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Abstract 

Background:  There is growing enthusiasm for the application of machine learning (ML) and artificial intelligence (AI) 
techniques to clinical research and practice. However, instructions on how to develop robust high-quality ML and AI 
in medicine are scarce. In this paper, we provide a practical example of techniques that facilitate the development of 
high-quality ML systems including data pre-processing, hyperparameter tuning, and model comparison using open-
source software and data.

Methods:  We used open-source software and a publicly available dataset to train and validate multiple ML models 
to classify breast masses into benign or malignant using mammography image features and patient age. We com‑
pared algorithm predictions to the ground truth of histopathologic evaluation. We provide step-by-step instructions 
with accompanying code lines.

Findings:  Performance of the five algorithms at classifying breast masses as benign or malignant based on mam‑
mography image features and patient age was statistically equivalent (P > 0.05). Area under the receiver operating 
characteristics curve (AUROC) for the logistic regression with elastic net penalty was 0.89 (95% CI 0.85 – 0.94), for 
the Extreme Gradient Boosting Tree 0.88 (95% CI 0.83 – 0.93), for the Multivariate Adaptive Regression Spline algo‑
rithm 0.88 (95% CI 0.83 – 0.93), for the Support Vector Machine 0.89 (95% CI 0.84 – 0.93), and for the neural network 
0.89 (95% CI 0.84 – 0.93).

Interpretation:  Our paper allows clinicians and medical researchers who are interested in using ML algorithms 
to understand and recreate the elements of a comprehensive ML analysis. Following our instructions may help to 
improve model generalizability and reproducibility in medical ML studies.
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Introduction
Interest in artificial intelligence (AI) and machine learn-
ing (ML) has drastically increased over the past years 
within the global medical community. The use of AI/ML 
techniques could improve care for patients by provid-
ing individualized outcome predictions and by reducing 
redundancy in standardized processes allowing clinicians 
to spend more time with patients [1–7]. While protocol 
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and reporting guidelines for clinical trials using AI/ML 
techniques have recently been published (CONSORT-
AI [8] and SPIRIT-AI [9]), high-quality instructions on 
how to practically develop ML models within the medi-
cal context are not abundant. Unfortunately, despite high 
interest in this area, there are many examples of medical 
AI that have not been rigorously developed which makes 
best-practice case studies on how to practically develop 
these models of high interest for clinical research and 
practice [10, 11].

Our group has previously published an introductory 
paper on ML in medicine that explains the general con-
cept of ML and gives a practical introduction to build-
ing an ML algorithm using open-source R statistical 
programming software and open-source data [12]. In 
the present manuscript, we build on this introduction 
to explain some more techniques including data pre-
processing, hyperparameter tuning, and model compari-
son with examples using open-source software and data. 
These steps are essential to improve not only the perfor-
mance of ML algorithms but also to ensure better gener-
alizability and to provide a balanced evaluation of these 
algorithms. For interested readers, there is another paper 
within this series covering the use of natural language in 
medical AI studies [13].

In brief, data pre-processing consists of two main cat-
egories: data cleaning and feature engineering. Data 
cleaning is the process of removing duplicative, incor-
rect, and irrelevant data and of addressing missing data, 
which requires substantial knowledge about the data, the 
context within which it was collected, and context where 
the model will be used. Thus, multidisciplinary collabo-
ration between clinicians and data scientists is required 
to adequately clean the data. Feature engineering uses 
various statistical approaches to prepare the data that ML 
algorithms can then better utilize. Common feature engi-
neering procedures include data normalization, transfor-
mation, feature selection, dimensionality reduction, and 
data type conversion to meet the prerequisites of ML 
algorithms [14].

Machine learning algorithms all have so-called hyper-
parameters that control the configuration of a specific 
algorithm. Hyperparameters can be classified into opti-
mization hyperparameters, which generally control 
the overall training process (e.g. the learning rate), and 
model hyperparameters, which specify the specific algo-
rithm architecture (e.g., the number of layers in a neu-
ral network). In contrast to model parameters, which 
are directly derived from data during the training pro-
cess, hyperparameters are manually pre-specified and 
can usually vary across different models. Hyperparam-
eters are key to model performance for a given task on 
a specific dataset. The process of identifying the optimal 

combination of hyperparameters, so-called model tun-
ing or optimization, often makes ML algorithms compu-
tationally expensive. The tuned model is then evaluated 
on a validation dataset that is independent of the training 
dataset [15].

Finally, we often want to know which model performs 
best. We conduct statistical tests to compare differ-
ent models against each other, allowing us to evaluate 
whether differences in model performance are actually 
statistically significant. There may be situations in which 
we do not necessarily wish to deploy the algorithm with 
the best performance on the testing dataset – to improve 
generalizability and enable easy implementation. For 
instance, we may choose the simplest model that is with 
a certain degree of performance from the best perform-
ing model. We may also prioritize other aspects including 
whether the model output is readily interpretable.

What this paper will achieve
In this paper, we will provide a practical example of 
best-practice ML techniques like data pre-processing, 
hyperparameter tuning, and model comparison using 
open-source software and data. Our paper is aimed pri-
marily at medical researchers and practitioners who are 
interested in using and developing ML algorithms for 
their analyses and who are looking for guidance on how 
to perform a comprehensive ML analysis on their own.

How to follow this paper
This paper provides step-by-step instructions on how to 
perform an ML analysis, starting with the data prepara-
tion and ending with the model evaluation. We provide 
exemplary code using the open-source R statistical pro-
gramming language throughout this paper (the com-
plete code is available in the Supplementary Appendix). 
We advise readers who are not familiar with the R pro-
gramming language to read our introductory paper first 
that provides guidance on how to use and set up R [12]. 
We used open source data for this analysis which is 
freely available at the UCI Machine Learning Repository 
(“Mammographic Mass” dataset) [16].

Material and methods
Dataset
We used open-source data that is freely available at the 
UCI Machine Learning Repository [16]. The “Mammo-
graphic Mass” dataset contains anonymized data from 
961 patients who underwent mammography to evaluate 
an unclear breast lesion. Mammography image features 
(shape of lesion, margin of lesion, density), patient age, 
and the results of the histopathologic evaluation (gold 
standard, benign or malignant) are provided. Of the 961 
patients, 516 (53.7%) had a benign breast lesion, and 445 
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(46.3%) had a malignant breast lesion. This dataset can be 
used for developing models to predict whether a breast 
lesion is histopathologically benign or malignant based 
on the image features and patient age [17].

Software
R version 4.0.3 was used for all analyses.

Machine learning analysis
Data preparation
We first load the dataset from the UCI repository and 
label the columns as specified in the dataset description 
(see Table 1, Task 1.1 and 1.2, for R code) [16]. The result-
ant dataset is called “db” and has six columns (“BI-RADS”, 
“Age”, “Shape”, “Margin”, “Density”, and “outcome”).

Following the creation of the dataset, we convert each 
column to a factor (categorical) or numeric variable 
according to the dataset description and assign specific 
factor levels and reference categories to improve read-
ability (Table 1, Task 1.3 and 1.4).

Before beginning the ML analysis, it is a good idea to 
go over each column to detect any variables with a high 
proportion of missing values or errors. Using the code in 
Table  1 (Task 1.6), we can detect and remove variables 
with a high missing rate. Although we will use imputa-
tion techniques to address missing data, we remove any 
variable with more than 50% of data points missing. In 
addition, some datasets may have data which are entered 
incorrectly and are either not possible or very likely to be 
incorrect, e.g., AGE < 0. We can use the code in Table 1 
(Task 1.5) to replace these data with “NA”. It should be 
noted that this code is for demonstration purposes only 
and that there is no need to implement them in the cur-
rent case.

The standard practice in ML is to use a training set for 
model development and a separate test set for evaluat-
ing the model’s performance. Due to the high number 
of parameters in an ML model, overfitting the training 
data is a distinct possibility. Ideally, we have a completely 
independent dataset (e.g., which contains data collected 
from a different practice or hospital) to validate our 
model. Alternatively, if we only have one dataset, we can 
randomly split our dataset into a development set, which 
contains 80% of the data, and a validation set, which con-
tains the remaining 20% (Table 1, Task 1.7).

Data pre‑processing
Now, we begin to pre-process the data. Data pre-process-
ing should be performed within each isolated resampling 
iteration (Fig. 1) to avoid information leakage which hap-
pens when models are trained using information from 
outside the training dataset and which reduces model 
generalizability to future data [14, 18]. The sequence of 

the data pre-processing steps has implications on the 
model output, too. For instance, conducting one-hot 
encoding before normalization may change the informa-
tion of the data and generate misleading models. A thor-
ough discussion regarding information leakage during 
data pre-processing and the order of data pre-processing 
techniques is referenced for interested readers [14].

The `recipes` package available in R offers an elegant 
way to create a blueprint (recipe) containing various 
steps of data pre-processing. We will create a blueprint 
that will be applied separately on each fold during the 
cross-validation (CV) process to minimize information 
leakage. We first define a recipe object with our train-
ing dataset and variable information in a formula for-
mat (Table 1, Task 1.8). Then, we go through a series of 
steps to sequentially add data pre-processing techniques 
needed to prepare the training data using the recipe. 
Table 2 provides a description of all pre-processing steps 
used in this case study. The "all_predictors()" function 
is used to denote that we apply this step to all predic-
tors rather than a subset of predictors. Other alterna-
tives to all_predictors() include "all_numerics()", used for 
numeric variables, and "all_nominals()" for categorical 
variables (Table  1, task 1.8). We can also use predictor 
names to specify where the steps should be applied. For 
example, “step_log(AGE)” would return log-transformed 
versions of the AGE variable. By contrast, the "-all_out-
comes()" is used to exclude the outcome variable from 
the step. Based on our experience, these steps are suffi-
cient for many medical datasets. We suggest that careful 
consideration is given about which steps to use and their 
sequence based on the dataset at hand. A more in-depth 
discussion on data pre-processing and feature engi-
neering techniques is published elsewhere [14]. Read-
ers requiring additional data pre-processing steps are 
directed to the `recipes` package’s website for a full list of 
functions [19].

We recommend looking at the prepared data before fit-
ting ML algorithms to the data: First, we have a look at all 
steps included in the recipe (Table 1, Task 1.9). Second, 
we can examine the changes of a specific pre-processing 
step, e.g., the mean and standard deviation for step_nor-
malize (Table 1, Task 1.10; interested readers can modify 
the value of the "number" to examine other steps in the 
blueprint). Third, we review the prepared training data 
altogether (Table  1, Task 1.11) – an excerpt of the pre-
processed training data is shown in Fig. 2.

Algorithm development and hyperparameter tuning
After having prepared the dataset, we can start devel-
oping our models. Before getting to the different model 
algorithms, we first define some general settings that 
can be used for all algorithms. First, we define the 
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Table 1  Summary of key Tasks and accompanying R code for a machine learning analysis

Task Code in R language

1) Data preparation

  1.1) Import new dataset called „db “ db <—read.csv (url ("https://​archi​ve.​ics.​uci.​edu/​ml/​machi​ne-​learn​ing-​datab​
ases/​mammo​graph​ic-​masses/​mammo​graph​ic_​masses.​data"))

  1.2) Label columns in „db” Colname <—c("BIRADS", "Age", "Shape", "Margin", "Density", "outcome")

  1.3) Assign factor-levels for factors (categorial variables) and set refer‑
ence category

db$Margin <—as.factor (ifelse (db$Margin =  = "1", "Circumscribed",
ifelse (db$Margin =  = "2","microbulated",
ifelse (db$Margin =  = "3", "Obscured",
ifelse (db$Margin =  = "4", "Ill-defined", "Spiculated")))))
db$Margin <—relevel (db$Margin, ref = "Circumscribed")

  1.4) Assign numeric status for numerical variables db$Age <—as.numeric (db$Age)

  1.5) Replace unlogical age values as missing values AGE_upper <—120
AGE_lower <—0
db$Age <—ifelse (db$Age >  = AGE_upper, NA, db$Age)
db$Age <—ifelse (db$Age <  = AGE_lower, NA, db$Age)

  1.6) Remove variables that have over 50% missing values missing_col <—colMeans (is.na (db))
remove < -vector()
for(i in 1:length(missing_col)){
if(missing_col[i] >  = 0.5){remove < -append(remove, names(missing_
col[i]))}}
if(!is.logical(remove)) db < -db % > % dplyr::select(-!!remove)

  1.7) Split dataset into development and validation sets train_index <—createDataPartition(db$outcome, p = .8, list = FALSE,
times = 1)
db_train <—db[train_index,]
db_test <—db[-train_index,]

  1.8) Define recipe for data pre-processing recipe <—recipe (outcome ~ Age + Shape + Margin + Density, data = db_
train)
recipe <—recipe % > %
step_knnimpute(all_predictors(), neighbors = 5) % > %
step_BoxCox(all_numeric(),-all_outcomes()) % > %
step_other(all_nominal(), threshold = .1, other = "other")
step_zv(all_predictors(),-all_outcomes()) % > %
step_nzv(all_predictors(),-all_outcomes())% > %
step_normalize(all_numeric(),-all_outcomes())% > %
step_dummy(all_nominal(),-all_outcomes()) % > %
step_corr(all_predictors(),-all_outcomes(), threshold = 0.9)

  1.9) Show all steps in the recipe prep <—prep (recipe, db_train)
tidy (prep)

  1.10) Examine changes of a specific pre-processing step (number 
6 = normalize)

tidy (prep, number = 6)

  1.11) Examine pre-processed training data prep[["template"]]

2) Algorithm Development

  2.1) Define multiple performance metrics for model training MySummary <—function (data, lev = NULL, model = NULL){
a1 <—defaultSummary(data, lev, model)
b1 <—twoClassSummary(data, lev, model)
c1 <—prSummary(data, lev, model)
out <—c(a1, b1, c1)
out}

  2.2) Define general training parameters for cross-validation and 
hypergrid-search

cv <—trainControl (method = "repeatedcv",
number = 10,
repeats = 3,
search = "grid",
verboseIter = TRUE,
classProbs = TRUE,
returnResamp = "final",
savePredictions = "final",
summaryFunction = MySummary,
selectionFunction = "tolerance",
allowParallel = TRUE)

https://archive.ics.uci.edu/ml/machine-learning-databases/mammographic-masses/mammographic_masses.data
https://archive.ics.uci.edu/ml/machine-learning-databases/mammographic-masses/mammographic_masses.data
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Table 1  (continued)

Task Code in R language

  2.3) Define general training parameters for cross-validation and ran‑
dom grid- search

cv <—trainControl(
method = "repeatedcv",
number = 10,
repeats = 3,
search = "random",
verboseIter = TRUE,
classProbs = TRUE,
returnResamp = "final",
savePredictions = "final",
summaryFunction = MySummary,
selectionFunction = "tolerance",
allowParallel = TRUE)

  2.4) Define general training parameters for adaptive resampling for 
hyperparameter tuing

adaptControl <—trainControl(
method = "adaptive_cv",
number = 10,
repeats = 3,
adaptive = list(min = 5, alpha = 0.05, method = "gls", com-
plete = TRUE),
search = "random",
verboseIter = TRUE,
classProbs = TRUE,
returnResamp = "final",
savePredictions = "final",
summaryFunction = MySummary,
selectionFunction = "tolerance",
allowParallel = TRUE)

  2.5) Hypergrid for Logistic Regression with Elastic Net Penalty hyper_grid_glm <—expand.grid(
alpha = seq(from = 0.01, to = 1, by = 0.01),
lambda = seq(from = 0.01, to = 1, by = 0.01))

  2.6) Hypergrid for XGBoost Tree hyper_grid_xgboost <—expand.grid(
nrounds = seq(from = 25, to = 100, by = 25),
max_depth = seq(from = 5, to = 35, by = 10),
eta = seq(from = 0.2, to = 1, by = 0.2),
gamma = seq(from = 1, to = 10, by = 1),
colsample_bytree = seq(from = 0.6, to = 1, by = 0.2),
min_child_weight = seq(from = 2, to = 5, by = 1),
subsample = 1)

  2.7) Hypergrid for MARS algorithm hyper_grid_mars <—expand.grid(
degree = seq(from = 1, to = 3, by = 1),
nprune = seq(from = 1, to = 10, by = 1))

  2.8) Hypergrid for SVM with polynomial kernel hyper_grid_svm <—expand.grid(
degree = seq(from = 1, to = 11, by = 2),
scale = seq(from = 0.1, to = 1, by = 0.1),
C = seq(from = 0.5, to = 8, by = 0.5))

  2.9) Hypergrid for multi-layer perceptron with dropout cost (deep 
neural network)

hyper_grid_nn <—expand.grid(
size = seq(from = 1, to = 21, by = 10),
dropout = seq(from = 0.1, to = 0.3, by = 0.1),
batch_size = seq(from = 1, to = 11, by = 5),
lr = seq(from = 0.25, to = 1, by = 0.25),
rho = seq(from = 0.25, to = 1, by = 0.25),
decay = seq(from = 0.1, to = 0.5, by = 0.2),
cost = seq(from = 0.25, to = 1, by = 0.25),
activation = ’relu’)

  2.10) Train Logistic Regression with Elastic Net Penalty (hypergrid 
search)

cv_glm <—caret::train(recipe,
data = db_train,
method = "glmnet",
metric = "Kappa",
trControl = cv,
tuneGrid = hyper_grid_glm)
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Table 1  (continued)

Task Code in R language

  2.11) Train XGBoost Tree (hypergrid search) cv_xgboost <—caret::train(recipe,
data = db_train,
method = "xgbTree",
metric = "Kappa",
trControl = cv,
tuneGrid = hyper_grid_xgboost)

  2.12) Train MARS algorithm (hypergrid search) cv_mars <—caret::train(recipe,
data = db_train,
method = "earth",
metric = "Kappa",
trControl = cv,
tuneGrid = hyper_grid_mars)

  2.13) Train SVM with polynomial kernel (random grid search) cv_svm <—caret::train(recipe,
data = db_train,
method = "svmPoly",
metric = "Kappa",
tuneLength = 30,
trControl = cv_svm)

  2.14) Train multi-layer perceptron with dropout cost (deep neural 
network) (random grid search)

cv_nn <—caret::train(recipe,
data = db_train,
method = "mlpKerasDropoutCost",
metric = "Kappa",
tuneLength = 30,
trControl = cv_nn)

3) Internal Testing

  3.1) Show final model with optimal hyperparamters for Logistic Regres‑
sion with Elastic Net Penalty

cv_glm$bestTune

  3.2) Show internal testing results for final model with optimal hyper‑
paramters (Logistic Regression with Elastic Net Penalty)

cv_glm$results[c(#bestTune),]

4) (External) Validation

  4.1) Use trained model to predict outcome probabilities in the valida‑
tion set

predict (cv_glm, db_test, type = "prob")

  4.2) Use trained model to predict outcome classes in the validation set predict (cv_glm, db_test)

  4.3) Calculate area under the ROC curve for outcome predictions in the 
validation set

roc_glm_validation = roc (as.vector (db_test$outcome), as.matrix (predict 
(cv_glm, db_test, type = "prob")$"Malignant"))
auc_glm_validation = pROC::auc (roc_glm_validation) auc_CI_glm_vali‑
dation = pROC::ci.auc (roc_glm_validation, method = "bootstrap", boot.
stratified = TRUE)

  4.4) Plot ROC curves plot.roc (roc_glm_validation, legacy.axes = TRUE)
lines (roc_glm_validation, col = "blue")
lines (roc_xgboost_validation, col = "red")
lines (roc_mars_validation, col = "orange")
lines (roc_svm_validation, col = "black")
lines (roc_nn_validation, col = "grey60")
legend ("bottomright", legend = c("LR with Elastic Net Penalty", "XGBoost 
Tree", "MARS", "SVM", "neural network"), col = c("blue", "red", "orange", "black", 
"grey60"))

  4.5) Create confusion matrix confusionMatrix (as.factor (predict (cv_glm, db_test)), factor (db_
test$outcome), positive = "Malignant")

  4.6) Create calibration plot glm_calplot_validation <—calibration(factor (db_test$outcome) ~ as.matrix 
(predict (cv_glm, db_test, type = "prob")$"Malignant"), data = db_test, 
cuts = 10)
xyplot(glm_calplot_validation, auto.key = list(columns = 2))
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performance metrics that will be used to select the final 
model during the training process. For this purpose, 
we write a summary function (Table  1, Task 2.1) that 
contains multiple performance metrics like AUROC, 
accuracy, sensitivity, or Kappa that will all be calculated 

during the training process and of which we can later 
choose one metric to select the final model.

Next, we define some general training parameters that 
determine how each model will be trained (Table 1, 2.2). 
To train our models, we use tenfold cross-validation with 

Table 1  (continued)

Task Code in R language

  4.7) Calculate Spiegelhalter’s Z score to assess model calibration Spiegelhalter_z = function(y, prob){
alpha = 0.05
z_score = sum((y-prob)*(1–2*prob))/sqrt(sum(((1–2*prob)^2)*prob*(1-
prob)))
print(z_score)
if (abs(z_score) > qnorm(1-alpha/2)){
print(’reject null. NOT calibrated’)
} else{
print(’fail to reject. calibrated’)
}
cat(’z score: ’, z_score, ’\n’)
cat(’p value: ’, 1-pnorm(abs(z_score)), ’\n’)
return(z_score)}
Spiegelhalter_z (unfactor(revalue(db_test$outcome, 
c("Malignant" = 1, "Benign" = 0))), as.matrix(predict(cv_glm, db_test, 
type = "prob")$"Malignant"))

  4.8) Test for differences in area under the curve between two algo‑
rithms

roc.test (roc_glm_validation, roc_mars_validation, method = "bootstrap", 
alternative = "two.sided", boot.n = 2000, boot.stratified = TRUE)

  4.9) Test for differences in diagnostic performance between two algo‑
rithms using a McNemar test

mcnemar.test (predict (cv_glm, db_test), predict(cv_mars, db_test), cor‑
rect = TRUE)

Fig. 1  Data pre-processing within the resampling process
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three repetitions and a grid search to determine the opti-
mal combination of model hyperparameters. This means 
that our development set will be split into ten equal sub-
samples (“folds”), of which nine are used to train a model 
and 1 to test the models’ performance. This method is 
adopted to avoid performance fluctuation due to the ran-
dom subsampling: the process is repeated ten times so 
that each of the ten subsamples is used exactly one time 
as a test set. The whole tenfold cross-validation proce-
dure will then be repeated three times to further improve 
the generalizability of our models (the ten random sub-
samples will be different every time). This results in a 
total of 30 models being developed and tested for each 
specific combination of model hyperparameters. In order 
to determine the optimal hyperparameters, the whole 
cross-validation process will be performed for every pos-
sible combination of hyperparameters as specified in a 
hyperparameter grid (see model-specific hyperparameter 
grids in Table 1, Task 2.4 to 2.8). Depending on how large 
and granular our hyperparameter grid is, we can eas-
ily end up developing over 1,000 models which explains 
the high computational requirements for this element 

of ML. The performance of these models will be evalu-
ated using the performance metrics we defined above 
(“MySummary”).

Finally, we have to define which combination of hyper-
parameters will be chosen as the final model (as deter-
mined by the average performance on the resampled 
test sets). Choosing the model that achieved the highest 
performance is common but can result in bad generaliz-
ability when we (externally) validate the model. Thus, we 
use a tolerance threshold which means that the simplest 
model that is within a given percentage (default: 3%) tol-
erance of the empirically optimal model will be chosen as 
the final model [21].

After defining the general performance measures and 
training settings, we come to the ML algorithms. We will 
develop five different algorithms: Logistic Regression 
(LR) with Elastic Net penalty, Extreme Gradient Boosting 
(XGBoost) tree, Multivariate Adaptive Regression Spline 
(MARS), a Support Vector Machine (SVM) with polyno-
mial kernel, and a deep neural network (multi-layer per-
ceptrons). Each algorithm has unique hyperparameters 
that we have to tune during the training process. For 

Table 2  Description of data pre-processing steps

Note. A thorough introduction to each step can be found in the package document “recipes” [20]

Step Description

step_knnimputation Impute missing values using the k-nearest neighbor algorithm

step_BoxCox Transform numeric data using simple Box-Cox transformation

step_other Pool less frequent categories into an "other" category for categorical variables

step_zv Remove variables that have a single value

step_nzv Remove variables having the frequency ratio of their first and second frequent values above 95/5 
and the number of unique values over the total number of samples below 10%

step_normalize Normalize numeric variables to have zero mean and one unit of variance (standard deviation = 1)

step_dummy Covert each level of categorical variables into a numeric binary term

step_corr Remove variables that are highly correlated with other variables (absolute correlation values >  = 0.9)

Fig. 2  Excerpt training dataset after pre-processing steps
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illustration purposes, we will discuss the necessary steps 
for the LR with Elastic Net Penalty – the “R” code for all 
algorithms is given in Table 1 (Tasks 2.10 to 2.14). For the 
LR with Elastic Net Penalty, there are two hyperparame-
ters, alpha and lambda. We create a hyperparameter grid 
that contains possible combinations of these two param-
eters (10,000 combinations; Table 1, Task 2.4).

Next, we can specify the exact algorithm and data on 
which we would like to train our algorithm (Table 1, Task 
2.10): We apply our previously prepared “recipe” to our 
development dataset as well as the previously defined 
parameters for the cross-validation process (“cv”) and 
hyperparameter grid (“hyper_grid_glm”). Moreover, we 
select the specific algorithm (“glmnet”), and we select one 
performance metric from the performance metrics we 
defined to select our final model (the “Kappa” metric is 
helpful for imbalanced datasets as it takes the observed 
as well as the expected agreement between predictions 
and ground truth outcomes into account, another com-
mon choice is “ROC” for the area under the ROC curve).

For more complex algorithms like the SVM or the 
neural network, determining the optimal hyperparam-
eter values by evaluating the model performance for 
every possible combination in a hyperparameter grid 
can be very time-consuming. An alternative approach 
is to perform a random search of optimal hyperparam-
eters, which has been shown to only minimally affect 
the algorithm performance [22]. To perform a random 
hyperparameter search, we have to adapt our general 
training parameters and replace the “grid” with “random” 
(Table 1, Task 2.3). Current research focuses on develop-
ing new approaches for hyperparameter optimization, 
like Bayesian hyperparameter optimization, evolutionary 
algorithms, or adaptive resampling [23–25]. The com-
mon goal of these approaches is to reduce computational 
burden compared to a full hyper-grid search but main-
tain predictive performance. As an example, the code to 

conduct hyperparameter optimization via adaptive resa-
mpling is shown in Table 1, Task 2.4.

Internal testing using resampling methods
After having our models trained, we can have a look at 
the final model that was chosen during the resampling 
process and its hyperparameters and performance during 
the resampling process (Table 1, Tasks 3.1 and 3.2). Fig-
ure 3 shows the exemplary output we receive for the LR 
with Elastic Net Penalty: we can see that the final hyper-
parameter values were determined as alpha = 0.01 and 
lambda = 0.11. This hyperparameter combination had an 
AUROC of 0.85. If we take a closer look into the model 
specifications, we can see that this value of 0.85 is the 
mean value of the 30 models that were developed for this 
combination of hyperparameters (tenfold cross-valida-
tion with three repetitions) – the AUROC values of those 
30 models ranged from 0.77 to 0.94 which illustrates the 
importance of the repeated resampling process to avoid 
coincidentally choosing the hyperparameter combina-
tions that perform well only on a specific subsample.

External validation
In this step, we will evaluate the performance of our final, 
tuned model on a validation dataset. Some of the tech-
niques we show here, like confusion matrices and model 
calibration, can be easily applied to the internal testing 
results as well. In general, to evaluate the model perfor-
mance, we use the trained model to predict outcome 
probabilities or outcome classes in the validation set 
(Table 1, Tasks 4.1 and 4.2) and then compare those pre-
dictions with the actually observed outcomes.

At first, we perform a ROC analysis by comparing 
the outcome predictions of our previously-developed 
model in the validation set with the actual outcomes in 
the validation set; AUROC and 95% confidence intervals 
are computed using 2000 stratified bootstrap replicates 

Fig. 3  Final model and internal testing results for the Logistic Regression with Elastic Net Penalty
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(Table  1, Task 4.3). AUROC for the LR with elastic net 
penalty was 0.89 (95% CI 0.85 – 0.94), for the XGBoost 
Tree 0.88 (95% CI 0.83 – 0.93), for the MARS algo-
rithm 0.88 (95% CI 0.83 – 0.93), for the SVM 0.89 (95% 
CI 0.84 – 0.93), and for the neural network 0.89 (95% CI 
0.84 – 0.93). Accompanying ROC curves are shown in 
Fig. 4, and the accompanying R code is listed in Table 1 
(“Plot ROC curves”).

For a more detailed performance evaluation, we com-
pute confusion matrices and accompanying diagnos-
tic metrics like sensitivity, specificity, and negative- and 
positive-predictive values (Table  1, Task 4.5). While the 
AUROC provides an important overall metric of model 
performance, only confusion matrices and derived diag-
nostic performance metrics can provide an actual, clini-
cally meaningful interpretation of a diagnostic test. As 
an example, Table  3 shows the confusion matrix of the 
MARS algorithm in the validation set: of the 191 patients 
in the validation set, the MARS algorithm classified 79 
breast lesions correctly as malignant (true positives), 75 
correctly as benign (true negative), 28 falsely as malig-
nant (false-positive), and 9 falsely as benign (false-nega-
tive), resulting in a sensitivity of 89.8% and a specificity of 
72.8%. Moreover, the confusion matrix provides informa-
tion on whether significant classification improvement 
has been achieved: The so-called “no information rate” 
refers to the proportion that the most frequent class has. 
In our case, benign breast lesions (103 of 191, 53.9%) are 
more frequent than malignant lesions (88 of 191, 46.1%). 
Thus, the accuracy of a classification algorithm should 
be significantly higher than 53.9%, i.e., the classification 
algorithm should result in a significant improvement 
over the no information rate. In our case, the accuracy of 

the MARS algorithms is significantly higher than the non 
information rate (81.2 vs. 53.9%, p < 0.001).

To evaluate model calibration, we compute calibration 
plots (observed vs. predicted probabilities) and Spiegel-
halter’s Z statistic [26, 27]. Taking the SVM algorithm as 
an example and using the code shown in Table 1 (Tasks 
4.6 and 4.7), the calibration plot yields a well-calibrated 
model (Fig. 5) which is confirmed by Spiegelhalter’s Z (z 
score: -0.337, P value: 0.368).

Fit analysis
The goodness of fit analyses are used to evaluate how 
well a model fits actual data. Conventional goodness of fit 
tests for binary outcome models, like the Chi-Square test 
or Hosmer–Lemeshow test, are not always recommended 

Fig. 4  Receiver Operating Characteristic curves in the Validation Set

Table 3  Confusion Matrix and Diagnostic Performance Metrics 
for Multivariate Adaptive Regression Spline Algorithm

* Refers to a one-sided binomial test determining whether the accuracy 
proportion is higher than the no-information rate

Reference
Prediction Malignant Benign

Malignant 79 28

Benign 9 75

Sensitivity 89.8% (79 of 88)

Specificity 72.8% (75 of 103)

Negative predicitive value 89.3% (75 of 84)

Positive predictive value 73.8% (79 of 107)

Accuracy 81.2% (155 of 191)

No information rate 0.54

p-Value [Acc > NIR]* < 0.001
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for ML models: They tolerate little disagreement between 
model predictions and observed outcomes with large 
sample size, and the arbitrary choice of group numbers 
is also problematic as ML algorithms are often applied to 
high-dimensional datasets with large numbers of covari-
ates [28, 29]. Testing for differences between the accuracy 
and the no-information rate has been suggested previ-
ously as well. Thus, fit analyses for ML models are usually 
conducted by comparing model performance between 
training and testing sets with three potential outcomes.

(1)	 Model performance in the training set is relevantly 
higher compared to the testing set. This indicates 
that the model is overfitted to the training data, and 
model complexity needs to be reduced.

(2)	 Model performance in the training and testing set 
is bad. This indicates that the model is under-fit-
ted, and model complexity can be increased by, for 
example, adding additional variables.

(3)	 Model performance in the training and testing set is 
good. This indicates a good model fit.

Table  4 illustrates the comparison of model perfor-
mance across training and testing sets for the MARS 
algorithm. Discrimination performance is evaluated by 
AUROC and accuracy for this binary outcome model 
(residual-mean-square errors would be appropriate for 
linear outcome models) and calibration performance by 
Spiegelhalter’s Z score. While Spiegelhalter’s Z-score 
provides a way to test ML model calibration, the role 
of Chi-Square tests for goodness of fit assessment for 
high-dimensional ML datasets is yet unclear. How-
ever, both tests indicate a good model fit (keep the null 
hypothesis specifying no significant difference between 
the observed and the expected values) as does the sig-
nificantly higher accuracy compared to the no-informa-
tion rate.

Model comparison
Finally, we compare the performance among algorithms 
and test for statistically significant differences. We use 
two standard approaches: the McNemar test to test for 
differences in the distribution of disagreement between 

Fig. 5  Calibration Plot of the Support Vector Machine

Table 4  Discrimination and Calibration Performance in the Training and Testing Sets for Multivariate Adaptive Regression Spline 
Algorithm

* Refers to a one-sided binomial test determining whether the accuracy proportion is higher than the no-information rate

Training set (cross-validation) Testing set

Discrimination performance

  AUROC 0.84 (95% CI 0.82–0.86) 0.88 (95% CI 0.83–0.93)

  Accuracy 77.6% (95% CI 75.6%—79.5%) 81.2% (95% 74.9%—86.4%)

  No-information rate 53.7% 53.9%

  p-value [accuracy > no-information rate]* < 0.001 < 0.001

  p-Value [Chi-Square goodness of fit] 0.10 0.08

Calibration performance

  Spiegelhatler’s Z-score 0.83 -1.31

  p-value 0.20 0.09
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two algorithms and bootstrap replicates to compare 
the AUROC values. Table  1 (Task 4.8) shows the code 
to compare the AUROC of the LR with elastic net pen-
alty and the MARS algorithm using 2000 bootstrap rep-
licates drawn from the validation set and stratified for 
the outcome variable. The P value of 0.240 indicates that 
the AUROC of the two algorithms does not differ sig-
nificantly (AUROC 0.89 vs. 0.88) in the validation set. 
Additionally, the results of the McNemar test (P = 0.773) 
indicate that there are no significant differences in algo-
rithm performance (Table 1, Task 4.9).

Ethical considerations
The research reported in this article complies with the 
Declaration of Helsinki. For this analysis, we used de-
identified data from a public repository [16]. As such, 
ethical approval was not required.

Results
The five algorithms showed equally high performance in 
the validation set (n = 191) to classify breast masses as 
benign or malignant based on mammography image fea-
tures and patient age. AUROC for the LR with elastic net 
penalty was 0.89 (95% CI 0.85 – 0.94), for the XGBoost 
Tree 0.88 (95% CI 0.83 – 0.93), for the MARS algo-
rithm 0.88 (95% CI 0.83 – 0.93), for the SVM 0.89 (95% 
CI 0.84 – 0.93), and for the neural network 0.89 (95% CI 
0.84 – 0.93). When comparing the five algorithms against 
each other, AUROC did not differ significantly (Fig. 6).

Discussion
In this work, we expanded our previous introductory 
guide to ML in medicine by providing a best-practice 
example of some ML techniques like data pre-processing, 

hyperparameter tuning, and model comparison. We used 
open-source software and a publicly available dataset to 
train and validate multiple ML models to classify breast 
masses using mammography image features with excep-
tional performance. The full analysis code is shown in the 
Supplementary Appendix. Our paper allows (medical) 
researchers who are interested in using ML algorithms 
for their analyses to perform a comprehensive ML analy-
sis on their own.

After stoking great enthusiasm from the community, 
medical ML applications are currently undergoing a criti-
cal reality check [11]. Incidents like Google’s AI software 
to automatically diagnose diabetic retinopathy from fun-
dus images, which showed great performance on retro-
spectively retrieved clinical data but proved impractical 
upon real-world application in Thailand, contribute to 
deteriorating trust in medial ML applications [30, 31]. 
This reproducibility crisis of medical ML applications 
has also been observed for models used to diagnose or 
predict outcomes related to the Covid-19 pandemic and 
short-term oncologic outcomes [10, 32]. A high risk of 
bias for these models due to inappropriate validation 
techniques and unstandardized or unclear approaches 
regarding hyperparameter tuning was identified in these 
studies. Following our instructions for data pre-process-
ing, hyperparameter tuning, and model comparison may 
help to improve model generalizability and reproducibil-
ity and thus to build trust in medical ML applications.

Data pre-processing, hyperparameter tuning, and 
proper model comparison are essential steps to improve 
model performance, generalizability, and evaluation. 
Data pre-processing accounts for about 80% of data anal-
ysis efforts and has significant impacts on model outputs 
[33]. For ML in medicine, data preparation is especially 

Fig. 6  Performance Comparison – Differences in Area under the Curve
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critical due to the use of electronic health record (EHR) 
data. Although EHR data is the most suitable and valua-
ble source for model development as it reflects real-world 
practices, the data quality is low compared to data from 
trials and registration repositories. Models trained with 
low-quality data may have a suboptimal performance and 
provide clinical decision-makers with misleading infor-
mation causing unintentional harm [34]. In the current 
paper, we demonstrated a proper implementation of data 
pre-processing in the ML pipeline to maximize its ben-
efits and prevent unintended information leakage during 
the processes.

When interpreting the overall model performance, 
statistical tests are important to evaluate whether dif-
ferences in model performance are actually statistically 
significant. Many articles on ML in medicine simply 
compare the values of performance metrics without actu-
ally testing for differences [35]. For example, in our analy-
sis, we cannot conclude that the XGBoost Tree performs 
worse compared to the neural network (AUROC 0.88 vs. 
0.89) because this difference is not statistically signifi-
cant (P> 0.05). We highly encourage medical researchers 
who use ML to statistically test for actual differences to 
ensure a fair and comprehensive evaluation of the mod-
els they train. Moreover, the choice of evaluation met-
ric may depend on the clinical scenario. For example, 
current research in the area of breast cancer treatment 
focuses around the reliable exclusion of residual cancer 
after neoadjuvant chemotherapy for the possible omis-
sion of breast surgery [36]. In this scenario, sensitivity is 
prioritized over specificity, and recent advancements in 
this field suggest that ML algorithms with high sensitivity 
may be able to reliably exclude residual cancer, pending 
further validation [37].

Our present manuscript expands on our previous 
introductory paper on ML in medicine to explain tech-
niques like data pre-processing, hyperparameter tun-
ing, and model comparison. For the purpose of this 
educational paper, we chose a publicly available dataset 
to ensure easy access and reproducibility. This choice of 
dataset comes, however, with some limitations. First, 
the sample size (961 records) is quite small and likely 
results in biased models. As our manuscript intends to 
provide a standardized methodological approach devel-
oping ML models for interested medical researchers, 
we do not perceive this to be a limitation for this spe-
cific aim. However, we would like to clearly note that 
any developed ML algorithm should be prospectively 
validated before clinical implementation. Second, the 
number of predictive features is limited to patient age 
and some mammography image features. This does 
not reflect the current clinical routine in breast can-
cer diagnostics which includes many more factors 

like ultrasound, MRI, family medical history, genomic 
information, and many more. Current evidence sug-
gests that multi-modal imaging and clinical informa-
tion are highly relevant for AI-based algorithms when 
classifying breast masses [38]. Although limited types 
of variable is not perceived as a limitation for this study 
given its purpose, we argue that transdisciplinary work 
between clinical and methodology partners to enable 
additional data types is of utmost importance.

Moreover, there are many other cutting-edge issues 
in the field of ML that are not covered yet in the pre-
sent analysis: Frequent racial bias by self-learning algo-
rithms has been identified as a major concern in the 
field of ML [39], imbalanced datasets because of rare 
outcome events (e.g., early-stage breast cancer mortal-
ity) are a major challenge for self-learning algorithms 
in many medical disciplines; Providing insights into 
black-box model predictions by using model-specific or 
model-agnostic interpretations is an emerging field of 
research [40, 41]; and Unsuccessful implementation of 
digital health tools due to various factors, e.g., lack of 
transdisciplinary knowledge, is a major issue [42, 43]. 
We hope to expand our series on ML in medicine to 
cover some of these aspects in the near future.

Conclusions
Our paper allows medical science researchers interested 
in using ML algorithms for their analyses to perform a 
comprehensive ML analysis on their own, including tech-
niques like data pre-processing, hyperparameter tuning, 
and model comparison. Following our instructions may 
help to improve model generalizability and reproducibil-
ity and thus to build trust in medical ML applications.
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