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Neuroinflammation is considered to be an important and inevitable pathological
process associated with all types of damages to, and disorders of, the central
nervous system. The hallmark of neuroinflammation is the microglia activation. In
response to different micro-environmental disturbances, microglia could polarize into
either an M1 pro-inflammatory phenotype, exacerbating neurotoxicity, or an M2 anti-
inflammatory phenotype, exerting neuroprotection. Therefore, shifting the polarization
of microglia toward the M2 phenotype could possess a more viable strategy for
the neuroinflammatory disorders treatment. Naringenin (NAR) is naturally a grapefruit
flavonoid and possesses various kinds of pharmacological activities, such as anti-
inflammatory and neuroprotective activities. In the present study, we aimed to investigate
the potential effects of NAR on microglial M1/M2 polarization and further reveal
the underlying mechanisms of actions. First, NAR inhibited lipopolysaccharide (LPS)-
induced microglial activation. Then, NAR shifted the M1 pro-inflammatory microglia
phenotype to the M2 anti-inflammatory M2 microglia state as demonstrated by the
decreased expression of M1 markers (i.e., inducible TNF-α and IL-1β) and the elevated
expression of M2 markers (i.e., arginase 1, IL-4, and IL-10). In addition, the effects of
NAR on microglial polarization were dependent on MAPK signaling, particularly JNK
inactivation, as evidenced by the fact that the selective activator of JNK abolished NAR-
promoted M2 polarization and further NAR-inhibited microglial activation. Together, this
study demonstrated that NAR promoted microglia M1/M2 polarization, thus conferring
anti-neuroinflammatory effects via the inhibition of MAPK signaling activation. These
findings might provide new alternative avenues for neuroinflammation-related disorders
treatment.
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INTRODUCTION

Accumulating evidence has confirmed that central nervous system (CNS) is an immunologically
privileged site due to the limited inflammatory capacity with the presence of blood-brain
barrier and the lack of lymphatic infiltration (Hanisch and Kettenmann, 2007). Recently,
neuroinflammation is considered to be an important and inevitable pathological process associated
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with all types of damages to, and disorders of, the CNS (Gemma,
2010). As the major cellular elements of neuroinflammation,
microglia execute specific immune functions to maintain
physiological homoeostasis (Dhama et al., 2015). In response to
the pathogenic insult to the CNS, microglia become activated
and undergo morphological changes with hypertrophy as well
as functional transformations (Ji et al., 2013; Huo et al.,
2018). Several lines of studies have indicated that microglia
activation plays a pivotal role in the pathogenesis of neurological
disorders, including trauma, brain infections coma stroke,
ischemia, and neurodegenerative diseases (Nimmo and Vink,
2009). Furthermore, the activated microglia consist of two cell
populations which have distinct and even opposing functions.
These two microglial polarization extremes are termed as the
classically activated M1 (pro-inflammatory) and alternatively
activated M2 (anti-inflammatory) phenotypes (Hu et al., 2015).
In addition, the two microglial distinct functional polarization
states were discerned in the neurodegenerative diseases, such
as Parkinson’s disease (Bok et al., 2018). Generally, the
activated M1 phenotype microglia are characterized by the
increased production of pro-inflammatory factors, including
tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and
the upregulation of inducible nitric oxide synthase (iNOS),
CD16, and CD68 (David and Kroner, 2011). Conversely, the
activated M2 state microglia are demonstrated to upregulate
anti-inflammatory mediators, such as arginase-1 (Arg-1), CD206,
and transforming growth factor-β (TGF-β) (Saijo and Glass,
2011). Functionally, the microglia M1 phenotype exacerbates
neuronal damage and impedes cellular repair during CNS
trauma and disorders. On the contrary, the M2 microglia exert
neuroprotection and promote neuronal recovery and remodeling
(Mantovani et al., 2013). Therefore, shifting the polarization of
microglia toward the M2 phenotype could possess a more viable
strategy for the neuroinflammatory disorders treatment.

Naringenin (NAR) is naturally a grapefruit flavonoid and
possesses various kinds of pharmacological activities, such as
anti-oxidant, anti-inflammatory, cardioprotective and anti-
tumor activities (Al-Dosari et al., 2017). The anti-inflammatory
effects of NAR are well verified in several different models.
NAR protected against airway remodeling after mycoplasma
pneumoniae infection via the inhibition of autophagy-mediated
lung inflammation and fibrosis (Lin et al., 2018). Also, NAR
suppressed the development of precancerous lesions through
controlling hyperproliferation and inflammation in the colon
of rats (Rehman et al., 2018). Recently, in addition to these
beneficial actions, growing interests have been focused on
its neuroprotective actions (Kara et al., 2014). First, NAR
conferred neuroprotection in Parkinson’s disease animal models
and attenuated neuroinflammatory reactions (Magalingam
et al., 2015). Moreover, NAR produced analgesic effects via
inhibiting oxidative stress and oxidation cytokine production
(Manchope et al., 2016). However, whether NAR could promote
microglial polarization to M2 phenotype and the mechanisms
underlying NAR-mediated anti-neuroinflammatory effects
remain unilluminated.

In the present study, we aimed to investigate the potential
effects of NAR on microglial M1/M2 polarization and further

reveal the underlying mechanisms of actions. Specifically,
these findings might provide new alternative avenues for
neuroinflammation-related disorders treatment.

MATERIALS AND METHODS

Reagents
Naringenin, lipopolysaccharide (LPS) and Anisomycin
(ANI) were purchased from Sigma-Aldrich (St. Louis,
MO, United States). Enzyme-linked Immunosorbent
Assay (ELISA) kits were obtained from R&D Systems
(Minneapolis, MN, United States). The fluorescence probe
dichlorodihydrofluorescein diacetate (DCFH-DA) were bought
from Sangon Biotech (San Diego, CA, United States). SYBR green
polymerase chain reaction (PCR) master mix was purchased
from Bio-Rad (CA, United States). Anti-mitogen-activated
protein kinase (MAPK) signaling pathway antibodies were
purchased from Cell signaling Technology (Beverly, MA,
United States). Anti-ionize calcium binding adapter molecule 1
(Iba-1), anti-TNF-α, anti-Arg-1, and anti-β-actin antibodies were
obtained from Proteintech Group (Chicago, IL, United States).

Cell Culture and Treatment
BV-2 cells, an immortalized murine microglial cell line, were
obtained from Wuhan University Cell Library (Wuhan, China).
Cells were cultured in DMEM/F12 medium with 10% FBS and
1% penicillin/streptomycin at 37◦C in a humidified atmosphere
containing 95% air and 5% CO2. Cells were seeded into 24-well
plates at 5 × 105/well or 96-well plates at 1 × 105/well. Cultures
were pretreated with NAR (50 µM) for 1 h, and then incubated
with or without ANI (5 nM) for another 1 h. Finally, LPS
(100 ng/ml) were added to cultures for 24 h. The corresponding
indexes were tested.

MTT Assay
Cells were seeded into 96-well plates at 1 × 105/well. MTT
(5 mg/ml) solution was added to each well and continued
incubation for 4 h at 37◦C. After removing the upper medium,
dimethyl sulfoxide (DMSO) was added to each well at 37◦C
to solubilize formazon. Absorbance values were measured at
490 nm.

ELISA
Cells were seeded into 24-well plates at 5 × 105/well. The TNF-α
and IL-10 levels in the supernatant were detected using ELISA kit
according to the manufacturer’s instructions.

Real-Time RT-PCR Assay
Total RNA was extracted with Trizol agent and purified with
RNeasy kit. Iba-1, TNF-α, IL-1β, Arg-1, IL-10, and β-actin genes
were amplified using the forward and reverse primers. Real-time
PCR was performed using a SYBR Green Supermix according to
the instruction and then determined on a CFX96 real-time PCR
detection system (Bio-Rad, CA, United States). The target gene
expression levels were normalized with that of β-actin using the
data analysis software provided with the system.
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Western Blotting
Cells were lysed in RIPA buffer and the lysates were incubated
on ice for 15 min and then centrifuged at 12,000 × g for
15 min at 4◦C. The protein concentrations were quantified by
BCA assay. A total of 10 µg protein were resolved on 10%
Bis-Tris Nu-PAGE gels and transferred to the polyvinylidene
difluoride (PVDF) membranes and blocked in 5% fat-free milk
at room temperature for 2 h. Membranes were incubated
with following primary antibodies: anti-phosphorylated c-Jun
Nterminal kinase (p-JNK,1:1000), anti-JNK (1:1000), anti-
phosphorylated extracellular signal-regulated kinase1/2 (p-
ERK1/2,1:2000), anti-ERK1/2 (1:1000), anti-phosphorylated p38
(p-p38,1:1000), anti-p38 (1:1000), anti-Iba-1 (1:1000), and anti-
β-actin (1:2000). The membranes were then incubated with
horseradish peroxidase (HRP)-conjugated secondary antibodies
at 1:2000 for 1 h. The proteins were detected with ECL substrate.

Immunocytochemical Staining
BV-2 cells were fixed with 4% paraformaldehyde for 30 min
at room temperature followed by permeabilization using 0.3%
Triton X-100 for 15 min. Cells were then blocked with goat
serum at 37◦C for 40 min. Cells were concentrated with anti-
Iba-1 (1:300), anti-TNF-α (1:300) and anti-Arg-1 (1:300) at 4◦C
overnight, respectively. The next day, cells were incubated with
anti-rabbit-IgG (1: 1500) or anti-mouse-IgG (1: 1500) at 37◦C for
1 h. Subsequently, cells were incubated with DAPI for 2 min at
room temperature.

Statistical Analysis
Data were presented as mean ± standard error of the mean
(SEM). Statistical significance was analyzed by one-way ANOVA
through the GraphPad Prism software (GraphPad Software Inc.,
San Diego, CA, United States). After ANOVA demonstrated
the significant differences, pairwise comparisons between means
were accessed by Bonferroni’s post hoc tests with correction.
p < 0.05 was considered as statistically significant.

RESULTS

NAR Attenuated LPS-Induced Microglial
Activation
As shown in Figures 1A,B, MTT assay indicated that NAR
(100 µM) decreased BV2 cell viability and had cytotoxicity up
to the concentration of 200 µM.BV-2 cells were exposed to NAR
(50 µM) and LPS (100 ng/ml) for 24 h, cell morphology and cell
viability were first determined. In addition, both NAR (50 µM)
and LPS (100 ng/ml) had no significant toxic effects on the cell
viability. Meanwhile, LPS and NAR had no effect on BV2 cells
proliferation (Supplementary Figure S1). To discern the effects
of NAR on LPS-induced microglial activation, the morphological
changes were evaluated via immunostaining using an anti-
Iba-1 (a specific microglial marker) antibody. As indicated in
Figure 1C, in LPS-treated cultures, activated microglia illustrated
irregular shapes and amoeboid status. However, NAR attenuated
LPS-induced morphological changes of microglia with exhibiting

resting round and small cells. In addition, western blot analysis
provided quantitative estimation of microglial activation. As
shown in Figures 1D,E, NAR inhibited LPS-induced increase of
Iba-1 mRNA level and protein expression.

NAR Switched Microglial M1 to M2
Polarization
It is well known that TNF-α and IL-1β were used as
the marker of M1 polarization, whereas Arg-1 and IL-10
was applied as the marker of M2 polarization. The above
observations prompted us to explore whether NAR directly
switches microglial M1 to M2 phenotype. As shown in Figure 2A,
less TNF-α and Arg-1 immunoreactivity was detected in control
cultures. Notably, strong TNF-α immunoreactivity and less
Arg-1 immunoreactivity were indicated in LPS-treated cultures.
After NAR treatment, TNF-α immunoreactivity was decreased,
and Arg-1 immunoreactivity was increased. As expected, the
increased mRNA and extracellular protein expressions of TNF-
α and IL-1β were observed in LPS-treated cultures. NAR-treated
microglia expressed higher levels of mRNA and extracellular
protein of anti-inflammatory cytokine Arg-1 and IL-10 than
those exposed to LPS shown in Figures 2B,C. In addition,
NAR alone had no significant effect on M1/M2 polarization
(Supplementary Figure S2).

NAR Inhibited MAPK Signaling Pathway
Activation
To determine whether NAR could modulate the MAPK signaling
pathway activation, the protein expressions of JNK, p-JNK,
ERK1/2, p-ERK1/2, p38 and p-p38 were measured. As shown in
Figure 3, NAR counteracted the LPS-induced phosphorylation
of JNK and ERK1/2. Interestingly, NAR had the most obvious
inhibitory effects on JNK activation. However, NAR didn’t show
the recovery effects on LPS-induced activation of p38. Besides,
NAR alone had no significant effect on MAPK signaling pathway
(Supplementary Figure S2).

NAR Promoted Microglial M1/M2
Polarization Through JNK Inactivation
Naringenin promoted microglia from M1 to M2 polarization
and inhibited JNK and ERK1/2 phosphorylation, especially JNK
phosphorylation. However, the specific target mediating this
action was still unclear. Anisomycin (ANI), a selective agonist
of JNK, was thus used to verify the role of JNK activation in
NAR-mediated microglial M1/M2 polarization. First, as shown in
Figure 4A, MTT assay indicated that ANI (5 nM) didn’t affect cell
viability. In addition, ANI specifically counteracted NAR-elicited
downregulation of phosphorylated-JNK but not phosphorylated-
ERK1/2 and phosphorylated-p38 as shown in Figure 4B.

Next, we assessed and compared the functional recovery
between NAR-treated cultures and NAR-ANI co-treated cultures
to further determine the role of JNK on NAR-suppressed
microglial activation. As shown in Figure 5A, NAR and ANI
co-treated cultures exhibited irregular shapes and amoeboid
status, parallel to the morphological changes in LPS-treated
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FIGURE 1 | NAR attenuated LPS-induced microglial activation. BV-2 cells were treated with different concentrations of NAR for 24 h, cell viability was measured by
MTT assay (A). In addition, BV-2 cells were pretreated with NAR (50 µM) for 1 h and then incubated with LPS (100 ng/ml) for 24 h, cell viability were determined by
MTT assay (A) and cell morphology was observed via an optical microscopeand (B). Microglial activation was visualized by immunostaining with an anti-Iba-1
antibody (C). Activation of microglia was quantitated by RT-PCR (D) and western blot analysis (E). The ratio of densitometry values of Iba1 with β-actin was analyzed
and normalized to each respective control cultures. Results were the mean ± SEM from three independent experiments performed in triplicate. ∗p < 0.05 compared
to the control cultures. #p < 0.05 compared to LPS-treated cultures. Scale bar = 50 µm.
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FIGURE 2 | NAR switched microglial M1 to M2 polarization. BV-2 cells were pretreated with NAR (50 µM) for 1 h followed by LPS (100 ng/ml) adminstration for 24 h.
Cultures were visualized by immunostaining with anti-TNF-α and Arg-1 antibodies (A). The levels of TNF-α and IL-10 in supernatant were detected by ELISA and the
whole cells were collected to detect the gene expressions of TNF-α, IL-1β, Arg-1, and IL-10 by real time RT-PCR (B,C). Results were the mean ± SEM from three
independent experiments performed in triplicate. ∗p < 0.05 compared to the control cultures. #p < 0.05 compared to LPS-treated cultures. Scale bar = 50 µm.
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FIGURE 3 | NAR inhibited MAPK signaling pathway activation. BV-2 cells
were treated with NAR (50 µM) for 1 h prior to LPS (100 ng/ml) treatment.
After LPS (100 ng/ml) stimulation for 24 h, cultures were harvested to detect
the protein expressions of JNK, p-JNK, ERK1/2, p-ERK1/2, p38, p-p38 by
western blot assay. The ratio of densitometry values of p-ERK1/2, p-JNK and
p-p38 with total ERK1/2, JNK and p38 was assessed and normalized to each
respective control group. Results were the mean ± SEM from three
independent experiments performed in triplicate. ∗p < 0.05 compared to the
control cultures. #p < 0.05 compared to LPS-treated cultures.

cultures. Western blot analysis further indicated that NAR-
inhibited microglia activation was abrogated by ANI treatment
shown in Figure 5B. These results pointed out a critical role of
the activation of JNK in NAR-inhibited microglial activation.

Further studies were then conducted to evaluate the role of
JNK on microglia M1/M2 polarization. As shown in Figure 6A,
NAR and ANI co-treated cultures exhibited strong TNF-α
(M1) immunoreactivity and less Arg-1(M2) immunoreactivity
compared with NAR-treated culture. Furtherly, NAR-mediated
reversal of LPS-induced downregulation of the M2 marker
(Arg-1 and IL-10) and upregulation of the M1 marker (TNF-
α and IL-1β) was abrogated by ANI administration as shown
in Figures 6B,C. Thus, NAR switched microglial M1 to M2
polarization via a JNK-dependent pathway.

DISCUSSION

The current study indicated that NAR shifted the M1 pro-
inflammatory microglia phenotype to the M2 anti-inflammatory
M2 microglia state, thus inhibiting microglia-mediated
neuroinflammation. In addition, the effects of NAR on microglial
polarization was dependent on MAPK signaling, particularly
JNK inactivation, as evidenced by the fact that the selective

activator of JNK abolished NAR-promoted M2 polarization
and further NAR-inhibited microglial activation. Together, this
study demonstrated that NAR promoted microglia M1/M2
polarization, thus conferring anti-neuroinflammatory effects via
MAPK-dependent inactivation.

To date, oxidative stress, mitochondrial dysfunction and
environmental exposure have been characterized to be closely
associated with the pathogenesis of neurological disorders.
However, the underlying mechanisms remain unelucidated.
Growing evidence has confirmed that neuroinflammation is
involved in the pathogenesis of neurological disorders. The
hallmark of neuroinflammation is the glial activation, especially
microglial activation (Tentillier et al., 2016). Once activated
by brain injury or inflammogen, microglia could release
various types of pro-inflammatory and cytotoxic factors. The
accumulation of these neurotoxic factors contributed to the
surrounding neuronal damage. However, the continuous dying
of neurons, in turn induced the secondary activation of microglia
and the activated microglia further elicited neuronal damage
(Block et al., 2007). Taken together, a vicious cycle leading to the
prolonged neuroinflammation and the progressive neuronal loss
was created (Gao and Hong, 2008). Thus, inhibition of microglial
activation-mediated neuroinflammation might be promising
therapeutic strategy for neuroprotection. The present study
indicated that NAR inhibited microglia activation-mediated
neuroinflammation. These results were consistent with the
previous studies that NAR alleviated neuropathic pain through
inhibiting microglia-induced neuroinflammation (Hu and Zhao,
2014).

In addition, a great number of studies set out to consider
that microglia were highly plastic cells that could assume
two diverse phenotypes and participate in different functional
programs in response to the pathology of CNS. Recently,
similar to the classical M1 phenotype versus the alternative M2
phenotype paradigm defined for macrophages, microglial M1/
M2 polarization has been coined and recognized in various
neurological disorders, such as traumatic brain injury, stroke,
and neurodegenerative diseases (Wang et al., 2013; Wu et al.,
2016; Cheon et al., 2017). Typically, the activated M1 phenotype
microglia produce various destructive pro- inflammatory factors
that result in neuronal damage. As one of the most interesting
M1 microglial polarization markers, TNF-α has been confirmed
to be implicated in the pathology of neurological disorders
(Makuch et al., 2013). IL-1β could be released by activated
M1 microglia and the intrathecal administration of IL-1β was
discerned to exert algesic actions (Kawasaki et al., 2008). In
contrast, the alternatively activated M2 phenotype microglia
generate numerous protective and neurotrophic factors and
then underly the neuroprotective properties (Prinz and Priller,
2014). Therefore, the pro- and anti-inflammatory responses
of microglia phenotype need to be balanced to prevent the
potential detrimental activities of an uncontrolled and prolonged
inflammation. So far, several lines of evidence presented for
the role of neuroinflammation on neurodegenerative diseases
pointed to a prolonged and uncontrolled activated microglia
M1 state which led to additional continuous neuronal damage
(Mantovani et al., 2013). Nevertheless, based on previous
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FIGURE 4 | JNK activator attenuated NAR-suppressed JNK activation. BV-2 cells were treated with NAR (50 µM) for 1 h and then ANI (5 nM) for 1 h followed by
LPS (100 ng/ml) application for 24 h. Cell viability was determined by MTT assay (A). The protein expressions of JNK, p-JNK, ERK1/2, p-ERK1/2, p38 and p-p38
were detected by western blot assay (B). The ratio of densitometry values of p-ERK1/2, p-JNK and p-p38 with total ERK1/2, JNK and p38 was normalized to each
respective control group. Results were the mean ± SEM from three independent experiments performed in triplicate. ∗p < 0.05 compared to the control cultures.
#p < 0.05 compared to LPS-treated cultures. Mp < 0.05 compared to LPS and NAR co-treated cultures.
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FIGURE 5 | NAR inhibited microglia activation through JNK inactivation. BV-2 cells were treated with ANI (5 nM) for 1h after NAR pretreatment for 1 h. Then, LPS
(100 ng/ml) were added into cultures. After LPS stimulation for 24 h, microglial activation was visualized by immunostaining (A) and quantitated by western blot
analysis (B) using an anti-Iba-1 antibody. The ratio of densitometry values of Iba1 with β-actin was analyzed and normalized to each respective control cultures.
∗p < 0.05 compared to the control cultures. #p < 0.05 compared to LPS-treated cultures. M p < 0.05 compared to LPS and NAR co-treated cultures. Scale
bar = 50 µm.

non-steroidal anti-inflammatory drug and Alzheimer’s disease
anti-inflammatory prevention trial studies, simply suppressing
inflammation via inhibiting M1 activation would likely not
exert overall benefits (Becker et al., 2011). On the contrary,

promoting the shift of microglial M1 to M2 phenotype while
inhibiting microglia M1 state has been emerged as a more
promising strategy for neuroinflammation-related disorders
treatment (Li et al., 2018). Currently, most of the compounds
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FIGURE 6 | NAR promoted microglial M1/M2 polarization via the inhibition of JNK activation. BV-2 cells were treated with NAR (50 µM) for 1 h and ANI (5 nM) for
another 1 h and then stimulated by LPS (100 ng/ml) for 24 h. Cultures were immunostained with anti-TNF-α and anti-Arg-1 antibodies (A). Culture medium was
collected to detect the contents of TNF-α and IL-10 by ELISA and the whole cells were collected to measure the gene expressions of TNF-α, IL-1β, Arg-1, and IL-10
by real time RT-PCR (B,C). Results were the mean ± SEM from three independent experiments performed in triplicate. ∗p < 0.05 compared to the control cultures.
#p < 0.05 compared to LPS-treated cultures. M p < 0.05 compared to LPS and NAR co-treated cultures. Scale bar = 50 µm.
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suppressed neuroinflammation via simply inhibiting microglial
M1 phenotype. However, few compounds were verified to
promote microglial polarization to the M2 phenotype (Huang
et al., 2017). Since NAR attenuated neuroinflammatory response,
it is of significance to investigate the role of NAR on the
modulation of microglial polarization. This study indicated
that NAR robustly inhibited microglial M1 phenotype markers
expressions and promoted microglia polarization toward the M2
anti-inflammatory phenotype, which might contribute to NAR-
mediated neuroprotective actions against neuroinflammation.

Further analysis of cascade signaling events underlying NAR-
mediated microglial polarization demonstrates the involvement
of mitogen-activated protein kinases (MAPK) signaling pathway.
MAPK pathway is a highly conserved family of serine/threonine
kinases, including ERK1/2, p38 and JNK isoforms. MAPK
signaling not only participates in the regulation of inflammatory
responses, but also promotes macrophage/microglia polarization
into the M2 stage (Quero et al., 2017). For instance, activation
of ERK1/2 and p38 was implicated in the regulation of pro-
inflammatory factors production in activated microglia (Zhang
et al., 2010a). Moreover, p38 played a crucial role in allowing
Ecto-5′-nucleotidase to modulate microglial M1/M2 polarization
(Xu et al., 2018). In addition, a common involvement of JNK
has also been studied in the regulation of both microglial
iNOS and IL-1β expressions (Zhang et al., 2010b). Also, JNK
was involved in exosomes-triggered macrophage polarization
(Xiao et al., 2018). Thus, MAPK signaling is considered as an
attractive target for inflammatory diseases treatment. Recently,
some synthetic and natural compounds that could activate
MAPK to exert anti-inflammatory effects and promote microglial
M2 polarization (Bhatia et al., 2016; Xiang et al., 2018).
Therefore, it was of interest to investigate the relationship
between NAR-mediated anti-neuroinflammatory actions and
MAPK activation. In the present study, we first found that
NAR suppressed the phosphorylation of JNK and ERK1/2
in BV-2 cells, while p38 was not altered by NAR after LPS
stimulation. Next, we tested whether NAR-mediated microglia
polarization toward M2 state was dependent on JNK inactivation.
Of note, the specific JNK activator abolished NAR-promoted
microglia polarization further inhibiting microglial activation.
The current data suggested that NAR-mediated microglial
M1/M2 polarization was dependent on the inactivation of MAPK
signaling.

In summary, this study demonstrated that NAR
administration inhibited the microglial M1 phenotype and
shifted the microglial polarization toward M2 state via the
inhibition of MAPK signaling activation, which was accompanied
by the reduced neuroinflammatory response. The current results

supported the potential pharmaceutical application of NAR in
neuroinflammation-related neurological disorders therapies.

CONCLUSION

This study illustrates that NAR promoted microglial polarization
toward the M2 phenotype through MAPK-dependent
inactivation. These findings provide a new evidence that
NAR might have considerable value as a potent agent for
neuroinflammatory diseases treatment.
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FIGURE S1 | The effects of NAR on cell proliferation. BV-2 cells were treated with
NAR (50 µM) for 1 h prior to LPS (100 ng/ml) treatment. After LPS (100 ng/ml)
stimulation for 24 h, cultures were harvested to detect the protein expressions of
PCNA by western blot assay.

FIGURE S2 | The effects of NAR alone on M1/M2 polarization and MAPK
signaling pathway. BV-2 cells were treated with NAR (50 µM) for 24 h. The gene
expressions of TNF-α, IL-1β, Arg-1, and IL-10 were detected by real time RT-PCR.
The protein expressions of JNK, p-JNK, ERK1/2, p-ERK1/2, p38, p-p38 were
measured by western blot assay.
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