ecology and mode of oviposition. The internally

ovipositing galler pollinator had the simplest ovipositor with

negligible sclerotisation and only a single type of sensillum. The

degree of ovipositor sclerotisation increased with the timing of

wasp species arrival for oviposition into the syconium, reflecting

the greater resistance to oviposition faced by the later-arriving

externally ovipositing fig wasps that oviposit into harder syconia.

In general, gallers had fewer types of sensilla compared to the

parasitoids. The ovipositor of Apocryptophagus agraensis was different

from that of congeneric and syntopic galler species and clustered

with the Apocrypta parasitoids reflecting its parasitoid ecology, and

thus the evolutionary lability of certain ovipositor traits based on

adaptive necessity.

Fig syconia undergo a change from early stage soft figs to later

stage hard figs (A–C phases) (Fig. 4). The differential sclerotisation

of the ovipositor tip indicates that the wasps require greater

sclerotisation and therefore stiffer ovipositor tips for penetrating

the fig wall at later development stages of the syconium.

Ovipositor length also correlates with the arrival sequence of the

wasps [25], and syconium wall thickness (Ghara & Borges,

unpublished data) [48]. While the ovipositors of all the NPFWs

which oviposit externally were found to have teeth, the depth of

these serrations differed qualitatively with the lateness of arrival for

oviposition indicating the need for adaptations to cut through

harder and thicker syconia. These teeth are also mineralised

(Kundanati et al., unpublished data). However, only the ovipositors

of parasitoids (including A. agraensis) had teeth on both upper and

lower valves. Since gallers arrive when the figs are softer (A and B

phases), completely toothed ovipositors may only be needed at

later stages. Furthermore, the two Apocrypta parasitoids oviposit by

arching their abdomen as well as their extra-long ovipositors while

the Apocryptophagus gallers oviposit while lying flat on the fig surface

(Fig. 1). However, the biomechanics of the drilling process is barely

understood [10,14]. The drilling process can be extended, e.g.

between 25–55 min in Apocrypta westwoodi [48]. In strict contrast,

the internally ovipositing pollinator, which has merely to insert its

ovipositor down the style of the flower, has only a pre-apical notch

and no serrations on its ovipositor. In general, serrations aiding the

drilling process are less well developed in parasitoids whose hosts

are exposed [49].

The diversity of sensilla increased with the lateness of arrival of

the fig wasps for oviposition as well as with the mode of parasitism.

Parasitoids had the most types of sensilla compared to gallers with

the exception of the parasitoid A. agraensis that had only two types

of sensilla. The internally ovipositing pollinating wasp had only a

single sensillum type. Since pollinating female fig wasps lose their

distal antennal segments in the process of entering the fig through

the ostiole [34,50], the pollinator female may find suitable

oviposition sites using chemoreceptors on basal antennal segments,

tarsi and the few sensilla (three only) on the ovipositor tip.

Although these appear to be campaniform sensilla and therefore

typically cuticular strain detectors [45,51], they may also have a

dual mechano-chemoreceptor function as in the braconid parasitic

wasp Orgilus lepidus [52]. Sensilla present on pilose structures on the

antennae or on the ovipositors of ectoparasites targeting exposed

hosts may not require specific adaptations for protection from

damage; however the ovipositors of fig wasps, especially those that

pierce the fig wall for oviposition can only have shielded sensilla

(i.e. receptors within pits) to avoid contact damage while

penetrating plant tissue. The potential damage to sensilla during

syconium penetration can also be exacerbated by sticky latex

which is characteristic of plants in the Moraceae, such as Ficus

[53]. Therefore it is probably more likely that many pit-like sensilla

on such ovipositors will have a dual mechano-chemoreceptor

function, although this is not yet known. In our study, most

sensilla, especially the largely chemosensory basiconic and

coeloconic types, were concentrated at the tips of the ovipositors.

In the parasitoids, campaniform sensilla were also found at

considerable distance from the tip, and since these sensilla are

largely mechanoreceptors, it could be adaptive for them to be

Figure 5. Scanning electron micrographs (SEMs) showing
ovipositor morphology. (A) Pollinator C. fusciceps, (B) A. stratheni,
(C) A. testacea, (D) A. fusca, (E) A. agraensis, (F) Apocrypta sp. 2 and (G)
Apocrypta westwoodi; uv = upper valve, lv = lower valve. Scale = 10 mm.
doi:10.1371/journal.pone.0023642.g005
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spread over larger portions of the ovipositor as found in many

parasitoid taxa [54]. This will enable them to sense stresses and

strains offered by different types of tissues along their entire lengths

and could help in locating the right target. In ectoparasitoids,

where the ovipositor tip needs to examine host surfaces, the

sensilla are also concentrated at the tip [11]. In all fig wasp species,

sensilla were present only on the lower valves as has been observed

in other parasitic wasps [55]. Similarly many ichneumonids which

are endoparasitoids of concealed hosts have no sensilla on the

upper valve; the upper valve is used for supporting the lower valves

and in interlocking with the substrate during penetration, while the

lower valves are involved in venom injection and bear chemore-

ceptors at the tip [12].

Steering mechanisms and the extent of ovipositor flexibility are

still not known and have been scarcely studied in parasitic wasps

[12,26]. The tortuous paths taken by fig wasp ovipositors inside

the syconium (Fig. S2), and their extended oviposition periods,

could indicate that these wasps even lay a clutch of eggs inside a

syconium before pulling out the ovipositor to lay eggs in the same

or different fig syconia; this may occur in the early-arriving gallers

A. stratheni and A. testacea whose offspring generally develop in

clusters of galls or galled flowers (M. Ghara, personal observation).

An additional ovipositor requirement is ease of ovipositor removal,

and some wasps, while ovipositing, face predation pressure from

ants [39], being attacked while their ovipositors are inserted into

the syconium. However, ovipositor removal mechanisms have not

been studied in parasitic wasps. Most importantly, while in many

plant-galler communities, gall morphology itself serves to afford

protection to gallers from parasitoids via the construction of

‘‘enemy-free space’’ [31], parasites of fig wasps acquire access to

their hosts by penetrating through the barrier of the fig syconium

wall, which offers considerable initial resistance as we have shown

(Fig. 4B). This in turn may have led to the low diversity and

complexity of fig wasp galls [22] necessitating specific ovipositor

adaptations to cut through the syconium wall, and flexible

ovipositors that pass through several galls, if necessary, in seeking

the right host.

The clustering of the fig wasp community members of F.

racemosa using ovipositor features was also concordant with the

clustering obtained using various life-history traits of the same

community where Apocryptophagus agraensis which belongs to the

‘‘galler’’ genus Apocryptophagus was also found to cluster with the

parasitoid genus Apocrypta [25]. Yet, one conserved life-history trait

in Apocryptophagus agraensis was its pro-ovigeny (i.e. all eggs are

mature at eclosion) which was similar to its congeners; on the other

had, parasitoids of the genus Apocrypta were synovigenic (i.e.

progressively maturing their eggs after eclosion) which is typical of

the parasitoid lifestyle [25]. Several other lines of independent

evidence including the congruency between cuticular hydrocar-

bons of hosts and parasites (Ranganathan & Borges, unpublished

data) indicate that A. agraensis is a parasitoid, more specifically a

parasitoid of the pollinator C. fusciceps, as earlier speculated [25].

This concordance between life history, chemistry, ecology and

now ovipositor morphology suggests that ovipositor traits can also

be important in understanding the functional ecology of wasp

communities. Moreover, the more parasitoid-like features of the

ovipositor of A. agraensis compared to its syntopic galler congeners

indicates that those features of the ovipositor that are evolutionary

labile must be viewed with caution when used in a phylogenetic

study since they could be subject to considerable homoplasy [56],

Figure 6. Clustering of fig wasps based on ovipositor characters. Clustering was done using Ward’s method. AU = approximately unbiased
(AU) and BP = bootstrap values.
doi:10.1371/journal.pone.0023642.g006
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based on adaptive necessity. Studies in section Sycomorus, to which

F. racemosa belongs, indicate that pollinators and fig host species

show cophylogeny whereas NPFWs, particularly parasitoids, show

host shifts or more generalisation with a single parasitoid species

parasitising several fig hosts or fig wasps within a single host

[57,58]. While more recent evidence is accumulating that single fig

wasp pollinator species may also pollinate several fig species [59]

and that the one fig-one pollinator rule may have exceptions [60],

this may only be possible if the ostiole (entrance into the syconium)

and chemical barriers can be breached by the pollinators; a similar

argument may be advanced for the NPFWs. Molecular phylogeny

studies have indicated that congeneric fig wasp species attacking

the same host but differing in ovipositor length and oviposition

time are likely to be sister species [33]. Apocryptophagus species

associated with F. racemosa might therefore be sister species as they

exhibit differences in ovipositor length and oviposition timing

[25,39]; however they could also be an assemblage of related

species which have switched hosts. Only phylogenetic studies using

both morphology and gene sequences may help to resolve these

issues. The similarities seen in several features of the ovipositor in

members of the genus Apocryptophagus could, therefore, also indicate

phylogenetic conservatism of such traits. Ovipositor morphology

of fig wasps can also be a constraint selecting for innovative

behavioural adjustments, such as those in African Watshamiella

which are reported to have ‘‘delicate’’ ovipositors and to use the

holes drilled into fig syconia by Apocrypta parasitoids for oviposition

[61]. Clearly ovipositor structure is an important axis for niche

separation in parasitic hymenopteran communities and deserves

much more attention. The generality of oviposition syndromes in

terms of ovipositor morphology should also be tested across

different wasp communities across different hosts.

In conclusion this paper has demonstrated the following

important general points. 1) Ovipositor structure can mirror the

increasingly complex ecology of coexisting species in a host–

parasite community and can contribute to niche separation; 2)

Some ovipositor tools show lability based on adaptive necessity,

and are not constrained by phylogeny; and 3) Ovipositor structure

could be a useful surrogate for predicting the biology of members

of other parasitic communities.

Supporting Information

Figure S1 Scanning electron micrographs (SEMs) of
sensilla. The various types of sensilla observed on the lower valve

of the ovipositors as indicated by the arrows. (A–E) CS 1–

5 = campaniform sensilla, (F–G) BS = basiconic sensilla, (H)

CoS = coeloconic sensilla, (I–N) UN 1–6 = unidentified. Sca-

le = 2 mm.

(TIF)

Figure S2 Ovipositor movement into the syconium in fig
wasps of Ficus racemosa. (A) Ovipositor passing through the

wall with the fig wasp lying flat on the fig surface for oviposition

and (B) Ovipositor navigating through flowers. The path of the

ovipositor is indicated by arrows.

(TIF)

Table S1 Morphological traits of the ovipositors of the
fig wasps of F. racemosa.
(DOC)

Table S2 Dimensions of sensilla observed on the lower
valve of ovipositors of fig wasps of F. racemosa.
(DOC)
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