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ABSTRACT
The Ramachandran plot is important to structural biology as it describes a peptide
backbone in the context of its dominant degrees of freedom—the backbone dihe-
dral angles ϕ and ψ (Ramachandran, Ramakrishnan & Sasisekharan, 1963). Since its
introduction, the Ramachandran plot has been a crucial tool to characterize protein
backbone features. However, the conformation or twist of a backbone as a function
of ϕ and ψ has not been completely described for both cis and trans backbones.
Additionally, little intuitive understanding is available about a peptide’s conformation
simply from knowing the ϕ andψ values of a peptide (e.g., is the regular peptide defined
byϕ=ψ =−100◦ left-handed or right-handed?). This report provides a newmetric for
backbone handedness (h) based on interpreting a peptide backbone as a helix with axial
displacement d and angular displacement θ , both of which are derived from a peptide
backbone’s internal coordinates, especially dihedral angles ϕ, ψ and ω. In particular,
h equals sin(θ)d/|d|, with range [−1, 1] and negative (or positive) values indicating
left(or right)-handedness. The metric h is used to characterize the handedness of every
region of the Ramachandran plot for both cis (ω= 0◦) and trans (ω= 180◦) backbones,
which provides the first exhaustive survey of twist handedness in Ramachandran (ϕ,
ψ) space. These maps fill in the ‘dead space’ within the Ramachandran plot, which
are regions that are not commonly accessed by structured proteins, but which may
be accessible to intrinsically disordered proteins, short peptide fragments, and protein
mimics such as peptoids. Finally, building on the work of (Zacharias & Knapp, 2013),
this report presents a new plot based on d and θ that serves as a universal and intuitive
alternative to the Ramachandran plot. The universality arises from the fact that the
co-inhabitants of such a plot include every possible peptide backbone including cis and
trans backbones. The intuitiveness arises from the fact that d and θ provide, at a glance,
numerous aspects of the backbone including compactness, handedness, and planarity.

Subjects Computational Biology, Mathematical Biology, Computational Science
Keywords Ramachandran plot, Peptide backbone, Backbone chirality, Backbone handedness,
Miyazawa, Peptide helix, Protein structure

INTRODUCTION
The backbone of a protein (Fig. 1A) can twist and turn into numerous conformations
(folds), in part due to the amino acid sequence that the protein displays. Understanding how
a backbone twists is of great importance to the field of biochemistry, since understanding
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Figure 1 The backbone of a single residue (A) can be described by its dihedral angles φ andψ (and in
smaller part, ω, which is predominantly trans or∼180◦). The Ramachandran plot is important because
a number of regular conformations important to biology—secondary structures—are located at specific
regions of the plot (B). For the most part, regular peptide backbones twist in either a left-handed or right-
handed fashion; examples are shown in (C). As evidenced in (B), the−ve diagonal within the Ramachan-
dran plot (dashed line described by φ = −ψ) divides right-handed peptides from left-handed peptides,
which leads to the naïve picture of handedness (D). Zacharias & Knapp (2013) showed that this picture is
over simplistic, however an in-depth characterization of the backbone in all regions was not performed,
and will be done here for both cis (ω = 0) and trans backbones (ω = π). (A) is modified fromMannige,
Kundu &Whitelam (2016). Due to low incidence within the studied database (see Methods), the two left-
handed helices in (B) are arbitrarily marked and have no statistical significance. All molecular representa-
tions in this text are shown in ‘licorice’ form, with the colors red, blue and white representing oxygen, ni-
trogen and carbon atoms.

the structure of a protein goes a long way towards understanding how a protein functions
(Alberts et al., 2002; Berg, Tymoczko & Stryer, 2010). While the conformation of a peptide
backbone is dependent on a number of parameters (bond lengths, bond angles, and
dihedral angles), Ramachandran, Ramakrishnan & Sasisekharan (1963) recognized that the
twist of a peptide backbone can be described to a great degree by the dihedral angles φ and
ψ (Fig. 1A).

Today, two-dimensional (φ,ψ) plots are called Ramachandran plots (or ‘maps’), and
are introduced in undergraduate biology textbooks as a guide for understanding a peptide
backbone’s general conformational state or ‘twistedness’ at a glance (Bragg, Kendrew
& Perutz, 1950; Pauling & Corey, 1951b; Pauling, Corey & Branson, 1951; Linderstrøm-
Lang, 1952; Laskowski et al., 1993; Chothia et al., 1997; Hooft, Sander & Vriend, 1997;
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Cooper & Hausman, 2013; Alberts et al., 2002; Laskowski, 2003; Ho, Thomas & Brasseur,
2003; Eisenberg, 2003; Berg, Tymoczko & Stryer, 2010; Mannige, Kundu &Whitelam, 2016).
The Ramachandran plot is especially useful because (stable) proteins are hierarchical
in structure (Linderstrøm-Lang, 1952): the final (tertiary) conformation of a structured
protein is composed of discrete secondary structures—regular structures—that interact
with each other and which are strung together by loops that are less regular (Alberts et al.,
2002; Berg, Tymoczko & Stryer, 2010). Each regular peptide structure describes a backbone
whose per-residue (φ,ψ) values are generally the same, and therefore their ‘locations’ on
the Ramachandran plot act as structural landmarks (Fig. 1B).

So far, our understanding of the Ramachandran plot has been limited mostly to
structured proteins that display stable conformations (Berman et al., 2000; Alberts et al.,
2002). These types of proteins occupy only a limited region of the plot (dotted regions in
Fig. 1B). The regular backbone conformations in these regions are well understood. For
example, known regular structures that are to the right of the negatively sloping diagonal
(dashed line in Fig. 1B; henceforth denoted as the ‘ −ve diagonal’) are left-handed in
backbone twist, while those that are to the left of the diagonal are right-handed (left- and
right-handed regions are respectively shaded blue and red). For example, the position of
the idealized left- and right-handed α-helices (Fig. 1C)—respectively denoted as αL and
α in Fig. 1B—are on opposite sides of the −ve diagonal. The ‘naïve view’ of handedness,
obtained from looking only at structured proteins, would be the expectation that the −ve
diagonal neatly separates the Ramachandran plot into regions of left- and right-handedness
(Fig. 1B).

However, structured proteins represent only a fraction of functional proteins. Indeed, up
to 15% of mammalian proteins are completely disordered—they natively display multiple,
often extended, conformations—and up to 50% of the mammalian proteins display large
(>30 residue) stretches of disorder (Iakoucheva et al., 2002; Ward et al., 2004; Orosz &
Ovádi, 2011; Mannige, 2014). Interestingly, when compared to structured backbones,
structurally degenerate or disordered backbones occupy many more regions within the
Ramachandran plot (Beck et al., 2008).

Additionally, a number of peptide mimics—especially peptoids (Sun & Zuckermann,
2013)—have been found to display novel secondary structures that occupy regions that
are strictly disallowed by proteins due to steric clashes. For example, a ‘higher-order’
peptoid secondary structure—the 6-strand (Mannige et al., 2015; Robertson et al., 2016)
—is believed to sample regions of the Ramachandran plot (‘I’ in Fig. 1B) that are not
permitted within natural proteins (this is because peptoid backbones lack hydrogen-bond
donors). Another peptoid secondary structure—the ‘ω-strand’ (Gorske, Mumford & Conry,
2016)—samples similarly historically uncharted regions of the Ramachandran plot (‘II’ in
Fig. 1B ). Importantly, backbone twist handedness plays a crucial part in explaining these
new motifs: as one goes along the backbones of these secondary structures, alternating
residues display backbone twists that are equal in magnitude but opposite in handedness
(for this reason, the 6-strand is relatively linear, albeit meandering; Mannige et al., 2015;
Mannige, Kundu &Whitelam, 2016).
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Despite these recent discoveries of natively disordered proteins and novel
peptidomimetic structures, a complete understanding of backbone conformations that
stray from the ‘structured’ regions on the Ramachandran plot is missing, which impedes
our ability to identify and explore such conformations. Towards filling this gap in
understanding, this report outlines a detailed study of how regular backbones twist in
every region of the Ramachandran plot for both cis and trans peptides. In particular, this
report develops and explores a new metric for handedness (h) based on modeling a regular
backbone (described below) as a helix (Shimanouchi & Mizushima, 1955; Miyazawa, 1961;
Zacharias & Knapp, 2013). The metric is used to exhaustively chart the handedness of
regular backbones. In doing so, this survey provides a new graphical format to explore
new types of secondary structures being discovered (Mannige et al., 2015; Gorske, Mumford
& Conry, 2016). Also, this survey dispels the naïve view of handedness (Fig. 1D) by
showing that the distribution of handedness as a function of φ and ψ is more complicated
than the distribution allowed by the naïve view. Finally, the results also show that the
Ramachandran plot whose φ andψ values range between 0◦ and 360◦ is more intuitive and
visually meaningful (compared to those that range between −180◦ and 180◦), particularly
for cis backbones. This work builds on a previous report (Zacharias & Knapp, 2013) and
helps complete our understanding of the ways in which a peptide backbone twists, which
is a basic component of structural biology.

METHODS
While angular units in this report switch between radians and degrees, their units in any
particular situation may be inferred by the presence or absence of the degree symbol (◦).
All methods and materials required to produce this manuscript are freely available at
https://github.com/ranjanmannige/backbone_chirality.

Deriving measures for backbone handedness
Numerous metrics for molecular chirality and handedness have so far been discussed
(Harris, Kamien & Lubensky, 1999). For example,metrics for chirality have been introduced
that focus on vector orientations (Kwiecińska & Cieplak, 2005; Kabsch & Sander, 1983;
Gruziel, Dzwolak & Szymczak, 2013), optical activity (Osipov, Pickup & Dunmur, 1995),
and molecular shape (Ferrarini & Nordio, 1998). However, this report will focus on a
simpler metric for handedness associated with an idealized helix within which all (regular)
backbone atoms of one type sit (Fig. 2; Shimanouchi & Mizushima (1955); Miyazawa
(1961); Zacharias & Knapp (2013)). Here, a ‘regular’ backbone indicates that each tunable
parameter within a unit or ‘residue’—say a particular dihedral angle—remains the same
for all residues. Below, regular backbones are modeled in context of helical parameters
that, when combined, form an intuitive metric for backbone handedness.

Describing a regular backbone as a helix
Interest in how a backbone may be represented as a helix emerged shortly after the
first secondary structures were introduced (Pauling, Corey & Branson, 1951; Pauling &
Corey, 1951b; Pauling & Corey, 1951a). In particular, Shimanouchi & Mizushima (1955)
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Figure 2 Internal coordinate (i) and helical coordinate (ii) representations of right-handed (A) and
left-handed (B) regular backbones. Internal coordinates are a function of bond lengths (e.g., v23), angles
(σ2), and dihedral angles ( τ12), while helical coordinates are a function of displacement along the helical
axis (d12), angular displacement in the plane perpendicular to the helical axis ( θ12) and shortest distance
of an atom of type i to the helical axis (ρi). Representations are derived from Figs. 1 and 2 in Shimanouchi
& Mizushima (1955).

had derived a set of equations that fit a platonic helix to the atoms within a regular
backbone. While the formalisms described by Shimanouchi & Mizushima (1955) (and later
on by Miyazawa (1961), discussed below) apply to repeating linear polymers of arbitrary
complexity, this report focuses specifically on how peptides may be modeled. Figure 2
describes an arbitrary peptide backbone that may be represented either using internal
coordinates (i) or helical coordinates (ii).

Internal coordinates are associatedwith stereochemical terms: bond lengths (vij) between
adjacent atoms i and j, bond angles (σi) between the two bonds adjacent to atom i, and
dihedral or torsion angles (τij), which involve atoms associated with the bond i− j and the
two adjacent atoms. Helical coordinates (Fig. 2 (ii)) are described using measures of axial
displacement between two successive atoms of the same type (d ; this is related to the pitch
of a platonic helix), angular displacement between two successive atoms of the same type
(θ), and the radius of the helix (ρi) that hosts all backbone atoms of type i. Therefore, the
single cylinder shown in Fig. 2 is too simplistic as there should be one distinct cylinder or
radius per atom type.

Given that there are three backbone atoms associated with a residue (Fig. 1A),
d = dn,α+dα,c+dc,n and θ = θn,α+ θα,c+ θc,n. Here, di,j and θi,j respectively refer to
the axial and angular displacement between adjacent atoms i and j. Subscripts ‘n’, ‘ α’, and
‘c’ respectively refer to the backbone nitrogen, α-carbon and carbonyl carbon atoms (Fig.
1A). The notation used by Shimanouchi & Mizushima (1955) was in terms of matrices,
which were then simplified by Miyazawa (1961) into trigonometric terms. In particular,
Miyazawa (1961) noted that the total residue-residue axial displacement (d) and angular
displacement (θ) may be retrieved using the following two equations.
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1ρc and ρn are obtained by the following
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The ranges for d and θ , respectively, are [−λ,+λ] and [0,2π) (the positive limit λ is defined
by allowed values for the various internal coordinates). As above, subscripts ‘n’, ‘α’, and
‘c’ respectively refer to the backbone nitrogen, α-carbon and carbonyl carbon atom types.
The dihedral angles φ, ψ , and ω represent the traditional symbols for backbone dihedral
angles, which may be otherwise denoted as τn,α , τα,c, and τc,n(+1), respectively.

Finally, for any type of atom (say α-carbons), the radius or distance from the helical axis
ρα is defined by

2ρ2α [1−cos(θ)]+d
2
=v2α,c+v

2
c,n+v

2
n,α−2vc,n

[
vα,ccos(σc)+vn,α cos(σn)

]
+2vα,cvn,α

[
cos(σc)cos(σn)− sin(σc)sin(σn)cos(τc,n)

]
(3)

Miyazawa (1961) noted that the right-hand side of Eq. (3) is also the squared distance
between adjacent atoms of the same type (denoted here as d2α for α-carbons), which allows
for a more simplified form

ρα =

√
d2α−d2

2−2cos(θ)
. (4)

The distance between adjacent α-carbons (dα) is∼ 3.8 Å for trans peptides and∼ 3 Å for
cis peptides. Other radii (ρc,ρn) can be obtained by cycling through (α,c,n) subscripts
within Eqs. (3) and (4).1 Note that all ρi’s are functions of θ and d (along with other
internal coordinates), and so one may use two of the three terms in (d,θ,ρi)— to describe
the helical state of a peptide. Since there is only one d and θ per backbone (compared to
three ρi’s, one per atom type), this report utilizes d and θ as the two descriptors (other
discussions on this choice have also been made by Zacharias & Knapp (2013)).
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2The values used by Zacharias & Knapp
(2013), taken from Engh & Huber (1991)
and Engh & Huber (2006), are: vn,α = 1.459
Å, vα,c = 1.525 Å, vc,n(+1) = 1.336 Å,
σα = 111.0, σc = 117.2◦, and σn = 121.7◦.
For reference,Miyazawa (1961) originally
used the following values: vn,α = 1.470
Å, vα,c = 1.530 Å, vc,n(+1) = 1.320 Å,
σα = 110.0, σc= 114.0, and σn= 123.0.

Eqs. (1) and (2) may be substantially simplified (Miyazawa, 1961), given that backbone
bond lengths and angles are much less ‘tunable’ when compared to dihedral angles
(Ramachandran, Ramakrishnan & Sasisekharan, 1963; Improta, Vitagliano & Esposito,
2015a; Esposito et al., 2013; Improta, Vitagliano & Esposito, 2015b). In particular, most
backbone bond lengths and angles display one equilibrium value (Improta, Vitagliano
& Esposito, 2015a; Esposito et al., 2013; Improta, Vitagliano & Esposito, 2015b), while the
backbone dihedral angles φ and ψ occupy a range of possible values and minima, e.g.,
regions in the Ramachandran plot that describe α-helices and β-sheets (Fig. 1B). With
this in mind, Miyazawa (1961) set ω= π (trans) and substituted average (equilibrium)
values for bond angles and lengths into Eqs. (1) and (2) to arrive at a simpler equation for
trans backbones. Zacharias & Knapp (2013) published an updated version of this set of
equations, which follows.2

cos
(
θ

2

)
=−0.8235 sin

(
φ+ψ

2

)
+0.0222 sin

(
φ−ψ

2

)
, (5)

d sin
(
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2

)
= 2.9986cos
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2

)
−0.6575cos

(
φ−ψ

2

)
. (6)

This equation is especially relevant to peptides as they occur predominantly in trans
conformations (ω = π). However, given the prevalence of cis backbones in peptide
mimics such as peptoids (Mirijanian et al., 2014; Gorske, Mumford & Conry, 2016), for
completeness, the corresponding relationships for a cis (ω= 0) backbone follows.

cos
(
θ

2

)
= 0.4052 cos

(
φ+ψ

2

)
−0.4932 cos

(
φ−ψ

2

)
, (7)

d sin
(
θ

2

)
= 2.3093 sin

(
φ+ψ

2

)
+0.0028 sin

(
φ−ψ

2

)
. (8)

Note that Eq. (5) through Eq. (8) are simplifications of Eqs. (1) and (2), and are
therefore prone to some limitations that are not present in Eq. (1) and Eq. (2). For
example, bond lengths (Improta, Vitagliano & Esposito, 2015a) and bond angles (Esposito
et al., 2013; Improta, Vitagliano & Esposito, 2015b) display some dependence on local
backbone conformation. These subtle variations have great implications when dealing
with a large number of residues, especially when considering bond angles. For example,
when attempting to recreate a protein conformation from an original conformation’s
φ and ψ values (ignoring deviations in ω, bond angles, and lengths), the original and
recreated conformations tend to deviate dramatically due to an accumulation of errors (by
up to 22 Å in root mean squared deviation; Tien et al. (2013)). However, when studying
changes in conformationally regular and local stretches of peptides, such deviations are
not likely to change relevant features such as handedness and extent of twistedness. If
circumstances indicate that the backbone values for bond angles and ω may be strained
from their equilibrium values (e.g., due to bulky sidechains), only Eqs. (1) and (2) can
be expected to faithfully (and perfectly) represent backbone features such as handedness
of twist. However, the approximations of Eq. (5) through Eq. (8) are sufficient for the
purposes of this report, given that this report primarily discusses features within platonic
regular backbones.
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On the one-to-one correspondence between (φ,ψ,ω) and (d,θ)
Given a particular value of ω, every (φ,ψ) pair points to exactly one (d,θ). However,
when using Eqs. (1) and (2), one value of ω can not be replaced with a periodically
equivalent version of ω (the same can be said for φ and ψ). For example, using ω= x+2π
instead of ω= x will maintain the magnitude of d and θ , but the signs will not remain
conserved. This is because every summand in Eqs. (1) and (2) contains either a sine or
cosine of [±φ±ψ±ω]/2. The issue arises because of the ‘2’: even though the angle x
is considered to be equivalent to the angle x+2π, and even though cos(x+2π) equals
cos(x) (due to angle periodicity), cos([x± 2π]/2)= cos(x/2±π)=−cos(x/2) (note
the negative sign). Similarly, sin([x±2π]/2)=−sin(x/2). Therefore, even though the
angles ω and ω+ 2π may be considered to be equivalent angles, expressions such as
cos([x−ω+2π]/2) and cos([x−ω]/2) are only equal in magnitude and not in sign. I.e.,
a one-to-one correspondence between (φ,ψ) and (d,θ) is only possible if one insists on
specific values for ωs. For this reason, this report proposes to wrap the value of an amide
backbone ω′ between [1,1+360◦) using

ω= (ω′−1)%360+1, (9)

where % represents the modulus function, and 1 describes the start of the range
[1,1+2π). Choosing1=−90◦ would ensure that the distribution of both cis (ω= 0±5◦)
and trans (ω= 180±5◦) will remain contiguous. Using this system, cis and trans backbones
are respectively represented byω= 0 (and not 2π) andω=π (not−π) for trans backbones.
The rest of this report assumes these values of ω for cis and trans backbones.

These points lead to the conclusion that a strict one to one-to-one correspondence
between (φ,ψ,ω) and (d,θ) does not exist, since multiple sets of the former may
be backmapped from the latter (by reconfiguring Eqs. (1) and (2)). Yet, a one-to-one
correspondence may be ensured by discarding as solutions all but the one set of (φ,ψ,ω),
whose φ and ψ lie within a preset range –e.g., [0,2π) or [−π,π) –and whose ω does not
change after being wrapped by Eq. (9).

Introducing an equation for backbone handedness
The helical parameters d and θ host a wealth of information, some of which is discussed in
the Results section. For the purpose of developing an equation for backbone handedness, it
is only important to recognize, as was done before (Zacharias & Knapp, 2013), that θ and
d together are instrumental in describing backbone handedness.

The relationship between handedness and (d,θ) is shown in Fig. 3. While θ indicates
the extent to which a regular backbone curves along a helical path, the handedness of a
backbone is dependent on both θ and d . This is because the sign of d provides a frame
of reference for interpreting θ . In particular, if d is negative, then 0< θ < π indicates
left-handedness (Fig. 3A), while π< θ < 2π indicates a right-handed helix (Fig. 3B).
However, if d is positive, then the manner in which the helix is ‘built’ reverses, and
0<θ <π indicates right-handedness (Fig. 3C), while π<θ < 2π indicates left-handedness
(Fig. 3D).

Mannige (2017), PeerJ, DOI 10.7717/peerj.3327 8/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.3327


 

1

2
θ-2π

d < 0; θ < π

d

θ-2π

1

θ
2

d

d > 0; θ > π

1
2

d > 0; θ < π

d

θ
2

1

d < 0; θ > π

d

left-handed (L) left-handed (L)right-handed (R) right-handed (R)

a. b. c. d.

Figure 3 The handedness of a helix is a function of angular displacement θ perpendicular to the heli-
cal axis (green curved arrows) and linear displacement d along the helical axis (blue, vertical arrows).
Note that left-handed (L) and right-handed (R) backbone twists are respectively associated with the L and
D chiralities within the Fisher Projection system and S and R chiralities within the Cahn–Ingold–Prelog
system (Cross & Klyne, 2013); however, as discussed in the Methods section, this report makes a distinc-
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Given these relationships, this paper proposes a new metric for backbone handedness
that depends on the sign of d and the value of θ :

h=
d
|d|

sin(θ). (10)

The range of h is [−1,1], with negative (or positive) values indicating that the overall
twist of the backbone is left(or right)-handed. Also, |h| is proportional to the extent to
which the backbone is twisted. Note that d/|d| is related to the traditional sign function
sgn(d), but deviates at d = 0, where the former term is undefined while the latter term is
0. Additionally, h will equal 0 if d = 0 or if θ = xπ (where x is an integer); for more on the
meaning of d and θ in context of handedness and peptide geometry, please refer to the
‘Results and Discussions’ and Fig. 4 in particular.

Alternative measures of handedness
Two estimates for chirality, χ1 and χ2, used to validate the new measure of handedness
h (Eq. (10)), were previously used by Kwiecińska & Cieplak (2005) and Kabsch & Sander
(1983), respectively. The equations are:

χ1=
1
N

N−2∑
i=2

(vi−1×vi) ·vi+1
vi−1vivi+1

, (11)

χ2=
1
N

N−2∑
i=2

arctan2(vivi−1 ·vi×vi+1,vi−1×vi ·vi×vi+1). (12)

Here, N is the peptide length, i is the peptide residue number and the position of
each α-carbon is Ni, with vector vk ≡Nk+1−Nk . The scalar component of the vector
vi is denoted as vi. Eq. (11) has range [−1,1]. Eq. (12), also used by Gruziel, Dzwolak &
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Szymczak (2013), is the dihedral angle associated with the four contiguous α-carbons (one
preceding and two succeeding the residue i), and ranges between [−π,π] radians. For
both metrics, values deviating more from 0 are more chiral (or ‘twisted’ or ‘handed’), and
left-handed twists are negative while right-handed twists are positive. Only α-carbon atom
positions are used for the calculation.

Finally, a more backbone-agnostic metric of chirality has been introduced by Solymosi
et al. (2002), which is replicated here purely for completeness:

χ3=
4!
3N 4

∑
i,j,k,l∈N

((
vij×vkl

)
·vil
)
(vij ·vjk)(vjk ·vkl)(

vijvjkvkl
)2vil . (13)

χ3, of arbitrary range, is known as the chirality index G0S in Solymosi et al. (2002) andNeal
et al. (2003). (i,j,k,l) are exhaustive permutations of {1,2,...,N }. This metric qualitatively
matches the values of Eqs. (11) and (12) and, while not shown, the relationship between
(φ,ψ) and χ3 is available in the online GitHub repository.

Backbone structure generation
The metric h (Eq. (10)) is purely analytical and does not need structures to be
computationally generated, since Eq. (5) through Eq. (8) that provide d and θ require
only pairs of φ and ψ angles. However, if values for bond angles, lengths and dihedral
angles are expected to deviate greatly from equilibrium values, θ and d can only be obtained
from the more detailed Eq. (1) and Eq. (2), whose parameters would likely be obtained
from a structure. On the other hand, as χ1 (Eq. (11)) and χ2 (Eq. (12)) work explicitly
with atom positions, these metrics explicitly need the generation of structures. In order
to use these metrics, peptides (poly-glycines) of arbitrary length were generated using
the Python-based PeptideBuilder library (Tien et al., 2013). Analysis was performed using
BioPython (Cock et al., 2009) and Numerical Python (Van Der Walt, Colbert & Varoquaux,
2011). Ramachandran plots that describe chirality (e.g., Fig. 5A) were generated using a
grid spacing (in degrees) of φ,ψ ∈ {−180,−178,...,178,180}.

Obtaining secondary structure statistics
Statistics about secondary structures—particularly α-helices, 310-helices and β-sheets—
were identified using the DSSP algorithm (Kabsch & Sander, 1983), although the
STRIDE algorithm (Frishman & Argos, 1995) provides qualitatively identical distributions.
The DSSP algorithm was applied to a database of 13,760 three-dimensional protein
conformations (one domain per conformation) with lower than 40% sequence
identity, obtained from the Structural Classification of Proteins or SCOPe website
(Release 2.06; Fox, Brenner & Chandonia (2014)). This database is currently available
as: http://scop.berkeley.edu/downloads/pdbstyle/pdbstyle-sel-gs-bib-40-2.06.tgz.

Backbone chirality 6= backbone handedness
Finally, it is important to recognize the distinction between backbone (twist) handedness
and backbone (molecular) chirality. Naïvely, chirality is a simple concept: a molecular
conformation is achiral if its mirror image can be superimposed onto itself, otherwise
that conformation is chiral (Gold et al., 1997) (alternatively, and less commonly, achiral
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molecules possess inversion centers).Despite this intuitive definition, chirality has remained
a confusing concept ever since its introduction (Bentley, 2010;Wallentin et al., 2009), which
is possibly due to the fact that ‘context’ is very important when discussing chirality (Mislow,
2002). For example, when looking at a peptide at the residue or ‘local’ level, every amino
acid (excepting glycine) is chiral due to the presence of a chiral α-carbon (its mirror
image can not be superimposed onto itself). Yet, at the macromolecular level, even an
all-glycine (and therefore locally achiral) peptide will display conformations that are not
superimposable onto each other, and so such conformations would be chiral. Alternatively,
when considering handedness, if a backbone is completely flat (say, a ring, where d = 0),
handedness (h) will be undefined, and so one can not speak of handedness of the twist. Yet,
the backbone may still remain chiral; e.g., cisplatin and transplatin are planar molecules
that are nonetheless chiral opposites (Testa, 2013). It is for this reason that this report
chooses to be careful to not claim that Eq. (10) is a metric for peptide/backbone chirality,
but of peptide backbone twist handedness. However, estimates for backbone chirality (e.g.,
Eqs. (11) and (12)) may be used as surrogates for twist chirality to validate h (Eq. (10)), as
both are related but not the same.

RESULTS AND DISCUSSION
Relevance of θ and d
When discussing peptide backbones, two possible definitions of backbone ‘flatness’ (or
linearity) are possible: flatness at a residue level and flatness at the atomic level. In
the former, all atoms of the same type are coplanar (examples of atom types are the
backbone nitrogens, carbonyl carbons, α-carbons, or even sidechain β-carbons). In the
latter definition of flatness, all atoms within the backbone are coplanar. For the discussions
below, since the residue-by-residue behavior of the peptide is of primary relevance, the
former definition is chosen as the relevant scope for flatness.

As described in Fig. 3, the helical parameters d and θ respectively refer to an axial
displacement along the helical axis and an angular displacement in a plane perpendicular
to the helical axis. For example, d = 0 indicates a helix flattened along its helical axis (Fig.
4, Scenario 1). This means that all regular peptides with d = 0 will be ring-like at some
peptide length (shown in a following figure for a range of peptides). As expected from Eq.
(10), at d = 0, one can not tell how the helix was built, since coplanar peptides can not be
described as either left- or right-twisting. Therefore, even though d = 0 indicates highly
twisted peptides, these twists do not possess handedness. This shows up in the h metric
because, at d = 0, |d|−1 is undefined.

Additionally Fig. 4 describes two important values for θ : eπ (Scenario 2) and oπ (Scenario
3), where e and o are even and odd integers. In particular, for any d , θ = eπ indicates zero
angular displacement along the axis, which puts all atoms of the same type on the same
line parallel to the helical axis (Fig. 4, Scenario 2). Similarly, θ = oπ indicates that every
alternate atom (of the same type) along the backbone will be linear, and every adjacent
atom will be diametrically opposite to each other (Fig. 4, Scenario 3); i.e., θ = oπ indicates
that all atoms of the same type will lie on a plane that is parallel to the helical axis. In short,
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Figure 4 Further discussion on the meaning of d and θ. As shown in Fig. 3, axial separation d and
angular separation θ between adjacent atoms of the same type combine to define handedness. The blue
(dark) and red (light) shaded quadrants within the graph show the distribution of handedness as a
function of d and θ . The relevant boundaries— θ = xπ (where x is a non-negative integer) and d = 0—
separate the map into four quadrants of left- and right-twisting backbones (‘L’ and ‘R’, respectively).
Geometric interpretations of various boundaries, discussed in the text, are shown to the top and left of the
graph as three scenarios. The toroid enclosed by two solid lines (and shaded white) represents all possible
conformations for trans peptides (ω= 180±5◦). Similarly, the region allowed for cis peptides (ω= 0±5◦)
are bound by the two dashed contours.

θ = 0 codes for backbones that are linear (optimally extended for a fixed d) and θ = π
describe peptides that zig-zag along a plane perpendicular to the helical axis. Finally, as is
evident in Fig. 4, θ = eπ conformations are not available to peptide backbones. Therefore,
θ = oπ (e.g., π or 180◦) will be the most extended type of backbone (for a fixed d). These
relationships show how, a priori, the curve of a backbone with particular (d,θ) may be
interpreted.

Finally, θ may serve as an important single-number metric for describing backbone
configurations. Mannige, Kundu &Whitelam (2016) developed one such number—a
Ramachandran number (R)—that is a structurally meaningful combination of φ and ψ .
This number depends on the fact that structural features of the backbone (e.g., radius
of gyration) vary least when one slices through the trans Ramachandran plot along
negative-sloping lines that conserve φ+ψ (Ho, Thomas & Brasseur, 2003; Zacharias &
Knapp, 2013; Mannige, Kundu &Whitelam, 2016). Interestingly, θ follows that trend
too, which—in combination with the fact that regions of the Ramachandran plot are
sparse (Mannige, Kundu &Whitelam, 2016)—means that θ and its derivatives (e.g., h)
are universal Ramachandran numbers. The universality arises from the fact that cis
Ramachandran plots do not conserve structure along lines that conserve φ+ψ (and so R
only works for trans backbones), yet any two backbones with nearly identical θ ’s will also
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Figure 5 The handedness of an ordered trans peptide within the Ramachandran plot. (A) displays the
relationship between backbone parameters (φ,ψ) and the associated helix parameters of curvature sin(θ)
(top; Eq. (1)) and axial displacement d (bottom; Eq. (2)). As shown in Fig. 3, the handedness of a helix is
a function of these two variables (h; Eq. (10)). (B) is a map of backbone handedness (h) as a function of φ
and ψ . The boundaries, θ = π (‘– –’ ) and d = 0 (‘–·–’), correspond to backbones that are equally flat, but
which are respectively optimally extended and curved (see discussion in text). (B) shows that the naïve ex-
pectation of handedness in a Ramachandran plot (Fig. 1D) is inaccurate. Interestingly, our naïve expecta-
tions would be upheld if one were only to have sampled regions of the Ramachandran plot dominated by
known proteins (A; regions enclosed by ‘······’ indicate 90% occupancy). An example of the behavior of
one ‘slice’ of (B) is shown in (C). Each snapshot represents a peptide backbone that is either in a distinct
region of handedness or at a boundary.

be conserved in structure (see, e.g., Fig. 5A, top). This feature of θ will be true irrespective
of the nature of the amide dihedral angle ω (Eq. (1)).

Handedness of trans backbones
Figure 5A describes the behavior of sin(θ) and d as a function of φ and ψ (assuming
an all-trans backbone; ω= π or 180◦). Figure 5B describes the behavior of backbone
handedness (h; Eq. (10)) as a function of φ and ψ . This map is a complete description
of the handedness of an all-trans (regular) peptide backbone. Fig. 5C describes some
structures at various regions within the plot. As discussed above, d = 0 (‘I’) indicates that
each residue is at the same ‘altitude’, i.e., the helix is perfectly flat and maximally curved
(at that particular θ). Note that any path on the Ramachandran plot that transitions from
negative to positive d will encounter an infinitesimal region in its path where d = 0 and so
h is undefined there. This, along with the recognition that d = 0 indicates highly curved
backbones, means that such transitions would be concomitant with a sharp change in
handedness. When θ = π, then the backbone is also flat (see ‘F’ in Fig. 5C); however,
atoms of the same type lie in a single plane that is perpendicular to the helical axis (Fig.
4). In short, within the Ramachandran plot, d = 0 (‘–·–’) and h= π (‘– –’) code for flat
backbones that are respectively either optimally curved (at a given θ) or optimally extended
(at a given d). A future report will discuss how these simple rules may be combined to
make conjectures about novel secondary and tertiary structures.

Figure 6A shows that the equation for h match other metrics for handedness,
as interpreted by other metrics for chirality (Kwiecińska & Cieplak, 2005; Kabsch &
Sander, 1983; Gruziel, Dzwolak & Szymczak, 2013). In particular, Fig. 6A displays the
Ramachandran plot colored by h ((i); Eq. (10)) next to estimates calculated using χ1
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Figure 6 (A) and (B) describe the handedness of backbone twists whose amide dihedral angles are
trans (ω = π) and cis (ω = 0), respectively. Column (i) describes handedness (h; Eq. (10)), which does
not require structures to be computationally generated. Columns (ii) and (iii) respectively show vector-
based estimates of backbone chirality— χ1 (Eq. (11)) and χ2 (Eq. (12))—which are calculated from com-
putationally generated peptides (see ‘Methods’). Regions of left- and right-handedness are identical for
all measures (i–iii). A cartoon representation of distinct regions of handedness is shown in (iv). Finally,
(C) displays a range of regular cis peptide backbones with d ≈ 0. As explained in Fig. 4, d = 0 indicates a
flat backbone that lies perpendicular to the helical axis, which results in ring-like peptides. Interestingly, a
point in the Ramachandran plot exists exclusively for cis peptides, where d = 0 and θ =π: φ=−ψ =±36◦

(‘I’ in (B)-(iv) and (C)).

((ii); Eq. (11)) and χ2 ((iii); Eq. (12)). Each panel describes identical regions of left- and
right-handedness, which is shown as a cartoon in (iv). However, given that χ1 and χ2 are
estimates for chirality and not backbone handedness, their exact values differ from the
primary metric for handedness (h) provided here.

Handedness of cis backbones
In the same vein as Fig. 6A, Fig. 6B displays h, χ1 and χ2 as a function of φ and ψ for
all-cis regular backbones. This appears to be the first complete description of chirality of
an all-cis backbone (ω= 0). Interestingly, the boundaries for d = 0 and θ = π switch in
cis backbones, with the −ve diagonal and curved boundaries being caused by d and θ ,
respectively. Additionally, Fig. 6A reiterates the idea that cis peptides are quite different
when compared to trans peptides: the regions and boundaries of left- and right-handedness
within the Ramachandran plot differ for cis versus trans.

Finally, points on the cis map (φ=±36◦, ψ =∓36◦) exist where d = 0 and θ = π. An
example of this, along with other d = 0 configurations, is shown in Fig. 6C for a six-residue
peptide. At first glance, this appears to be contradiction, because d = 0 indicates the most
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Figure 7 The landscape of backbone chirality as a function of amide dihedral angle ω. As ω is changed, the features of the landscape smoothly
transform from the landscapes of ω = ±π to ω = 0. For all values of ω, it is evident that the naïve view of chirality (Fig. 1D) is wrong: at least four
distinct regions of chirality (separated by boundaries d = 0 and θ = π) are evident in each scenario. Although only five snapshots (values of ω) are
shown, all integer values of ω were tested, which corroborates the fact that the naïve view of backbone handedness (Fig. 1D) is universally incorrect.

curved backbone at a fixed θ , and θ = π indicates the most linear backbone at a fixed d ;
however, it is purely due to the nature of the cis backbone that this indeed is possible. Of
course, this structure would only be possible for cyclic peptides with length two, given
that any peptoid of length greater than two would result in overlapping atoms. However,
such a structure (one with d = 0 and θ = π) is not possible in trans peptides, even in
theory, because the boundaries associated with d = 0 and θ =π do not intersect (Fig. 6A);
this is also evident in Fig. 4, where trans peptides are shown to not occupy regions of
(d,θ)= (0,π), while cis peptides do.

The exhaustive survey of regular cis (ω= 0) and trans (ω=π) peptides (Fig. 6) proves that
the naïve picture of chirality—that the−ve diagonal separates the right-twisting backbones
from the left-twisting backbones (Fig. 1D)—is wrong. However, deviations fromω= 0 or π
are evident in the Protein Databank; see, e.g., discussions by Improta, Vitagliano & Esposito
(2011). This raises the question: how does varying ω through non-traditional values change
the handedness landscape? Figure 7 describes Ramachandran plots that show handedness
in terms of varying ω, which shows that this complicated separation of handedness in cis
and trans backbones also holds for other values of ω. Therefore, the naïve expectation of
handedness (Fig. 1D) is too simple, irrespective of amide dihedral angle.

[−π,π) or [0,2π): which frame of reference to use?
In structural biology, φ and ψ within the Ramachandran plot has been historically
set to range between the values [−π,π) radians (see, e.g., textbooks by Berg, Tymoczko
& Stryer (2010) and Alberts et al. (2002)). However, Ramachandran, Ramakrishnan &
Sasisekharan (1963) had originally used the range of [0,2π). Today, the range [−π,π)
is used predominantly by structural biologists (Laskowski et al., 1993; Laskowski, 2003;
Zacharias & Knapp, 2013), while some have turned to [0,2π) as the norm (Némethy, Leach
& Scheraga, 1966; Voelz, Dill & Chorny, 2011).

Given the periodicity of the Ramachandran plot, the two frames of reference are
scientifically identical; however the value of the Ramachandran plot lies in its utility as a
map: it is a map of important features of proteins relative to the various regions, quadrants,
and diagonals in the map (see, e.g., discussions by Beck et al. (2008)). The Ramachandran
plot’s value lies in being able to convey large amounts of information in easy to read
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Figure 8 The two frames of reference (or ranges) for the Ramachandran plot for trans and cis back-
bones. Both ranges [−π,π) and [0,2π) yield similar trends for trans backbones (A, B); however, for cis
backbones, the latter frame of reference (D) appears to more neatly apportion the handedness of the back-
bone rather than the traditional frame of reference (C). As in Figs. 5 and 6, ‘– –’ and ‘–·–’ respectively cor-
respond to boundaries defined by θ =π and d = 0. Also, regions bound by dotted contours indicate domi-
nant regions within which proteins reside (p= 0.9).

pictograms. For that reason, switching the map from one range to another means that
the two types of scientists—each used to a distinct range—will not be able to converse as
seamlessly.

Therefore, the following question must arise: which range—[−π,π) or [0,2π) —is able
to convey more information with the least amount of effort? Figure 8 shows the handedness
of a trans backbone (A, B) and cis backbone (C, D) in the two frames of reference. From
(A) and (B) it is evident that general trends in the map for trans backbones remain
the same in both frames of reference: the negative diagonal (θ = π) locally separates
right-handed regions from left-handed regions, while the curved line (d = 0)—which also
separates handedness—also appears to be in generally the same regions (albeit inverted
in curvature). The cis backbones, however, look dramatically different in the two frames
of reference: the range [−π,π] separates handedness in a more complicated manner (C),
while, for the most part, the −ve diagonal appears to meaningfully separate handedness
when the plot ranges from 0 to 2π (D). For this reason, purely when looking at handedness,
and especially in the case of cis backbones, the Ramachandran plot that ranges between 0
and 2π appears to be more meaningful.

A universal alternative to the Ramachandran plot
While the Ramachandran plot is useful enough to earn a place in undergraduate-
level biology textbooks (Berg, Tymoczko & Stryer, 2010; Alberts et al., 2002), as discussed
throughout this report, it is not easy to estimate features of a peptide backbone just from
its (φ,ψ) angles (Fig. 9A). This prompted Zacharias & Knapp (2013) to introduce a new
representation for backbone degrees of freedom in the form of a polar graph. In this polar
representation, the θ is the angular coordinate (azimuth) and d is the radial coordinate.
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Figure 9 Alternative representations of the Ramachandran plot.While the Ramachandran plot is useful to map characteristics of secondary
structures (A), it is not intuitive. For example, the relationship between the Ramachandran parameters (φ,ψ) and the handedness of a backbone
is not obvious (see, e.g., the non-obvious distribution of left- and right-handed peptides as a function of φ and ψ). For this reason, Zacharias &
Knapp (2013) introduced a graphical format involving the helical parameters d and θ in polar coordinate space (B), where the regions of left- and
right-handedness are obvious (their format differs from (B) in that their θ increases in counter-clockwise fashion). (C), which is an extension of
Fig. 4, introduces another graphical representation of backbone degrees of freedom based on (θ,d), but in Cartesian space. While both (B) and
(C) are equally useful in understanding regions available to a protein, the text discusses some benefits of (C) as a universal map for exploring new
conformations and secondary structures. Excepting the left-handed helices (αL-, 310L-helices; see ‘Methods’), each secondary structure has two
contours signifying p= 0.5 and 0.8.

An example of one such representation is shown in Fig. 9B, with the direction of increasing
θ reversed (compared to the cited report) to maintain relative positions of secondary
structures within the Ramachandran plot (Fig. 9A). Zacharias & Knapp (2013) stated an
additional reason for the introduction of the polar representation (Fig. 9B): θ , which is an
angle and therefore periodic, can remain periodic as the angular coordinate in the graph.

However, the format proposed by Zacharias & Knapp (2013) (Fig. 9B) is incomplete
for a few reasons: (1) d < 0 peptides (the bottom-left and top-right regions of Fig. 5A,
bottom) will never be observed in this map since only structures with d ≥ 0 are allowed;
(2) all peptides with d = 0 (marked by ‘–·–’ in every preceding Ramachandran plot)
will be compressed into one point at the center, even though Fig. 6C shows a range of
legitimate d = 0 conformations; (3) while the graph is θ-periodic, the values for θ in
peptides are constrained within one [0,2π] period (peptides range between θ = π/4 and
2π−π/4; vertical dotted lines in Fig. 4); i.e., periodicity in θ is not required for the faithful
representation of peptides. Fortunately, even though this system is not universal (again,
since d < 0 structures are not accommodated), most conformations in globular proteins
display positive d , and so the representation presented by Zacharias & Knapp (2013) is a
reasonable one for most proteins with known structure.

Interestingly, Fig. 9A—which arranges the parameters θ and d along Cartesian axes—
serves as both a universal and intuitive map for peptide backbone geometry. This is
because: (1) as shown in Fig. 4, such maps reveal a wealth of information about the peptide
backbone, (2) both positive and negative values of d are allowed (compared to Fig. 9B),
due to the shift in the coordinate system from polar to Cartesian, and (3) this format
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accommodates every type of peptide conformation: any peptide (or its mimic) has a place
in this map irrespective of whether the amide backbone is cis or trans or any other value;
additionally, if the backbone is distorted, such distortions can also be accounted for since d
and θ account for such distortions (Eqs. (1) and (2)). This is impossible to do using a single
Ramachandran plot without making sweeping assumptions about backbone parameters
that are not φ and ψ . The (θ,d) plot opens up the possibility for a new, intuitive, and
universal kind of graphical representation as a supplement to the Ramachandran plot.

A departure from perfect regularity
So far, this report has focused on regular or simple backbone conformations, i.e., those that
are formed from the same φ and ψ angles repeated along the backbone. This is particularly
because a simple and visually intuitive correspondence exists (Figs. 3 and 4) between a
regular backbone (described by myriad internal coordinates) and a helix that is described
simply by (d,θ). However, there is a possibility that d and θ are useful even in isolation,
when the unreasonable constraint of perfect backbone regularity is lifted. An example of
such a departure from regularity follows.

Some secondary structures are characterized by the regular combination of two or more
sets of [φ,ψ] (Pauling & Corey, 1951b; Pauling & Corey, 1951a; Armen et al., 2004; Daggett,
2006; Hayward & Milner-White, 2008; Mannige et al., 2015; Mannige, Kundu &Whitelam,
2016). For example, the 6-strand is constructed by alternating between two backbone
states (φ,ψ,ω)= (−A,B,180◦) and (−B,A,180◦), where A≈ 120 and B≈ 90 (Fig. 4 in
Mannige et al. (2015)). It was found that the two states are similar in the extent to which the
backbone twists, but opposite in handedness, which allows for these secondary structures
to remain linear, albeit in a meandering way (Mannige et al., 2015). Equation (10) also
describes these two states as opposite in handedness and similar in twist extent: the h for
the two states are −0.34 and 0.51, respectively (the difference in magnitude is within the
range of the standard deviation in h [0.391] for the β-sheet). Similarly, the α-sheet proposed
by Pauling & Corey (1951a) is constructed by alternating between α(D) and αL backbone
states, yet this motif is linear because each state describes equal but opposite handedness
h=±0.41. These points raise the possibility that, even in the absence of perfect backbone
regularity, the values d , θ , and h may be considered to be residue-specific properties that
may be combined to readily provide insights about higher order structures.

CONCLUSIONS
This report introduces a metric for backbone handedness (h) that is based on modeling the
backbone as a helix (Fig. 2; Miyazawa (1961)). In particular, h, which is a combination of
the helical parameters θ (angular displacement) and d (axial displacement), ranges from
−1 to 1, and is negative (or positive) when the backbone twist is left(or right)-handed
(with larger |h| indicating greater extent of twistedness). This metric (h) was used to
characterize every regular backbone’s twist within the Ramachandran plot, for both cis
and trans peptides. In doing so, this report dispels a naïve view of handedness (Fig.
1D), which states that backbone handedness in the Ramachandran plot is separated by
the negative-sloped (−ve) diagonal. Interestingly, the reason for the naïve view makes
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senses when considering only trans peptides: the −ve diagonal (‘– –’ in Fig. 5A) separates
right-handed and left-handed twists if one considers only the regions dominantly occupied
by structured proteins (‘dotted line’ in Fig. 5A). Plotting the backbone handedness (h)
in the two common frames of reference— φ,ψ ∈ [−π,π) and [0,2π)—indicates that the
less commonly used frame [0,2π) may be more appropriate for interpreting cis backbones
(Fig. 8).

The behavior of a backbone in cis and trans Ramachandran plots look dramatically
different (Fig. 6), and so scientists dealing with new structures that have a combination of
cis and trans backbones can not use one Ramachandran plot to faithfully describe these
structures. Interestingly, the parameters θ and d combine all features (internal coordinates)
of a contorting backbone, including the amide dihedral angle ω, which means that (θ,d)
can describe any peptide backbone, irrespective of ω. Therefore, the Cartesian plot with θ
and d as the x- and y-axis, respectively, serves as a unique plot for any peptide backbone
(Fig. 9), with specific values and boundaries containing deep structural meaning (Fig.
4). These discussions, the author hopes, clarify a number of concepts associated with the
Ramachandran plot, while providing new insights into how to interrogate the features of
new protein and protein-like structures.
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