
Pfob et al.
BMC Medical Research Methodology (2022) 22:282
https://doi.org/10.1186/s12874-022-01758-8

RESEARCH

Machine learning in medicine: a practical
introduction to techniques for data
pre‑processing, hyperparameter tuning,
and model comparison
André Pfob1,2†, Sheng‑Chieh Lu2,3† and Chris Sidey‑Gibbons2,3* 

Abstract 

Background:  There is growing enthusiasm for the application of machine learning (ML) and artificial intelligence (AI)
techniques to clinical research and practice. However, instructions on how to develop robust high-quality ML and AI
in medicine are scarce. In this paper, we provide a practical example of techniques that facilitate the development of
high-quality ML systems including data pre-processing, hyperparameter tuning, and model comparison using open-
source software and data.

Methods:  We used open-source software and a publicly available dataset to train and validate multiple ML models
to classify breast masses into benign or malignant using mammography image features and patient age. We com‑
pared algorithm predictions to the ground truth of histopathologic evaluation. We provide step-by-step instructions
with accompanying code lines.

Findings:  Performance of the five algorithms at classifying breast masses as benign or malignant based on mam‑
mography image features and patient age was statistically equivalent (P > 0.05). Area under the receiver operating
characteristics curve (AUROC) for the logistic regression with elastic net penalty was 0.89 (95% CI 0.85 – 0.94), for
the Extreme Gradient Boosting Tree 0.88 (95% CI 0.83 – 0.93), for the Multivariate Adaptive Regression Spline algo‑
rithm 0.88 (95% CI 0.83 – 0.93), for the Support Vector Machine 0.89 (95% CI 0.84 – 0.93), and for the neural network
0.89 (95% CI 0.84 – 0.93).

Interpretation:  Our paper allows clinicians and medical researchers who are interested in using ML algorithms
to understand and recreate the elements of a comprehensive ML analysis. Following our instructions may help to
improve model generalizability and reproducibility in medical ML studies.

Keywords:  Machine learning, Artificial intelligence, Guideline, Medicine

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Interest in artificial intelligence (AI) and machine learn-
ing (ML) has drastically increased over the past years
within the global medical community. The use of AI/ML
techniques could improve care for patients by provid-
ing individualized outcome predictions and by reducing
redundancy in standardized processes allowing clinicians
to spend more time with patients [1–7]. While protocol

Open Access

†André Pfob and Sheng-Chieh Lu contributed equally to this work.

*Correspondence: cgibbons@mdanderson.org

3 Section of Patient‑Centered Analytics, The University of Texas MD Anderson
Cancer Center, Houston, TX 77030, USA
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-022-01758-8&domain=pdf

Page 2 of 15Pfob et al. BMC Medical Research Methodology (2022) 22:282

and reporting guidelines for clinical trials using AI/ML
techniques have recently been published (CONSORT-
AI [8] and SPIRIT-AI [9]), high-quality instructions on
how to practically develop ML models within the medi-
cal context are not abundant. Unfortunately, despite high
interest in this area, there are many examples of medical
AI that have not been rigorously developed which makes
best-practice case studies on how to practically develop
these models of high interest for clinical research and
practice [10, 11].

Our group has previously published an introductory
paper on ML in medicine that explains the general con-
cept of ML and gives a practical introduction to build-
ing an ML algorithm using open-source R statistical
programming software and open-source data [12]. In
the present manuscript, we build on this introduction
to explain some more techniques including data pre-
processing, hyperparameter tuning, and model compari-
son with examples using open-source software and data.
These steps are essential to improve not only the perfor-
mance of ML algorithms but also to ensure better gener-
alizability and to provide a balanced evaluation of these
algorithms. For interested readers, there is another paper
within this series covering the use of natural language in
medical AI studies [13].

In brief, data pre-processing consists of two main cat-
egories: data cleaning and feature engineering. Data
cleaning is the process of removing duplicative, incor-
rect, and irrelevant data and of addressing missing data,
which requires substantial knowledge about the data, the
context within which it was collected, and context where
the model will be used. Thus, multidisciplinary collabo-
ration between clinicians and data scientists is required
to adequately clean the data. Feature engineering uses
various statistical approaches to prepare the data that ML
algorithms can then better utilize. Common feature engi-
neering procedures include data normalization, transfor-
mation, feature selection, dimensionality reduction, and
data type conversion to meet the prerequisites of ML
algorithms [14].

Machine learning algorithms all have so-called hyper-
parameters that control the configuration of a specific
algorithm. Hyperparameters can be classified into opti-
mization hyperparameters, which generally control
the overall training process (e.g. the learning rate), and
model hyperparameters, which specify the specific algo-
rithm architecture (e.g., the number of layers in a neu-
ral network). In contrast to model parameters, which
are directly derived from data during the training pro-
cess, hyperparameters are manually pre-specified and
can usually vary across different models. Hyperparam-
eters are key to model performance for a given task on
a specific dataset. The process of identifying the optimal

combination of hyperparameters, so-called model tun-
ing or optimization, often makes ML algorithms compu-
tationally expensive. The tuned model is then evaluated
on a validation dataset that is independent of the training
dataset [15].

Finally, we often want to know which model performs
best. We conduct statistical tests to compare differ-
ent models against each other, allowing us to evaluate
whether differences in model performance are actually
statistically significant. There may be situations in which
we do not necessarily wish to deploy the algorithm with
the best performance on the testing dataset – to improve
generalizability and enable easy implementation. For
instance, we may choose the simplest model that is with
a certain degree of performance from the best perform-
ing model. We may also prioritize other aspects including
whether the model output is readily interpretable.

What this paper will achieve
In this paper, we will provide a practical example of
best-practice ML techniques like data pre-processing,
hyperparameter tuning, and model comparison using
open-source software and data. Our paper is aimed pri-
marily at medical researchers and practitioners who are
interested in using and developing ML algorithms for
their analyses and who are looking for guidance on how
to perform a comprehensive ML analysis on their own.

How to follow this paper
This paper provides step-by-step instructions on how to
perform an ML analysis, starting with the data prepara-
tion and ending with the model evaluation. We provide
exemplary code using the open-source R statistical pro-
gramming language throughout this paper (the com-
plete code is available in the Supplementary Appendix).
We advise readers who are not familiar with the R pro-
gramming language to read our introductory paper first
that provides guidance on how to use and set up R [12].
We used open source data for this analysis which is
freely available at the UCI Machine Learning Repository
(“Mammographic Mass” dataset) [16].

Material and methods
Dataset
We used open-source data that is freely available at the
UCI Machine Learning Repository [16]. The “Mammo-
graphic Mass” dataset contains anonymized data from
961 patients who underwent mammography to evaluate
an unclear breast lesion. Mammography image features
(shape of lesion, margin of lesion, density), patient age,
and the results of the histopathologic evaluation (gold
standard, benign or malignant) are provided. Of the 961
patients, 516 (53.7%) had a benign breast lesion, and 445

Page 3 of 15Pfob et al. BMC Medical Research Methodology (2022) 22:282 	

(46.3%) had a malignant breast lesion. This dataset can be
used for developing models to predict whether a breast
lesion is histopathologically benign or malignant based
on the image features and patient age [17].

Software
R version 4.0.3 was used for all analyses.

Machine learning analysis
Data preparation
We first load the dataset from the UCI repository and
label the columns as specified in the dataset description
(see Table 1, Task 1.1 and 1.2, for R code) [16]. The result-
ant dataset is called “db” and has six columns (“BI-RADS”,
“Age”, “Shape”, “Margin”, “Density”, and “outcome”).

Following the creation of the dataset, we convert each
column to a factor (categorical) or numeric variable
according to the dataset description and assign specific
factor levels and reference categories to improve read-
ability (Table 1, Task 1.3 and 1.4).

Before beginning the ML analysis, it is a good idea to
go over each column to detect any variables with a high
proportion of missing values or errors. Using the code in
Table 1 (Task 1.6), we can detect and remove variables
with a high missing rate. Although we will use imputa-
tion techniques to address missing data, we remove any
variable with more than 50% of data points missing. In
addition, some datasets may have data which are entered
incorrectly and are either not possible or very likely to be
incorrect, e.g., AGE < 0. We can use the code in Table 1
(Task 1.5) to replace these data with “NA”. It should be
noted that this code is for demonstration purposes only
and that there is no need to implement them in the cur-
rent case.

The standard practice in ML is to use a training set for
model development and a separate test set for evaluat-
ing the model’s performance. Due to the high number
of parameters in an ML model, overfitting the training
data is a distinct possibility. Ideally, we have a completely
independent dataset (e.g., which contains data collected
from a different practice or hospital) to validate our
model. Alternatively, if we only have one dataset, we can
randomly split our dataset into a development set, which
contains 80% of the data, and a validation set, which con-
tains the remaining 20% (Table 1, Task 1.7).

Data pre‑processing
Now, we begin to pre-process the data. Data pre-process-
ing should be performed within each isolated resampling
iteration (Fig. 1) to avoid information leakage which hap-
pens when models are trained using information from
outside the training dataset and which reduces model
generalizability to future data [14, 18]. The sequence of

the data pre-processing steps has implications on the
model output, too. For instance, conducting one-hot
encoding before normalization may change the informa-
tion of the data and generate misleading models. A thor-
ough discussion regarding information leakage during
data pre-processing and the order of data pre-processing
techniques is referenced for interested readers [14].

The `recipes` package available in R offers an elegant
way to create a blueprint (recipe) containing various
steps of data pre-processing. We will create a blueprint
that will be applied separately on each fold during the
cross-validation (CV) process to minimize information
leakage. We first define a recipe object with our train-
ing dataset and variable information in a formula for-
mat (Table 1, Task 1.8). Then, we go through a series of
steps to sequentially add data pre-processing techniques
needed to prepare the training data using the recipe.
Table 2 provides a description of all pre-processing steps
used in this case study. The "all_predictors()" function
is used to denote that we apply this step to all predic-
tors rather than a subset of predictors. Other alterna-
tives to all_predictors() include "all_numerics()", used for
numeric variables, and "all_nominals()" for categorical
variables (Table 1, task 1.8). We can also use predictor
names to specify where the steps should be applied. For
example, “step_log(AGE)” would return log-transformed
versions of the AGE variable. By contrast, the "-all_out-
comes()" is used to exclude the outcome variable from
the step. Based on our experience, these steps are suffi-
cient for many medical datasets. We suggest that careful
consideration is given about which steps to use and their
sequence based on the dataset at hand. A more in-depth
discussion on data pre-processing and feature engi-
neering techniques is published elsewhere [14]. Read-
ers requiring additional data pre-processing steps are
directed to the `recipes` package’s website for a full list of
functions [19].

We recommend looking at the prepared data before fit-
ting ML algorithms to the data: First, we have a look at all
steps included in the recipe (Table 1, Task 1.9). Second,
we can examine the changes of a specific pre-processing
step, e.g., the mean and standard deviation for step_nor-
malize (Table 1, Task 1.10; interested readers can modify
the value of the "number" to examine other steps in the
blueprint). Third, we review the prepared training data
altogether (Table 1, Task 1.11) – an excerpt of the pre-
processed training data is shown in Fig. 2.

Algorithm development and hyperparameter tuning
After having prepared the dataset, we can start devel-
oping our models. Before getting to the different model
algorithms, we first define some general settings that
can be used for all algorithms. First, we define the

Page 4 of 15Pfob et al. BMC Medical Research Methodology (2022) 22:282

Table 1  Summary of key Tasks and accompanying R code for a machine learning analysis

Task Code in R language

1) Data preparation

  1.1) Import new dataset called „db “ db <—read.csv (url ("https://​archi​ve.​ics.​uci.​edu/​ml/​machi​ne-​learn​ing-​datab​
ases/​mammo​graph​ic-​masses/​mammo​graph​ic_​masses.​data"))

  1.2) Label columns in „db” Colname <—c("BIRADS", "Age", "Shape", "Margin", "Density", "outcome")

  1.3) Assign factor-levels for factors (categorial variables) and set refer‑
ence category

db$Margin <—as.factor (ifelse (db$Margin =  = "1", "Circumscribed",
ifelse (db$Margin =  = "2","microbulated",
ifelse (db$Margin =  = "3", "Obscured",
ifelse (db$Margin =  = "4", "Ill-defined", "Spiculated")))))
db$Margin <—relevel (db$Margin, ref = "Circumscribed")

  1.4) Assign numeric status for numerical variables db$Age <—as.numeric (db$Age)

  1.5) Replace unlogical age values as missing values AGE_upper <—120
AGE_lower <—0
db$Age <—ifelse (db$Age >  = AGE_upper, NA, db$Age)
db$Age <—ifelse (db$Age <  = AGE_lower, NA, db$Age)

  1.6) Remove variables that have over 50% missing values missing_col <—colMeans (is.na (db))
remove < -vector()
for(i in 1:length(missing_col)){
if(missing_col[i] >  = 0.5){remove < -append(remove, names(missing_
col[i]))}}
if(!is.logical(remove)) db < -db % > % dplyr::select(-!!remove)

  1.7) Split dataset into development and validation sets train_index <—createDataPartition(db$outcome, p = .8, list = FALSE,
times = 1)
db_train <—db[train_index,]
db_test <—db[-train_index,]

  1.8) Define recipe for data pre-processing recipe <—recipe (outcome ~ Age + Shape + Margin + Density, data = db_
train)
recipe <—recipe % > %
step_knnimpute(all_predictors(), neighbors = 5) % > %
step_BoxCox(all_numeric(),-all_outcomes()) % > %
step_other(all_nominal(), threshold = .1, other = "other")
step_zv(all_predictors(),-all_outcomes()) % > %
step_nzv(all_predictors(),-all_outcomes())% > %
step_normalize(all_numeric(),-all_outcomes())% > %
step_dummy(all_nominal(),-all_outcomes()) % > %
step_corr(all_predictors(),-all_outcomes(), threshold = 0.9)

  1.9) Show all steps in the recipe prep <—prep (recipe, db_train)
tidy (prep)

  1.10) Examine changes of a specific pre-processing step (number
6 = normalize)

tidy (prep, number = 6)

  1.11) Examine pre-processed training data prep[["template"]]

2) Algorithm Development

  2.1) Define multiple performance metrics for model training MySummary <—function (data, lev = NULL, model = NULL){
a1 <—defaultSummary(data, lev, model)
b1 <—twoClassSummary(data, lev, model)
c1 <—prSummary(data, lev, model)
out <—c(a1, b1, c1)
out}

  2.2) Define general training parameters for cross-validation and
hypergrid-search

cv <—trainControl (method = "repeatedcv",
number = 10,
repeats = 3,
search = "grid",
verboseIter = TRUE,
classProbs = TRUE,
returnResamp = "final",
savePredictions = "final",
summaryFunction = MySummary,
selectionFunction = "tolerance",
allowParallel = TRUE)

https://archive.ics.uci.edu/ml/machine-learning-databases/mammographic-masses/mammographic_masses.data
https://archive.ics.uci.edu/ml/machine-learning-databases/mammographic-masses/mammographic_masses.data

Page 5 of 15Pfob et al. BMC Medical Research Methodology (2022) 22:282 	

Table 1  (continued)

Task Code in R language

  2.3) Define general training parameters for cross-validation and ran‑
dom grid- search

cv <—trainControl(
method = "repeatedcv",
number = 10,
repeats = 3,
search = "random",
verboseIter = TRUE,
classProbs = TRUE,
returnResamp = "final",
savePredictions = "final",
summaryFunction = MySummary,
selectionFunction = "tolerance",
allowParallel = TRUE)

  2.4) Define general training parameters for adaptive resampling for
hyperparameter tuing

adaptControl <—trainControl(
method = "adaptive_cv",
number = 10,
repeats = 3,
adaptive = list(min = 5, alpha = 0.05, method = "gls", com-
plete = TRUE),
search = "random",
verboseIter = TRUE,
classProbs = TRUE,
returnResamp = "final",
savePredictions = "final",
summaryFunction = MySummary,
selectionFunction = "tolerance",
allowParallel = TRUE)

  2.5) Hypergrid for Logistic Regression with Elastic Net Penalty hyper_grid_glm <—expand.grid(
alpha = seq(from = 0.01, to = 1, by = 0.01),
lambda = seq(from = 0.01, to = 1, by = 0.01))

  2.6) Hypergrid for XGBoost Tree hyper_grid_xgboost <—expand.grid(
nrounds = seq(from = 25, to = 100, by = 25),
max_depth = seq(from = 5, to = 35, by = 10),
eta = seq(from = 0.2, to = 1, by = 0.2),
gamma = seq(from = 1, to = 10, by = 1),
colsample_bytree = seq(from = 0.6, to = 1, by = 0.2),
min_child_weight = seq(from = 2, to = 5, by = 1),
subsample = 1)

  2.7) Hypergrid for MARS algorithm hyper_grid_mars <—expand.grid(
degree = seq(from = 1, to = 3, by = 1),
nprune = seq(from = 1, to = 10, by = 1))

  2.8) Hypergrid for SVM with polynomial kernel hyper_grid_svm <—expand.grid(
degree = seq(from = 1, to = 11, by = 2),
scale = seq(from = 0.1, to = 1, by = 0.1),
C = seq(from = 0.5, to = 8, by = 0.5))

  2.9) Hypergrid for multi-layer perceptron with dropout cost (deep
neural network)

hyper_grid_nn <—expand.grid(
size = seq(from = 1, to = 21, by = 10),
dropout = seq(from = 0.1, to = 0.3, by = 0.1),
batch_size = seq(from = 1, to = 11, by = 5),
lr = seq(from = 0.25, to = 1, by = 0.25),
rho = seq(from = 0.25, to = 1, by = 0.25),
decay = seq(from = 0.1, to = 0.5, by = 0.2),
cost = seq(from = 0.25, to = 1, by = 0.25),
activation = ’relu’)

  2.10) Train Logistic Regression with Elastic Net Penalty (hypergrid
search)

cv_glm <—caret::train(recipe,
data = db_train,
method = "glmnet",
metric = "Kappa",
trControl = cv,
tuneGrid = hyper_grid_glm)

Page 6 of 15Pfob et al. BMC Medical Research Methodology (2022) 22:282

Table 1  (continued)

Task Code in R language

  2.11) Train XGBoost Tree (hypergrid search) cv_xgboost <—caret::train(recipe,
data = db_train,
method = "xgbTree",
metric = "Kappa",
trControl = cv,
tuneGrid = hyper_grid_xgboost)

  2.12) Train MARS algorithm (hypergrid search) cv_mars <—caret::train(recipe,
data = db_train,
method = "earth",
metric = "Kappa",
trControl = cv,
tuneGrid = hyper_grid_mars)

  2.13) Train SVM with polynomial kernel (random grid search) cv_svm <—caret::train(recipe,
data = db_train,
method = "svmPoly",
metric = "Kappa",
tuneLength = 30,
trControl = cv_svm)

  2.14) Train multi-layer perceptron with dropout cost (deep neural
network) (random grid search)

cv_nn <—caret::train(recipe,
data = db_train,
method = "mlpKerasDropoutCost",
metric = "Kappa",
tuneLength = 30,
trControl = cv_nn)

3) Internal Testing

  3.1) Show final model with optimal hyperparamters for Logistic Regres‑
sion with Elastic Net Penalty

cv_glm$bestTune

  3.2) Show internal testing results for final model with optimal hyper‑
paramters (Logistic Regression with Elastic Net Penalty)

cv_glm$results[c(#bestTune),]

4) (External) Validation

  4.1) Use trained model to predict outcome probabilities in the valida‑
tion set

predict (cv_glm, db_test, type = "prob")

  4.2) Use trained model to predict outcome classes in the validation set predict (cv_glm, db_test)

  4.3) Calculate area under the ROC curve for outcome predictions in the
validation set

roc_glm_validation = roc (as.vector (db_test$outcome), as.matrix (predict
(cv_glm, db_test, type = "prob")$"Malignant"))
auc_glm_validation = pROC::auc (roc_glm_validation) auc_CI_glm_vali‑
dation = pROC::ci.auc (roc_glm_validation, method = "bootstrap", boot.
stratified = TRUE)

  4.4) Plot ROC curves plot.roc (roc_glm_validation, legacy.axes = TRUE)
lines (roc_glm_validation, col = "blue")
lines (roc_xgboost_validation, col = "red")
lines (roc_mars_validation, col = "orange")
lines (roc_svm_validation, col = "black")
lines (roc_nn_validation, col = "grey60")
legend ("bottomright", legend = c("LR with Elastic Net Penalty", "XGBoost
Tree", "MARS", "SVM", "neural network"), col = c("blue", "red", "orange", "black",
"grey60"))

  4.5) Create confusion matrix confusionMatrix (as.factor (predict (cv_glm, db_test)), factor (db_
test$outcome), positive = "Malignant")

  4.6) Create calibration plot glm_calplot_validation <—calibration(factor (db_test$outcome) ~ as.matrix
(predict (cv_glm, db_test, type = "prob")$"Malignant"), data = db_test,
cuts = 10)
xyplot(glm_calplot_validation, auto.key = list(columns = 2))

Page 7 of 15Pfob et al. BMC Medical Research Methodology (2022) 22:282 	

performance metrics that will be used to select the final
model during the training process. For this purpose,
we write a summary function (Table 1, Task 2.1) that
contains multiple performance metrics like AUROC,
accuracy, sensitivity, or Kappa that will all be calculated

during the training process and of which we can later
choose one metric to select the final model.

Next, we define some general training parameters that
determine how each model will be trained (Table 1, 2.2).
To train our models, we use tenfold cross-validation with

Table 1  (continued)

Task Code in R language

  4.7) Calculate Spiegelhalter’s Z score to assess model calibration Spiegelhalter_z = function(y, prob){
alpha = 0.05
z_score = sum((y-prob)*(1–2*prob))/sqrt(sum(((1–2*prob)^2)*prob*(1-
prob)))
print(z_score)
if (abs(z_score) > qnorm(1-alpha/2)){
print(’reject null. NOT calibrated’)
} else{
print(’fail to reject. calibrated’)
}
cat(’z score: ’, z_score, ’\n’)
cat(’p value: ’, 1-pnorm(abs(z_score)), ’\n’)
return(z_score)}
Spiegelhalter_z (unfactor(revalue(db_test$outcome,
c("Malignant" = 1, "Benign" = 0))), as.matrix(predict(cv_glm, db_test,
type = "prob")$"Malignant"))

  4.8) Test for differences in area under the curve between two algo‑
rithms

roc.test (roc_glm_validation, roc_mars_validation, method = "bootstrap",
alternative = "two.sided", boot.n = 2000, boot.stratified = TRUE)

  4.9) Test for differences in diagnostic performance between two algo‑
rithms using a McNemar test

mcnemar.test (predict (cv_glm, db_test), predict(cv_mars, db_test), cor‑
rect = TRUE)

Fig. 1  Data pre-processing within the resampling process

Page 8 of 15Pfob et al. BMC Medical Research Methodology (2022) 22:282

three repetitions and a grid search to determine the opti-
mal combination of model hyperparameters. This means
that our development set will be split into ten equal sub-
samples (“folds”), of which nine are used to train a model
and 1 to test the models’ performance. This method is
adopted to avoid performance fluctuation due to the ran-
dom subsampling: the process is repeated ten times so
that each of the ten subsamples is used exactly one time
as a test set. The whole tenfold cross-validation proce-
dure will then be repeated three times to further improve
the generalizability of our models (the ten random sub-
samples will be different every time). This results in a
total of 30 models being developed and tested for each
specific combination of model hyperparameters. In order
to determine the optimal hyperparameters, the whole
cross-validation process will be performed for every pos-
sible combination of hyperparameters as specified in a
hyperparameter grid (see model-specific hyperparameter
grids in Table 1, Task 2.4 to 2.8). Depending on how large
and granular our hyperparameter grid is, we can eas-
ily end up developing over 1,000 models which explains
the high computational requirements for this element

of ML. The performance of these models will be evalu-
ated using the performance metrics we defined above
(“MySummary”).

Finally, we have to define which combination of hyper-
parameters will be chosen as the final model (as deter-
mined by the average performance on the resampled
test sets). Choosing the model that achieved the highest
performance is common but can result in bad generaliz-
ability when we (externally) validate the model. Thus, we
use a tolerance threshold which means that the simplest
model that is within a given percentage (default: 3%) tol-
erance of the empirically optimal model will be chosen as
the final model [21].

After defining the general performance measures and
training settings, we come to the ML algorithms. We will
develop five different algorithms: Logistic Regression
(LR) with Elastic Net penalty, Extreme Gradient Boosting
(XGBoost) tree, Multivariate Adaptive Regression Spline
(MARS), a Support Vector Machine (SVM) with polyno-
mial kernel, and a deep neural network (multi-layer per-
ceptrons). Each algorithm has unique hyperparameters
that we have to tune during the training process. For

Table 2  Description of data pre-processing steps

Note. A thorough introduction to each step can be found in the package document “recipes” [20]

Step Description

step_knnimputation Impute missing values using the k-nearest neighbor algorithm

step_BoxCox Transform numeric data using simple Box-Cox transformation

step_other Pool less frequent categories into an "other" category for categorical variables

step_zv Remove variables that have a single value

step_nzv Remove variables having the frequency ratio of their first and second frequent values above 95/5
and the number of unique values over the total number of samples below 10%

step_normalize Normalize numeric variables to have zero mean and one unit of variance (standard deviation = 1)

step_dummy Covert each level of categorical variables into a numeric binary term

step_corr Remove variables that are highly correlated with other variables (absolute correlation values >  = 0.9)

Fig. 2  Excerpt training dataset after pre-processing steps

Page 9 of 15Pfob et al. BMC Medical Research Methodology (2022) 22:282 	

illustration purposes, we will discuss the necessary steps
for the LR with Elastic Net Penalty – the “R” code for all
algorithms is given in Table 1 (Tasks 2.10 to 2.14). For the
LR with Elastic Net Penalty, there are two hyperparame-
ters, alpha and lambda. We create a hyperparameter grid
that contains possible combinations of these two param-
eters (10,000 combinations; Table 1, Task 2.4).

Next, we can specify the exact algorithm and data on
which we would like to train our algorithm (Table 1, Task
2.10): We apply our previously prepared “recipe” to our
development dataset as well as the previously defined
parameters for the cross-validation process (“cv”) and
hyperparameter grid (“hyper_grid_glm”). Moreover, we
select the specific algorithm (“glmnet”), and we select one
performance metric from the performance metrics we
defined to select our final model (the “Kappa” metric is
helpful for imbalanced datasets as it takes the observed
as well as the expected agreement between predictions
and ground truth outcomes into account, another com-
mon choice is “ROC” for the area under the ROC curve).

For more complex algorithms like the SVM or the
neural network, determining the optimal hyperparam-
eter values by evaluating the model performance for
every possible combination in a hyperparameter grid
can be very time-consuming. An alternative approach
is to perform a random search of optimal hyperparam-
eters, which has been shown to only minimally affect
the algorithm performance [22]. To perform a random
hyperparameter search, we have to adapt our general
training parameters and replace the “grid” with “random”
(Table 1, Task 2.3). Current research focuses on develop-
ing new approaches for hyperparameter optimization,
like Bayesian hyperparameter optimization, evolutionary
algorithms, or adaptive resampling [23–25]. The com-
mon goal of these approaches is to reduce computational
burden compared to a full hyper-grid search but main-
tain predictive performance. As an example, the code to

conduct hyperparameter optimization via adaptive resa-
mpling is shown in Table 1, Task 2.4.

Internal testing using resampling methods
After having our models trained, we can have a look at
the final model that was chosen during the resampling
process and its hyperparameters and performance during
the resampling process (Table 1, Tasks 3.1 and 3.2). Fig-
ure 3 shows the exemplary output we receive for the LR
with Elastic Net Penalty: we can see that the final hyper-
parameter values were determined as alpha = 0.01 and
lambda = 0.11. This hyperparameter combination had an
AUROC of 0.85. If we take a closer look into the model
specifications, we can see that this value of 0.85 is the
mean value of the 30 models that were developed for this
combination of hyperparameters (tenfold cross-valida-
tion with three repetitions) – the AUROC values of those
30 models ranged from 0.77 to 0.94 which illustrates the
importance of the repeated resampling process to avoid
coincidentally choosing the hyperparameter combina-
tions that perform well only on a specific subsample.

External validation
In this step, we will evaluate the performance of our final,
tuned model on a validation dataset. Some of the tech-
niques we show here, like confusion matrices and model
calibration, can be easily applied to the internal testing
results as well. In general, to evaluate the model perfor-
mance, we use the trained model to predict outcome
probabilities or outcome classes in the validation set
(Table 1, Tasks 4.1 and 4.2) and then compare those pre-
dictions with the actually observed outcomes.

At first, we perform a ROC analysis by comparing
the outcome predictions of our previously-developed
model in the validation set with the actual outcomes in
the validation set; AUROC and 95% confidence intervals
are computed using 2000 stratified bootstrap replicates

Fig. 3  Final model and internal testing results for the Logistic Regression with Elastic Net Penalty

Page 10 of 15Pfob et al. BMC Medical Research Methodology (2022) 22:282

(Table 1, Task 4.3). AUROC for the LR with elastic net
penalty was 0.89 (95% CI 0.85 – 0.94), for the XGBoost
Tree 0.88 (95% CI 0.83 – 0.93), for the MARS algo-
rithm 0.88 (95% CI 0.83 – 0.93), for the SVM 0.89 (95%
CI 0.84 – 0.93), and for the neural network 0.89 (95% CI
0.84 – 0.93). Accompanying ROC curves are shown in
Fig. 4, and the accompanying R code is listed in Table 1
(“Plot ROC curves”).

For a more detailed performance evaluation, we com-
pute confusion matrices and accompanying diagnos-
tic metrics like sensitivity, specificity, and negative- and
positive-predictive values (Table 1, Task 4.5). While the
AUROC provides an important overall metric of model
performance, only confusion matrices and derived diag-
nostic performance metrics can provide an actual, clini-
cally meaningful interpretation of a diagnostic test. As
an example, Table 3 shows the confusion matrix of the
MARS algorithm in the validation set: of the 191 patients
in the validation set, the MARS algorithm classified 79
breast lesions correctly as malignant (true positives), 75
correctly as benign (true negative), 28 falsely as malig-
nant (false-positive), and 9 falsely as benign (false-nega-
tive), resulting in a sensitivity of 89.8% and a specificity of
72.8%. Moreover, the confusion matrix provides informa-
tion on whether significant classification improvement
has been achieved: The so-called “no information rate”
refers to the proportion that the most frequent class has.
In our case, benign breast lesions (103 of 191, 53.9%) are
more frequent than malignant lesions (88 of 191, 46.1%).
Thus, the accuracy of a classification algorithm should
be significantly higher than 53.9%, i.e., the classification
algorithm should result in a significant improvement
over the no information rate. In our case, the accuracy of

the MARS algorithms is significantly higher than the non
information rate (81.2 vs. 53.9%, p < 0.001).

To evaluate model calibration, we compute calibration
plots (observed vs. predicted probabilities) and Spiegel-
halter’s Z statistic [26, 27]. Taking the SVM algorithm as
an example and using the code shown in Table 1 (Tasks
4.6 and 4.7), the calibration plot yields a well-calibrated
model (Fig. 5) which is confirmed by Spiegelhalter’s Z (z
score: -0.337, P value: 0.368).

Fit analysis
The goodness of fit analyses are used to evaluate how
well a model fits actual data. Conventional goodness of fit
tests for binary outcome models, like the Chi-Square test
or Hosmer–Lemeshow test, are not always recommended

Fig. 4  Receiver Operating Characteristic curves in the Validation Set

Table 3  Confusion Matrix and Diagnostic Performance Metrics
for Multivariate Adaptive Regression Spline Algorithm

* Refers to a one-sided binomial test determining whether the accuracy
proportion is higher than the no-information rate

Reference
Prediction Malignant Benign

Malignant 79 28

Benign 9 75

Sensitivity 89.8% (79 of 88)

Specificity 72.8% (75 of 103)

Negative predicitive value 89.3% (75 of 84)

Positive predictive value 73.8% (79 of 107)

Accuracy 81.2% (155 of 191)

No information rate 0.54

p-Value [Acc > NIR]* < 0.001

Page 11 of 15Pfob et al. BMC Medical Research Methodology (2022) 22:282 	

for ML models: They tolerate little disagreement between
model predictions and observed outcomes with large
sample size, and the arbitrary choice of group numbers
is also problematic as ML algorithms are often applied to
high-dimensional datasets with large numbers of covari-
ates [28, 29]. Testing for differences between the accuracy
and the no-information rate has been suggested previ-
ously as well. Thus, fit analyses for ML models are usually
conducted by comparing model performance between
training and testing sets with three potential outcomes.

(1)	 Model performance in the training set is relevantly
higher compared to the testing set. This indicates
that the model is overfitted to the training data, and
model complexity needs to be reduced.

(2)	 Model performance in the training and testing set
is bad. This indicates that the model is under-fit-
ted, and model complexity can be increased by, for
example, adding additional variables.

(3)	 Model performance in the training and testing set is
good. This indicates a good model fit.

Table 4 illustrates the comparison of model perfor-
mance across training and testing sets for the MARS
algorithm. Discrimination performance is evaluated by
AUROC and accuracy for this binary outcome model
(residual-mean-square errors would be appropriate for
linear outcome models) and calibration performance by
Spiegelhalter’s Z score. While Spiegelhalter’s Z-score
provides a way to test ML model calibration, the role
of Chi-Square tests for goodness of fit assessment for
high-dimensional ML datasets is yet unclear. How-
ever, both tests indicate a good model fit (keep the null
hypothesis specifying no significant difference between
the observed and the expected values) as does the sig-
nificantly higher accuracy compared to the no-informa-
tion rate.

Model comparison
Finally, we compare the performance among algorithms
and test for statistically significant differences. We use
two standard approaches: the McNemar test to test for
differences in the distribution of disagreement between

Fig. 5  Calibration Plot of the Support Vector Machine

Table 4  Discrimination and Calibration Performance in the Training and Testing Sets for Multivariate Adaptive Regression Spline
Algorithm

* Refers to a one-sided binomial test determining whether the accuracy proportion is higher than the no-information rate

Training set (cross-validation) Testing set

Discrimination performance

 AUROC 0.84 (95% CI 0.82–0.86) 0.88 (95% CI 0.83–0.93)

 Accuracy 77.6% (95% CI 75.6%—79.5%) 81.2% (95% 74.9%—86.4%)

 No-information rate 53.7% 53.9%

 p-value [accuracy > no-information rate]* < 0.001 < 0.001

 p-Value [Chi-Square goodness of fit] 0.10 0.08

Calibration performance

 Spiegelhatler’s Z-score 0.83 -1.31

 p-value 0.20 0.09

Page 12 of 15Pfob et al. BMC Medical Research Methodology (2022) 22:282

two algorithms and bootstrap replicates to compare
the AUROC values. Table 1 (Task 4.8) shows the code
to compare the AUROC of the LR with elastic net pen-
alty and the MARS algorithm using 2000 bootstrap rep-
licates drawn from the validation set and stratified for
the outcome variable. The P value of 0.240 indicates that
the AUROC of the two algorithms does not differ sig-
nificantly (AUROC 0.89 vs. 0.88) in the validation set.
Additionally, the results of the McNemar test (P = 0.773)
indicate that there are no significant differences in algo-
rithm performance (Table 1, Task 4.9).

Ethical considerations
The research reported in this article complies with the
Declaration of Helsinki. For this analysis, we used de-
identified data from a public repository [16]. As such,
ethical approval was not required.

Results
The five algorithms showed equally high performance in
the validation set (n = 191) to classify breast masses as
benign or malignant based on mammography image fea-
tures and patient age. AUROC for the LR with elastic net
penalty was 0.89 (95% CI 0.85 – 0.94), for the XGBoost
Tree 0.88 (95% CI 0.83 – 0.93), for the MARS algo-
rithm 0.88 (95% CI 0.83 – 0.93), for the SVM 0.89 (95%
CI 0.84 – 0.93), and for the neural network 0.89 (95% CI
0.84 – 0.93). When comparing the five algorithms against
each other, AUROC did not differ significantly (Fig. 6).

Discussion
In this work, we expanded our previous introductory
guide to ML in medicine by providing a best-practice
example of some ML techniques like data pre-processing,

hyperparameter tuning, and model comparison. We used
open-source software and a publicly available dataset to
train and validate multiple ML models to classify breast
masses using mammography image features with excep-
tional performance. The full analysis code is shown in the
Supplementary Appendix. Our paper allows (medical)
researchers who are interested in using ML algorithms
for their analyses to perform a comprehensive ML analy-
sis on their own.

After stoking great enthusiasm from the community,
medical ML applications are currently undergoing a criti-
cal reality check [11]. Incidents like Google’s AI software
to automatically diagnose diabetic retinopathy from fun-
dus images, which showed great performance on retro-
spectively retrieved clinical data but proved impractical
upon real-world application in Thailand, contribute to
deteriorating trust in medial ML applications [30, 31].
This reproducibility crisis of medical ML applications
has also been observed for models used to diagnose or
predict outcomes related to the Covid-19 pandemic and
short-term oncologic outcomes [10, 32]. A high risk of
bias for these models due to inappropriate validation
techniques and unstandardized or unclear approaches
regarding hyperparameter tuning was identified in these
studies. Following our instructions for data pre-process-
ing, hyperparameter tuning, and model comparison may
help to improve model generalizability and reproducibil-
ity and thus to build trust in medical ML applications.

Data pre-processing, hyperparameter tuning, and
proper model comparison are essential steps to improve
model performance, generalizability, and evaluation.
Data pre-processing accounts for about 80% of data anal-
ysis efforts and has significant impacts on model outputs
[33]. For ML in medicine, data preparation is especially

Fig. 6  Performance Comparison – Differences in Area under the Curve

Page 13 of 15Pfob et al. BMC Medical Research Methodology (2022) 22:282 	

critical due to the use of electronic health record (EHR)
data. Although EHR data is the most suitable and valua-
ble source for model development as it reflects real-world
practices, the data quality is low compared to data from
trials and registration repositories. Models trained with
low-quality data may have a suboptimal performance and
provide clinical decision-makers with misleading infor-
mation causing unintentional harm [34]. In the current
paper, we demonstrated a proper implementation of data
pre-processing in the ML pipeline to maximize its ben-
efits and prevent unintended information leakage during
the processes.

When interpreting the overall model performance,
statistical tests are important to evaluate whether dif-
ferences in model performance are actually statistically
significant. Many articles on ML in medicine simply
compare the values of performance metrics without actu-
ally testing for differences [35]. For example, in our analy-
sis, we cannot conclude that the XGBoost Tree performs
worse compared to the neural network (AUROC 0.88 vs.
0.89) because this difference is not statistically signifi-
cant (P> 0.05). We highly encourage medical researchers
who use ML to statistically test for actual differences to
ensure a fair and comprehensive evaluation of the mod-
els they train. Moreover, the choice of evaluation met-
ric may depend on the clinical scenario. For example,
current research in the area of breast cancer treatment
focuses around the reliable exclusion of residual cancer
after neoadjuvant chemotherapy for the possible omis-
sion of breast surgery [36]. In this scenario, sensitivity is
prioritized over specificity, and recent advancements in
this field suggest that ML algorithms with high sensitivity
may be able to reliably exclude residual cancer, pending
further validation [37].

Our present manuscript expands on our previous
introductory paper on ML in medicine to explain tech-
niques like data pre-processing, hyperparameter tun-
ing, and model comparison. For the purpose of this
educational paper, we chose a publicly available dataset
to ensure easy access and reproducibility. This choice of
dataset comes, however, with some limitations. First,
the sample size (961 records) is quite small and likely
results in biased models. As our manuscript intends to
provide a standardized methodological approach devel-
oping ML models for interested medical researchers,
we do not perceive this to be a limitation for this spe-
cific aim. However, we would like to clearly note that
any developed ML algorithm should be prospectively
validated before clinical implementation. Second, the
number of predictive features is limited to patient age
and some mammography image features. This does
not reflect the current clinical routine in breast can-
cer diagnostics which includes many more factors

like ultrasound, MRI, family medical history, genomic
information, and many more. Current evidence sug-
gests that multi-modal imaging and clinical informa-
tion are highly relevant for AI-based algorithms when
classifying breast masses [38]. Although limited types
of variable is not perceived as a limitation for this study
given its purpose, we argue that transdisciplinary work
between clinical and methodology partners to enable
additional data types is of utmost importance.

Moreover, there are many other cutting-edge issues
in the field of ML that are not covered yet in the pre-
sent analysis: Frequent racial bias by self-learning algo-
rithms has been identified as a major concern in the
field of ML [39], imbalanced datasets because of rare
outcome events (e.g., early-stage breast cancer mortal-
ity) are a major challenge for self-learning algorithms
in many medical disciplines; Providing insights into
black-box model predictions by using model-specific or
model-agnostic interpretations is an emerging field of
research [40, 41]; and Unsuccessful implementation of
digital health tools due to various factors, e.g., lack of
transdisciplinary knowledge, is a major issue [42, 43].
We hope to expand our series on ML in medicine to
cover some of these aspects in the near future.

Conclusions
Our paper allows medical science researchers interested
in using ML algorithms for their analyses to perform a
comprehensive ML analysis on their own, including tech-
niques like data pre-processing, hyperparameter tuning,
and model comparison. Following our instructions may
help to improve model generalizability and reproducibil-
ity and thus to build trust in medical ML applications.

Abbreviations
AUC​: Area Under the Receiver-Operating Characteristic Curve; CI: Confidence
Interval; ML: Machine learning; ROC: Receiver-Operating Characteristic; SVM:
Support Vector Machine; XGBoost Tree: Exterme Gradient Boosting Tree.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12874-​022-​01758-8.

Additional file 1. 

Acknowledgements
None.

Writing assistance
None.

Authors’ contributions
André Pfob. Conceptualization; Data curation; Formal analysis; Investigation;
Methodology; Resources; Software; Validation; Visualization; Roles/Writing
– original draft; Writing – review, editing & revising; contributed equally to

https://doi.org/10.1186/s12874-022-01758-8
https://doi.org/10.1186/s12874-022-01758-8

Page 14 of 15Pfob et al. BMC Medical Research Methodology (2022) 22:282

this work. Sheng-Chieh Lu. Conceptualization; Data curation; Formal analysis;
Investigation; Methodology; Resources; Software; Validation; Visualization;
Roles/Writing – original draft; Writing – review, editing & revising; contributed
equally to this work. Chris Sidey-Gibbons. Conceptualization; Funding acquisi‑
tion; Project administration; Resources; Supervision; Writing – review, editing &
revising. The author(s) read and approved the final manuscript.

Funding
None.

Availability of data and materials
The datasets generated and/or analyzed during the current study are available
in the University of California, Irvine Machine Learning Repository (“Mammo‑
graphic Mass” dataset), https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​Mammo​graph​
ic+​Mass. The source code used for data analysis is provided in the supple‑
ment of this article.

Declarations

Ethics approval and consent to participate
For this analysis we used de-identified data from a public repository.16 As such,
ethical approval was not required.

Consent for publication
Not applicable.

Competing interests
The authors declare that there are no competing interests.

Author details
1 Department of Obstetrics and Gynecology, University Breast Unit, Heidelberg
University Hospital, Heidelberg, Germany. 2 MD Anderson Center for INSPiRED
Cancer Care, The University of Texas MD Anderson Cancer Center, Houston,
USA. 3 Section of Patient‑Centered Analytics, The University of Texas MD Ander‑
son Cancer Center, Houston, TX 77030, USA.

Received: 19 July 2022 Accepted: 18 October 2022

References
	1.	 Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat

Biomed Eng. 2018;2:719–31.
	2.	 Scott IA. Machine learning and evidence-based medicine. Ann Intern

Med. 2018;169:44–6.
	3.	 Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J

Med. 2019;380:1347–58.
	4.	 Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial

intelligence in radiology. Nat Rev Cancer. 2018;18:500–10.
	5.	 Pfob A, Mehrara BJ, Nelson JA, Wilkins EG, Pusic AL, Sidey-Gibbons C. Towards

Patient-Centered Decision-Making in Breast Cancer Surgery. Ann Surg 2021;
published online March 18. https://​doi.​org/​10.​1097/​SLA.​00000​00000​004862.

	6.	 Pfob A, Sidey-Gibbons C, Lee HB, et al. Identification of breast cancer
patients with pathologic complete response in the breast after neoadju‑
vant systemic treatment by an intelligent vacuum-assisted biopsy. Eur J
Cancer. 2021;143:134–46.

	7.	 Sidey-Gibbons C, Pfob A, Asaad M, et al. Development of machine
learning algorithms for the prediction of financial toxicity in localized
breast cancer following surgical treatment. JCO Clin Cancer Inform.
2021;5:338–47.

	8.	 Liu X, Cruz Rivera S, Moher D, et al. Reporting guidelines for clinical trial
reports for interventions involving artificial intelligence: the CONSORT-AI
extension. Lancet Digit Heal 2020;0. https://​doi.​org/​10.​1016/​S2589-​
7500(20)​30218-1.

	9.	 Cruz Rivera S, Liu X, Chan A-W, et al. Guidelines for clinical trial protocols
for interventions involving artificial intelligence: the SPIRIT-AI extension.
Lancet Digit Heal 2020;0. https://​doi.​org/​10.​1016/​S2589-​7500(20)​30219-3.

	10.	 Roberts M, Driggs D, Thorpe M, et al. Common pitfalls and recom‑
mendations for using machine learning to detect and prognosticate

for COVID-19 using chest radiographs and CT scans. Nat Mach Intell.
2021;3:199–217.

	11.	 Wilkinson J, Arnold KF, Murray EJ, et al. Time to reality check the promises
of machine learning-powered precision medicine. Lancet Digit Heal
2020;0. https://​doi.​org/​10.​1016/​S2589-​7500(20)​30200-4.

	12.	 Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in medicine: a
practical introduction. BMC Med Res Methodol. 2019;19:1–18.

	13.	 Harrison CJ, Sidey-Gibbons CJ. Machine learning in medicine: a practical
introduction to natural language processing. BMC Med Res Methodol.
2021;21:1–11.

	14.	 Boehmke B, Greenwell B. Feature & Target Engineering. In: Hands-On
Machine Learning. New York: R. Packt Publishing; 2020.

	15.	 Alpaydin E. Introduction to Machine Learning. 4th ed. Cambridge, United
States: The MIT Press; 2020.

	16.	 UCI Machine Learning Repository: Mammographic Mass Data Set. avail‑
able from: http://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​mammo​graph​ic+​mass.

	17.	 Elter M, Schulz-Wendtland R, Wittenberg T. The prediction of breast can‑
cer biopsy outcomes using two CAD approaches that both emphasize an
intelligible decision process. Med Phys. 2007;34:4164–72.

	18.	 Samala RK, Chan H, Hadjiiski L, Helvie MA. Risks of feature leakage and
sample size dependencies in deep feature extraction for breast mass clas‑
sification. Med Phys. 2021. https://​doi.​org/​10.​1002/​mp.​14678.

	19.	 Kuhn M, Wickham H. recipes. 2020. https://​recip​es.​tidym​odels.​org/​
index.​html.

	20.	 Kuhn M, Wickham H. Package ‘recipes.’ 2021.
	21.	 Kuhn M. Classification and Regression Training - The ‘Caret’ Package. 2020.
	22.	 Bergstra J, Bengio Y. Random Search for Hyper-Parameter Optimization

Yoshua Bengio. J Mach Learn Res. 2012;13:281–305.
	23.	 Klein A, Falkner S, Bartels S, Hennig P, Hutter F. Fast bayesian hyperparam‑

eter optimization on large datasets. Electron J Stat. 2017;11:4945–68.
	24.	 Zitzler E, Deb K, Thiele L. Comparison of Multiobjective Evolutionary

Algorithms: Empirical Results. Massachusetts Inst Technol Evol Comput.
1991;8:173–95.

	25.	 Kuhn M. Futility Analysis in the Cross-Validation of Machine Learning Mod‑
els. 2014; published online May. https://​doi.​org/​10.​48550/​arxiv.​1405.​6974.

	26.	 Spiegelhalter DJ. Probabilistic prediction in patient management and
clinical trials. Stat Med. 1986;5:421–33.

	27.	 Harrell FE, Lee KL, Mark DB. Multivariable prognostic models: Issues in
developing models, evaluating assumptions and adequacy, and measur‑
ing and reducing errors. Stat Med. 1996;15:361–87.

	28.	 Nattino G, Pennell ML, Lemeshow S. Assessing the goodness of fit
of logistic regression models in large samples: a modification of the
Hosmer-Lemeshow test. Biometrics. 2020;76:549–60.

	29.	 Huang Y, Li W, Macheret F, Gabriel RA, Ohno-Machado L. A tutorial on
calibration measurements and calibration models for clinical prediction
models. J Am Med Informatics Assoc. 2020;27:621–33.

	30.	 Gulshan V, Peng L, Coram M, et al. Development and validation of a deep
learning algorithm for detection of diabetic retinopathy in retinal fundus
photographs. JAMA - J Am Med Assoc. 2016;316:2402–10.

	31.	 Beede E, Baylor E, Hersch F, et al. A Human-Centered Evaluation of
a Deep Learning System Deployed in Clinics for the Detection of
Diabetic Retinopathy. In: Conference on Human Factors in Computing
Systems - Proceedings. New York: Association for Computing Machin‑
ery; 2020. p. 1–12.

	32.	 Lu SC, Xu C, Nguyen CH, Geng Y, Pfob A, Sidey-Gibbons C. Machine
learning–based short-term mortality prediction models for patients with
cancer using electronic health record data: systematic review and critical
appraisal. JMIR Med Inf. 2022;10(3):e33182 https://​medin​form.​jmir.​org/​
2022/3/​e33182.

	33.	 Zhang S, Zhang C, Yang Q. Data preparation for data mining. Appl Artif
Intell. 2003;17:375–81.

	34.	 Obermeyer Z, Emanuel EJ. Predicting the Future — Big Data, Machine
Learning, and Clinical Medicine. N Engl J Med. 2016;375:1216–9.

	35.	 Pfob A, Sidey-Gibbons C, Heil J. Response Prediction to Neoadjuvant
Systemic Treatment in Breast Cancer—Yet Another Algorithm? JCO Clin
Cancer Informatics 2021;654–5.

	36.	 Heil J, Kuerer HM, Pfob A, et al. Eliminating the breast cancer surgery
paradigm after neoadjuvant systemic therapy: current evidence and
future challenges. Ann Oncol. 2020;31:61–71.

	37.	 Pfob A, Sidey-Gibbons C, Rauch G, et al. Intelligent Vacuum-Assisted
Biopsy to Identify Breast Cancer Patients with Pathologic Complete

https://archive.ics.uci.edu/ml/datasets/Mammographic+Mass
https://archive.ics.uci.edu/ml/datasets/Mammographic+Mass
https://doi.org/10.1097/SLA.0000000000004862
https://doi.org/10.1016/S2589-7500(20)30218-1
https://doi.org/10.1016/S2589-7500(20)30218-1
https://doi.org/10.1016/S2589-7500(20)30219-3
https://doi.org/10.1016/S2589-7500(20)30200-4
http://archive.ics.uci.edu/ml/datasets/mammographic+mass
https://doi.org/10.1002/mp.14678
https://recipes.tidymodels.org/index.html
https://recipes.tidymodels.org/index.html
https://doi.org/10.48550/arxiv.1405.6974
https://medinform.jmir.org/2022/3/e33182
https://medinform.jmir.org/2022/3/e33182

Page 15 of 15Pfob et al. BMC Medical Research Methodology (2022) 22:282 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

Response (ypT0 and ypN0) after Neoadjuvant Systemic Treatment for
Omission of Breast and Axillary Surgery. J Clin Oncol. 2022;40:1903–15.

	38.	 Pfob A, Sidey-Gibbons C, Barr RG, et al. The importance of multi-modal
imaging and clinical information for humans and AI-based algorithms
to classify breast masses (INSPiRED 003): an international, multicenter
analysis. Eur Radiol. 2022. https://​doi.​org/​10.​1007/​s00330-​021-​08519-z.

	39.	 Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in
an algorithm used to manage the health of populations. Science (80-).
2019;366:447–53.

	40.	 Ribeiro MT, Singh S, Guestrin C. Model-Agnostic Interpretability of
Machine Learning. 2016. published online June.

	41.	 Ribeiro MT, Singh S, Guestrin C. ‘Why Should I Trust You?’: Explaining the
Predictions of Any Classifier. 2016. published online Feb.

	42.	 Greenhalgh T, Wherton J, Papoutsi C, et al. Beyond adoption: A new
framework for theorizing and evaluating nonadoption, abandonment,
and challenges to the scale-up, spread, and sustainability of health and
care technologies. J Med Internet Res 2017;19. https://​doi.​org/​10.​2196/​
jmir.​8775.

	43.	 Pfob A, Sidey-Gibbons C, Schuessler M, et al. Contrast of Digital and
Health Literacy Between IT and Health Care Specialists Highlights the
Importance of Multidisciplinary Teams for Digital Health—A Pilot Study.
JCO Clin Cancer Informatics 2021;734–45.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1007/s00330-021-08519-z
https://doi.org/10.2196/jmir.8775
https://doi.org/10.2196/jmir.8775

	Machine learning in medicine: a practical introduction to techniques for data pre-processing, hyperparameter tuning, and model comparison
	Abstract
	Background:
	Methods:
	Findings:
	Interpretation:

	Introduction
	What this paper will achieve
	How to follow this paper

	Material and methods
	Dataset
	Software
	Machine learning analysis
	Data preparation
	Data pre-processing
	Algorithm development and hyperparameter tuning
	Internal testing using resampling methods
	External validation

	Fit analysis
	Model comparison
	Ethical considerations

	Results
	Discussion
	Conclusions
	Acknowledgements
	References

