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Prior to delivery of data, eye tracker software may apply filtering to correct for noise. 
Although filtering produces much better precision of data, it may add to the time it takes for 
the reporting of gaze data to stabilise after a saccade due to the usage of a sliding window. 
The effect of various filters and parameter settings on accuracy, precision and filter related 
latency is examined. A cost function can be used to obtain the optimal parameters (filter, 
length of window, metric and threshold for removal of samples and removal percentage). It 
was found that for any of the FIR filters, the standard deviation of samples can be used to 
remove 95% of samples in the window so than an optimum combination of filter related 
latency and precision can be obtained. It was also confirmed that for unfiltered data, the shape 
of noise, signified by RMS/STD, is around √2 as expected for white noise, whereas lower 
RMS/STD values were observed for all filters.  
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Introduction 
For many, programmers and end users alike, an eye 

tracker is a black box with its inner workings hidden from its 
users. The black box consists of both hardware and software. 
For video-based eye trackers, the hardware may consist of 
one or more cameras and one or more infrared illuminators. 
Eye tracker software analyses the video frames and uses 
features such as images of the pupils and corneal reflections 
to map to gaze coordinates on a two-dimensional stimulus 
plane. Programmers connect to an eye tracker through an 
SDK (Software Development Kit) or API (Application 
Programming Interface) and utilise the delivered gaze 
coordinates on specific timestamps. Users have faith that the 
black box, through its software, delivers high quality data in 
terms of robustness, accuracy, precision and latency, and 
they do experiments and reach conclusions that depend on 
the delivered samples from the black box. 

Prior to delivery, the software may apply filtering to 
correct for noise (unwanted or unknown modifications to the 
signal) that may originate from either the hardware or the 
participant. Noise can be attenuated by inspecting 
neighbouring samples, for example, through the Kalman 
(Komogortsev & Khan, 2007) or weighted triangular 
(Kumar, Klingner, Puranik, Winograd, Paepcke, 2008)  
filters. A good overview of filters can be found in Špakov 
(2012). 

While filters can be applied to improve precision, there 
are two major drawbacks. Firstly, it takes control out of 
programmers' hands, as they might have wanted to 
implement another filter. The filters mostly depend on 
parameters such as the window length and/or cut-off 
thresholds. Manufacturers cannot be sure that a specific filter 
and/or parameter settings are the best for all scenarios or 
experimental conditions. Secondly, the filters may induce a 
latency in the delivery of data, with the effect that data is 
reported up to 158 ms after an event (e.g. saccade or fixation) 
occurred (Špakov, 2012). Studies where the data is analysed 
post-hoc, for example usability or market research studies, 
might not be affected by latency as long as it is consistent. 
For interactive systems, on the other hand, as in gaming or 
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gaze contingent systems, latencies as small as 50 ms may be 
crucial. 

In this paper, the effect of various filters and parameter 
settings on accuracy, precision and response time is 
examined while using a self-built eye tracker that gives the 
researcher control over the filters and settings. Besides the 
filtering algorithm, the effect of a dynamic sliding window 
that changes size based on a dispersion metric and threshold, 
is also examined. 

Accuracy and Precision 
The spatial accuracy (measured in terms of the absence of  

systematic error) of an eye tracker is an indication of the 
extent to which the eye tracker reports the true gaze position 
accurately. In this paper, when the term "error" is used 
without other context, it refers to the spatial offset between 
the actual (true) and reported gaze positions. The Euclidean 
distance between these two points can be measured in pixels 
and then converted to degrees of gaze angle that is subtended 
at the eyes in 3D space. Precision (a.k.a. variable error), on 
the other hand is defined as the “closeness of agreement 
between independent test results obtained under stipulated 
conditions” (ISO, 1994). The precision of an eye tracker 
refers specifically to the machine's ability to reliably 
reproduce a measurement (Holmqvist & Andersson, 2017, p 
163). In ideal circumstances, if a participant focuses on a 
specific point on a stimulus plane, successive samples from 
the eye tracker should report the exact same location. 
Unfortunately, this is not the case in real life as noise 
originating from the human participant, the eye tracker 
hardware and experimental conditions can influence the 
reporting of gaze data. This has the effect that the reported 
point of regard (POR) is jittery around the actual POR. With 
filtering, the POR can be stabilised (cf Figure 1). 

High precision is needed when measuring small fixational 
eye movements such as tremor, drift and micro-saccades. 
Poor precision can be caused by a multitude of technical and 
participant-specific factors, such as hardware limitations and 
eye colour (Holmqvist & Andersson, 2017, p 182), and can 
be detrimental to fixation and saccade detection algorithms. 

Several measures of precision can be used (Blignaut & 
Beelders, 2012), but the two most commonly used measures 
are the root-mean-square (RMS) measure of successive 
sample-to-sample distances (d in Equation 1) and the 

standard deviation (STD) obtained from the trace of the 
covariance matrix of the two dimensions: 

 𝑅𝑀𝑆 = '(
)
∑ 𝑑,-)
,.(  (1) 

 𝑆𝑇𝐷 = 1s2- + s4-  (2) 

Blignaut and Beelders (2012) further showed that RMS 
may be dependent on framerate. Holmqvist and Andersson 
(2017, p 181) indicated also that these two metrics measure 
two different characteristics of an eye tracker, namely the 
noise with respect to the sample-to-sample velocity of the 
signal and the extent of noise respectively. Refer also to 
(Holmqvist, Zemblys & Beelders, 2017) in this regard. 
These studies proposed the use of a combination of the two 
metrics to indicate some aspects of the shape of the noise. 

 𝑆ℎ𝑎𝑝𝑒 = 9:;
;<=

 (3) 

For white noise (truly random noise), the theoretical value 
of RMS/STD should be √2  (Coey, Wallot, Richardson & 
Van Orden, 2012) while filtered data should have a shape 
value that is less than √2 . According to Holmqvist and 
Andersson (2017, p 182), the ratio of RMS/STD depends 
largely on the filters that are used. It follows that if 
manufacturers decide on the filter and parameters, RMS/STD 
is eye tracker dependent and therefore it can serve as a 
“signature” of the eye tracker. 

Holmqvist and Andersson (2017, p 183) further defined 
an extent measure based on RMS and STD that quantifies the 
magnitude of noise as 

 𝐸𝑥𝑡𝑒𝑛𝑡 = √𝑅𝑀𝑆- + 𝑆𝑇𝐷-. (4) 

Filtering and the effect thereof 
Stabilisation of noisy data can be done by applying a 

finite-impulse response filter on the raw samples in a sliding 
window that includes historical data up to the latest recorded 
sample (Špakov, 2012). Although filtering produces much 
better precision of data, especially in terms of RMS, it may 
introduce latencies in the response time due to the usage of 
a sliding window (Špakov, 2012). In other words, better 
precision can be obtained at the cost of latency. 

Linear time-invariant (LTI) filters, such as the Stampe 
filters (Stampe, 1993) and the Savitzky-Golay filters 
(Savitzky & Golay, 1964) have a constant (linear) delay in 
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the output that depends on the number of previous samples 
that are included (3 and 5 respectively depending on the 
implementation). For the non-linear time-invariant (NLTI) 
filters, the sliding window may contain more samples as 
determined by a parameter. 

In this paper, a method is described to remove a certain 
percentage of samples from the beginning of the sliding 
window based on a dispersion cut-off threshold. This is 
similar to the approach of Kumar et al. (2008) who used 
outlier and saccade detectors to manage the number of gaze 
points in the window, but follows a different procedure. 

Filters are characterised by (i) the specific algorithm, (ii) 
the maximum permissible length of the stabilisation 
window, (iii) the metric used for dispersion of samples in the 
window, (iv) the threshold to remove samples and (v) the 
number of samples to remove. 

Figure 1 (top) shows the raw gaze data of a participant 
following a target as it appears suddenly and in random 
position on the display area. The sample data appears to be 
noisy around the target positions. An undershoot with 
subsequent correcting saccade is encircled. 

Figure 1 (bottom) shows the same gaze data after a 
Kalman filter was applied. The sample points during 
fixations are now aligned linearly in what Blignaut and 
Beelders (2012) termed "ant trails" due to the resemblance 
of the trails that ants leave in soft sand. Although this filter 
provides much better precision of data, especially when RMS 
is used, it introduces latencies in the response time (cf Figure 
6). Unfortunately, it also hides the occurrence of over- and 
undershoots to some extent.	

	

	
Figure 1: Gaze data of a participant following a target that appears 
suddenly at random positions. 
Top: Unfiltered; Bottom: Kalman filter applied over a sliding 
window of 500 ms. 

 

Methodology 
Recording of gaze data 

A self-built eye tracker with two clusters of 48 infrared 
LEDs (850 nm), 480 mm apart, and the UI-1550LE camera 
from IDS Imaging (https://en.ids-imaging.com) was used to 
capture gaze data at a framerate of 200 Hz. The illuminators 
(2 ´ 5 W) were certified by the South African Council for 
Scientific and Industrial Research as being within the limits 
set by the COGAIN community (Mulvey, 2008). 

Software was developed using C# with .Net 4.5 along 
with the camera manufacturer’s software development kit 
(SDK) to control the camera settings and process the eye 
video. Data was recorded with a desktop computer with an 
i7 processor and 16 GB of memory, running Windows 10. A 
full discussion of the mapping of eye features (pupil centre 
and corneal reflections) to gaze coordinates and of the 
calibration process is beyond the scope of this paper. The 
interested reader can refer to Blignaut (2016) in this respect. 

Six adult participants were recruited as part of another 
study that was approved by the ethics committee of the 
Medical Faculty of the University of the Free State. The 
participants were presented with a series of 14 targets that 
appeared at random positions on the display and stayed in 
position for 1.5s before the next target appeared. Participants 
were requested to move their gaze to a target immediately 
when it appears. Although it is possible for a participant to 
look elsewhere, it was assumed that the target position 
represents the actual gaze position. Since the aim was not to 
determine absolute values for the various components of 
data quality, but to examine the effect of filtering, it was not 
required to test a larger number of participants. 

The raw, unfiltered gaze data was captured and saved, 
where after several combinations of filters and parameters 
were applied to calculate the gaze coordinates before they 
would have been delivered to the user in case of pre-delivery 
processing. Data for the first and last target were excluded 
from the analysis due to possible end effects.  

Stabilisation of gaze data through filtering 
Processing of data 

Manufacturers may choose to set the filter and its 
parameters before a recording commences and the filter is 
applied prior to delivery of the gaze data to the client. In this 
experiment, however, every participant’s original unfiltered 
gaze data was saved. This allowed a post-hoc application and 
analysis of various combinations of filters and parameter 
settings. 
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The filter is applied on the x and y dimensions of the raw 
samples in a sliding window that includes historical data up 
to the latest recorded sample (cf. Algorithm 1). A queue 
structure is used as samples are added to the end and 
removed from the beginning of the queue. The sliding 
window is capped to a certain maximum number of samples 
as determined by a parameter. For this experiment, values of 
50 ms (10 samples), 100 ms (20 samples) and 500 ms (100 
samples) were tested. 

1. Add sample to window; 
2. if Filter != None then 
2.1 Apply filter; 
2.2 DeliverGazedata(timestamp, filtered samples); 
2.3 if dispersion > threshold then 
2.3.1 remove first p % of samples from the window 

 end 
 else 
2.4. DeliverGazedata(timestamp, raw samples) 
 end 
3. Cap sliding window to maximum length; 

Algorithm 1: Process of stabilisation 

Selected filters 

The filters and settings in this study were only used to 
illustrate that various filters and dispersion metrics have an 
effect on precision and stabilisation time, and that the 
manner in which precision is interpreted and measured is 
crucial towards an informed decision about the quality of 
data that is delivered. Examples of alternative filters include 
the skewness of sample data in the window, a Gaussian filter 
(Aurich & Weule, 1995; Špakov, 2012), or a bilateral filter 
(Paris, Kornprobst, Tumblin, Durand, 2009). The filters that 
were tested in this study are listed below.  
• The Average filter returns (average x, average y) of 

samples in the window. 
• The Triangular filter applies a larger weight to samples 

in the middle of the window. 
• The Kumar filter (Kumar et al., 2008) applies larger 

weights to the samples at the end of the window. 
• A simplified Kalman filter as presented in Esmé (2009), 

was applied separately on each dimension as indicated 
below. 

Sort	observations	in	the	current	dimension	
list	=	median	fifth	of	the	observations	(40th-60th	percentile)	
x	=	median	
R	=	std	dev	of	list				//Indication	of	measurement	noise	
P	=	10	*	R		
for	k	=	1	to	n-1	
	 K	=	P	/	(P+R)			//	i.e.	initially	10/11	
	 x	=	x	+	K(list[k]	–	x)	
	 P	=	(1-	K)	*	P	
return	x	

•	The Stampe filters (two filters in succession) were 
implemented according to Stampe (1993). Note that in 
the algorithm below, the estimated value is not returned, 
but the values of one or more of the previous elements in 
the list is updated. 

	 	 Stampe1(win)	
	 if	(n	<	3)	return;	
	 x	=	win[n-1];	x1	=	win[n-2];	x2	=	win[n-3];	
	 if	((x2	>	x1	&&	x1	<	x)	||	(x2	<	x1	&&	x1	>	x))	
	 win	[n-2]	=	Abs(x2-x1)	<	Abs(x1-x)	?	x2	:	x;	

	 	 Stampe2(win)	
	 if	(n	<	4)	return;	
												x=win[n-1];	x1=win[n-2];	x2=win[n-3];	x3=win[n-4];	
												if	(x	!=	x1	&&	x1	==	x2	&&	x2	!=	x3)	
	 win[n-3]	=	win[n-2]	=	Abs(x1-x)	<	Abs(x3-x2)	?	x	:	x3;	

• The Savitzky-Golay filter (Savitzky & Golay, 1964) was 
implemented with 5 points and corrected convolution 
coefficients by Steinier, Termonia and Deltour (1972): 

	 for	i	=	2	to	n	-	3	
	 	 		return	(-3	*	lst[i	-	2]	+	12	*	lst[i	-	1]	+	17	*	lst[i]		
	 			 	+	12	*	lst[i	+	1]	-	3	*	lst[i	+	2])	/	35	

The Average, Triangular, Kumar, and Savitzky-Golay 
filters can collectively be referred to as finite-impulse 
response (FIR) filters. For these filters, each point in the 
history has its own weight when calculating output as a 
weighted average (Špakov, 2012). The Average, Triangular, 
Kumar and Kalman filters are NLTI filters. 

Removal of samples 

Samples in the sliding window that belong to a previous 
fixation or are part of the incoming saccade will cause both 
instability and latency in the reported POR. Except for the 
Stampe and Savitzky-Golay filters, a certain percentage of 
samples are removed from the beginning of the sliding 
window if the samples do not conform to a certain threshold 
regarding their dispersion (Step 2.3 in Algorithm 1). 

Note that at 200 Hz, a 100 ms window contains 20 
samples and 95% removal means removing all but 1 sample. 
For a 500 ms window (100 samples), 95% removal means 
that only the last 5 samples are retained. Effectively, this 
means that when the threshold of dispersion is exceeded, the 
history buffer is largely wiped. 

The dispersion metric, threshold for dispersion and 
percentage of samples to remove, are specified as 
parameters. For this study, thresholds in (0.05°, 0.1°, 0.5°, 
1.0°, 2.0°) and percentages of 5, 50 and 95 were tested. 
These parameters were selected to be representative of the 
range of possibilities as identified by Blignaut (2009). 



Journal of Eye Movement Research 
12(2):3 

Blignaut, P.J. (2019) 
A cost function to determine the optimum filter and parameters 

	

 5 

Four different metrics were used in turn to measure 
dispersion. The interested reader can refer to Salvucci and 
Goldberg (2000) and Blignaut (2009) for a discussion of 
these metrics. 
•	 Sample-to-sample (S2S): The maximum distance 

between successive samples. Since the eye tracker 
samples points at a constant rate, this can also be 
interpreted as a velocity measure. 

• Radius: The largest distance from the centre to any 
sample in the window. 

• Max-Min: The maximum horizontal and vertical distance 
covered by the samples. For this study, it was defined as 
((Max X - Min X) + (Max Y - Min Y ))/2, which denotes 
the average of the horizontal and vertical dispersion. 

• STD: The precision of samples in the window according 
to Equation 2. 

Summary of the stabilisation process 

In summary, 735 combinations of filters and parameters 
were tested: 
    3 filters (No filter applied, Stampe, Savitzky-Golay) 
    (No stabilisation window) 
+ 4 filters (Kalman, Average, Triangular, Kumar) 
   ´ 3 stabilisation windows (50 ms, 100 ms, 500 ms) 
      (No removal of samples) 
+ 4 filters (Kalman, Average, Triangular, Kumar) 
   ´ 3 stabilisation windows (50 ms, 100 ms, 500 ms) 
   ´ 4 dispersion metrics (STD, S2S, Radius, Max-Min) 
   ´ 5 thresholds for removal (0.05°, 0.1°, 0.5°, 1°, 2°) 
   ´ 3 removal percentages (5%, 50%, 95%) 

Data analysis 
The period from onset of one target to the next can be 
divided in four phases (Table 1). Graphs of specific 
measures of data quality for a single recording are shown in 
Figure 2. The vertical purple lines indicate the start and the 
end of the respective phases. 

• Reaction time is the time from target onset to the start of 
a saccade.  The time taken by the participant to start a 
response is participant specific and is not considered in 
this paper.  

• Saccade: Participants make a quick saccade to position 
their gaze on the new target. The duration and speed of 
saccades depend on the distance from one target to the 
next, as well as on participant characteristics, and are not 
of interest for the current study. Saccades were identified 
by a threshold of 300 deg/s. Although this is higher than 
normal, the nature of the stimulus was such that 
participants had to make long fast saccades towards the 
next target. This high value ensured that a clear 
distinction could be made between saccades and noisy 
data. A second saccade is possible to correct for 
overshoots and undershoots. 

• Stabilisation time is expressed in terms of the time from 
the end of an initial saccade (when the actual gaze is on 
the target) until the distance between the target and the 
reported POR stabilises (cf Figure 2) (reported gaze is 
stable on the target). This is attributed to initial 
undershoots and overshoots after a saccade plus the 
latency induced by the specific filter (referred to as 
fLatency). The end of this period is marked when the 
absolute difference between the current offset (see 
below) and the offset five samples later is less than 0.2°. 

For example, the last saccade in Figure 2 starts at 
4659 ms and ends at 4727 ms. The gaze is stabilised at 
4886 ms. This gives a stabilisation time of 159 ms. 

• Fixation: The period during which the reported gaze is 
stable on a target. This period ends when the target 
moves to its next position. The accuracy and precision 
that can be achieved with a specific filter and parameter 
settings were calculated during this period. 

Three dependent variables were calculated for each 
filter/parameter combination and averaged over all 
participants and targets, namely filter related latency, 
average error and precision. These agree with the 

Table 1: Timeline showing phases of data processing during target presentation 

 
Target 
onset 

Saccade starts 
Precision increases 

Saccade ends but gaze 
not reported as stabilised 

Gaze 
stabilised 

Precision 
peak ends Next target 

       
 Reaction 

time 
Saccade 
duration 

Stabilisation Fixation 
duration … Correcting 

saccades 
Filter related 

latency 
Error Constantly large Gradually smaller Small but not stable Small and stable  
Precision Constantly small Peaks Small  
  Time ®   
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comparison criteria of Špakov (2012) of delay, closeness 
to the idealized signal and smoothness respectively, but are 
measured differently. 

• Filter related latency forms part of stabilisation time after 
a saccade.  

• The average error (spatial offset) with respect to the 
target during the fixation phase. It is important to note 
that this paper is not about the absolute accuracy that can 
be obtained with the eye tracker, but about the difference 
in error between the filtered and unfiltered cases. In other 
words, the question is asked whether filtering has an 
effect on the magnitude of the spatial offsets between 
actual and reported gaze positions. 

 The average error during the fixation phase was 
regarded to be representative of what can be achieved 
with the specific filter and parameter settings. 

• Precision of delivered gaze coordinates in terms of RMS 
(Eq 1), STD (Eq 2), Shape (Eq 3) and Extent (Eq 4). 
Precision cannot be calculated on individual samples. 
For this study, precision was calculated based on a 
sliding window of 100 ms. 

- At the onset of a saccade, precision increases and peaks 
when a saccade is at its fastest. The precision then 
decreases until the reported gaze is stable on the target 
(cf Figure 2). Because precision is calculated with a 
sliding window, the precision peak does not stabilise 
immediately when the gaze comes to rest after a 
saccade. 

- The average precision during the fixation phase was 
regarded to be representative of what can be achieved 
with the specific filter and parameter settings. 

The complete analysis procedure can be summarised as 
in Algorithm 2.  

 
for No filter do 
 Calculate dependent variables 
foreach filter do 
 foreach window size do 
  for No dispersion metric applied do 
   Calculate dependent variables 
  foreach dispersion metric do 
   foreach threshold do 
    foreach removal percentage do 
     Calculate dependent variables 

Algorithm 2: Analysis procedure 

 

Cost function 
In order to find the optimum combination of parameters, 

a cost function, C, was defined. If we want to minimise the 
extent of precision, (𝐸 = √𝑆𝑇𝐷- + 𝑅𝑀𝑆-) and filter related 
latency (L), we can normalize the aggregated gaze data of 
every target point in terms of the z-scores (En and Ln). 

 𝐶 = CDEFGCHIF
CDGCH

, (5)  

where wL and wE are the weights for stabilisation time 
and extent of precision respectively. If, for example, limited 
latency is preferable over good precision, we can define 

 𝐶 = JEFGIF
K

. (6)  

Now we find the parameter set (filter, window length, 
dispersion metric, threshold and removal percentage) for the 
minimum value of C, averaged over all participant 
recordings and target points. 

Results 
Graphical comparison of the effects of filtering 
Figure 2 shows graphs for target position, saccade 

velocity, error, precision (RMS, STD & Extent on one graph) 
and Shape for the first three targets for one participant 
without any filtering. In the top graph, the straight lines 
indicate the actual target position in pixels while the wavy 
lines indicate the position as reported by the eye tracker. The 
delay in participant response after onset of a new target can 
be seen and this agrees with the periods of large offsets in 
the third graph. Note the correcting saccade on the target at 
1,971 ms after an over-shoot (second graph) that agrees with 
the temporary gaze stabilisation in the first graph. 

Without filtering, the shape of precision (RMS/STD) is 
around √2 (dark horizontal line on the fifth graph in Figure 
2) during periods of stable gaze which is indicative of white 
noise. Figure 3 shows the Shape values of the same 
recording when a Kalman filter with 500 ms sample window 
is applied without dispersion cut-off. The lower values are 
indicative of the application of a filter. 

Figure 4 is the same as Figure 2 (fourth), but on a larger 
scale. When no filtering is applied, RMS (the red curve) is 
constantly greater than STD (blue). With filtering (Figure 5), 
both RMS and STD are reduced, but RMS more so with the 
effect that precision extent (green curve) runs more or less 
on top of STD. 
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Figure 2: Target position, Saccade velocity, Error, Precision (RMS, 
STD, Extent) and Shape against Time (ms) for the first three targets 
of a specific recording. No filtering is applied. During periods of 
stable gaze, the shape values are around √2. 

	

Figure 3: Shape against Time (ms) for the same recording with 
Kalman filtering (window = 500 ms) and no sample removal. The 
lower shape values are indicative of filtering 

	

Figure 4. Precision (RMS (Red), STD (Blue), Extent (Green)) 
with no filtering. This is the same as Figure 2 but the scale is 
larger. Note that the red graph runs above the blue one (RMS > 
STD). 

	

Figure 5. Precision with Kalman filtering (window = 500 ms) and 
dispersion cut-off (metric STD, threshold=1.0°, 95% removal) on 
a larger scale. In comparison with Figure 4, the effect of filtering 
is clear. Now, RMS < STD. The effect of the correcting saccade 
is also visible. 

Error and other variables without filtering 
Table 2 shows the values of the various dependent 

variables when no filtering is applied, averaged over 
participant recordings and target points. These values can 
serve as a frame of reference in the subsequent discussion. 

The average latency of 56 ms can probably be attributed 
to undershoots and overshoots. These are natural and cause 
short correcting saccades, which take time before gaze 
stabilises. This value for latency when no filter is applied can 
be regarded as an offset for the current data set. The 
difference between this value and the latency when the 
respective filters are applied is regarded as the actual filter-
related latency. 

Table 2: Values of dependent variables when no filter is 
applied (n = 67). 

Variable Mean STD 
Error 1.25° 1.87° 
RMS 0.63° 0.42° 
STD 0.47° 0.43° 
Shape 1.43 0.29 
Extent 0.80° 0.59° 
S-time 56.0 ms 60.6 ms 

Target onset 
Gaze catches up 

Saccade starts Saccade ends 

Reaction time 

Correcting 
saccade  

Stabilisation time 
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Effect	of	filtering	without	dispersion	cut-off	
Figure 6 shows extent of precision, filter related latency 

and error (Euclidean distance between actual and reported 
point of regard) against length of the stabilisation window 
when no dispersion cut-off is done and the entire window of 
samples is used for calculations. Any one of the NLTI filters 
provided a significantly (a=0.001) better precision at the 
cost of a longer stabilisation time in comparison with the raw 
data (no filtering). The differences with the raw data are 
larger when more samples (longer window) are used. 

It is important to note that the filter related latency 
increases as precision improves. In other words, better 
precision can be obtained at the cost of latency. Although not 
always significant (a=0.05), the Average filter gives the best 
precision but the worst latency. The Kalman filter is less 
effective at a shorter stabilisation window, but appears to be 
good for longer windows. For the other filters, the effect of 
a longer window on precision, although significant 
(a=0.001), is not extreme and it may be beneficial to 
sacrifice a bit of precision for the sake of better response. 

As expected, the latencies of the Stampe and Savitzky-
Golay filters are short, but their precision values are worse 
than that of the other filters. 

Although it might seem that the error decreases with a 
longer window for NLTI filters, this deception is the result 
of the scaling in Figure 6 (bottom). Neither the interaction 
(F(6,829) = 0.158, p > .999) nor the individual effect sizes 
of Filter (F(3,829) = 0.017, p = .997) and Window 
(F(2,829)= 1.22, p = .294) were significant contributors to 
the magnitude of the error. 

The effect of dispersion cut-off 
As an example of the effect of dispersion metric and cut-off 
threshold, Figure 7 shows the extent of precision and filter 
related latency for the Kalman filter using a stabilisation 
window of 500 ms and removing 95% of samples based on 
different combinations of dispersion metric and threshold. 

For latency, the interaction effect of these two parameters 
was significant (F(12,1331)=61.4, p<0.001). Using Tukey's 
post-hoc test, it was determined that the STD dispersion 
metric was significantly (a=0.001) better (shorter latency) 
than any of the other metrics for thresholds of 0.5° and 1.0°. 

For precision, the interaction of dispersion metric and 
threshold was also significant (F(12,1331) = 13.7, p<0.001). 
The STD metric proved to be worse (higher) than the other 
three for lower thresholds. With wL=3 and wE=1, the STD 

metric at a threshold of 0.5° provided the best combination 
of latency (0 ms) and extent of precision (0.21°). 

 

 

 

	

	

Figure 6: Precision, filter related latency and error per filter 
against length of the stabilisation window when no dispersion 
cut-off is done. (Note: Although the window lengths are 
exactly 50 ms, 100 ms and 500 ms, the data points are 
horizontally offset a bit to reduce clutter and separate the 
lines.) 
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Figure 7: Filter related latency and extent of precision for 
combinations of dispersion metric and cut-off threshold for the 
Kalman filter (window = 500 ms, removal = 95%). The vertical 
bars indicate 95% confidence intervals. 

Using a cost function to determine the optimum 
parameter set 

Figure 8 shows a graph of cost (wL=3, wE=1) against the 
735 possible combinations of filters and metrics. The graph 
also shows the normalised latency and normalised extent of 
precision.  

The cost line rises slowly in the beginning and there are 
80 combinations with a cost of -0.40 or less and 295 
combinations with a cost of -0.25 or less. It is only for the 
last 177 combinations that the line rises sharply.  

	 	
Figure 8: Cost (wL=3, wE=1) for 735 combinations of filter 
and metrics. 

Combinations with a cost of -0.5 or below along with 
some other specific combinations are listed in Table 3. The 
worst cost value is 1.68 with a corresponding latency of 420 
ms (normalised 2.418). Amongst the good performers, the 
only constant variables are 500 ms for the stabilisation 
window with 95% (19 of the 20) of samples removed. Using 
these values, Figure 9 shows graphs of the cost against 
metric and threshold for the four NLTI filters. Although 
some of the metrics deliver slightly lower cost for some of 
the filters, it seems as though the STD metric at a threshold 
of 0.5° or 1.0° provides consistently better results. 
Furthermore, there is no significant difference (a=0.05) 
between the four filters at these values. 

Table 3: Combinations of filters and metrics with a cost (wL=3, 
wE=1) of -0.5 or less along with values for no filtering and the 
Stampe and Savitzky-Golay filters. 

 Filter Win 
(ms) 

Dispersion fLat 
(ms) 

Error 
(deg) 

Precision Cost Metric Thr Rem RMS SD Extent 
1 Kalman 500 STD 0.5° 95% 0 1.21 0.13 0.16 0.21 -0.565 
2 Kalman 500 M-M 0.05° 95% 0 1.20 0.14 0.19 0.25 -0.546 
3 Tri 500 STD 1.0° 95% 2.0 1.14 0.10 0.15 0.18 -0.545 
4 Tri 500 M-M 0.05° 95% 0.3 1.14 0.11 0.16 0.19 -0.545 
5 Tri 500 Rad 0.05° 95% 2.0 1.16 0.10 0.15 0.18 -0.542 
6 Kalman 500 STD 1.0° 95% 3.2 1.13 0.10 0.14 0.17 -0.540 
7 Kumar 500 STD 0.5° 95% 2.1 1.20 0.12 0.15 0.19 -0.535 
8 Kumar 500 Rad 0.05° 95% 3.9 1.12 0.11 0.15 0.18 -0.531 
9 Kumar 500 M-M 0.05° 95% 5.8 1.14 0.10 0.14 0.17 -0.525 

10 Tri 500 STD 0.5° 95% 3.1 1.21 0.13 0.16 0.21 -0.522 
11 Kalman 500 Rad 0.05° 95% 2.1 1.20 0.13 0.19 0.23 -0.517 
12 Kumar 500 STD 0.5° 50% 7.6 1.23 0.07 0.16 0.18 -0.514 
13 Average 500 STD 1.0° 95% 5.0 1.17 0.10 0.18 0.21 -0.514 
14 Tri 500 STD 0.5 50% 6.5 1.25 0.09 0.17 0.19 -0.512 
15 Kumar 500 STD 1.0 95% 10.9 1.17 0.08 0.13 0.15 -0.509 
16 Kalman 500 Rad 0.1 95% 8.2 1.13 0.10 0.16 0.19 -0.505 
…            

125 Stampe     11.2 1.19° 0.26° 0.33° 0.42° -0.372 
…            

275 Savitzky-Golay   13.6 1.22° 0.40° 0.40° 0.58° -0.281 
…            

334 No filter     0 1.25° 0.63° 0.48° 0.80° -0.245 
	

Figure 9: Cost against removal metric and threshold for the NLTI 
filters for window = 500 ms and 95% sample removal. 
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Summary and Conclusions 
Shape of precision 
The proposal by Holmqvist, Zemblys and Beelders 

(2017) to describe the shape of eye tracking noise as the ratio 
of the commonly used measures of RMS and STD, was 
shown to be effective to indicate the effect of filtering. When 
no filtering is applied, RMS is consistently greater than STD. 
With filtering, both RMS and STD are reduced, but RMS 
more so with the effect that RMS is now consistently less 
than STD. Shape was confirmed to be around √2 when no 
filtering was applied (the theoretical value for Gaussian 
distributed noise) and below √2 with some filtering. This 
provides, therefore, an easy measure to determine if 
manufacturers provide filtered data to their end users as even 
the LTI filters with short latencies, such as Stampe (1993), 
provide shape values less than √2. 

Effect of filters 
Although it is known that filtering can cause latencies 

(Špakov, 2012), this paper attempted to visualise and 
quantify these effects and also compare different filters. We 
also proposed a procedure whereby a percentage of samples 
are removed from the beginning of a window depending on 
a dispersion metric and threshold. 

It was confirmed that when no dispersion cut-off is done 
and the entire window of samples is used for calculations, 
any one of the filters tested in this study provided a 
significantly better precision at the cost of significantly 
longer stabilisation time in comparison with the raw data. 
The Kalman filter does not perform well when a short 
window is used. 

Utilising a dispersion metric along with a cut-off 
threshold assists towards reducing the sliding window to 
minimise the latency during saccades. The sliding window 
will return to its normal length when gaze is stable - thereby 
ensuring better precision.  

Using the Kalman filter with a stabilisation window of 
500 ms and 95% samples removed as example, it was shown 
that different values for the threshold have a significant 
effect on filter related latency stabilisation time and 
precision for the Max-Min, S2S and Radius metrics (cf 
Figure 7). The STD metric did not affect filter related latency 
significantly (a=.001) and was consistently low. Precision 
was significantly (a=.001) worse for thresholds of 0.05° and 

0.1° than for higher thresholds. This means that STD proved 
to be the best metric to use as long as higher thresholds are 
applied. 

Neither the interaction, nor the individual effect sizes of 
the filter that is used or the window length contributed 
significantly (a=.05) to the accuracy that can be obtained 
with the specific eye tracker.  

Finding an optimum filter 
A cost function (Equation 5) was defined in order to find 

the optimum combination of parameters to select a	 filter	
with	the	best	compromise	of	precision	and	latency. 

Many of the combinations of filter, window length, 
dispersion metric, threshold and percentage of removal 
delivered a low cost value, but about 24% of the 
combinations performed really badly in terms of latency and 
precision. A window size of 500 ms and removal percentage 
of 95% proved to be consistently present amongst the best 
performing combinations. The STD metric for dispersion at 
thresholds of 0.5° and 1° proved to deliver consistent low 
cost values for all non-linear filters. 

There were no significant (a=.05) differences between 
the cost values for the four non-linear filters at these values 
although the Kalman filter with a window of 500 ms in 
combination with the STD metric for dispersion (threshold 
0.5°, 95% of samples removed) was the best performer for 
wL=3 and wE=1. This filter produced an improved precision 
over the unfiltered value at the cost of no extra stabilisation 
time. This is different from the finding of Špakov (2012) 
who found this filter to be unacceptable and might be due to 
(i) the specific implementation thereof (see the algorithm 
above and (ii) the dispersion metric and threshold that was 
used to reduce the size of the window of samples. 

Although the filter related latencies of the Stampe and 
Savitzky-Golay filters are also very short (11.2 ms and 13.6 
ms respectively), the resulting precision values (0.42° and 
0.58°) are much higher than that of the non-linear filters. 
This agrees with the results of Špakov (2012) that these 
filters have "poor smoothness". 

In summary, it can be concluded that a 500 ms 
stabilisation window along with a removal of 95% of 
samples based on the STD metric at 0.5° or 1° threshold is 
likely to produce very good results irrespective of the NLTI 
filter that is applied. 
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Limitations and future research  
The approach of a dynamic sliding window that changes 

size depending on a dispersion metric and threshold might 
not work for smooth pursuit eye movements as there is no 
clear distinction between saccades and fixations. Future 
research should investigate this. 

This research was done with a self-built low-cost eye 
tracker and all offset and precision values should be regarded 
as specific to this tracker. It might be insightful to repeat the 
work with a high-end commercial eye tracker. 

It was concluded above that neither filter, nor window 
length has a significant effect on the spatial accuracy of the 
eye tracker. However, the trend as observed in Figure 6 
(bottom), indicates that it might be worthwhile to also 
include accuracy in the cost function. 

In this study, some discrete values for window length (50 
ms, 100 ms, 500 ms), removal thresholds (0.05°, 0.1°, 0.5°, 
1° and 2°) and removal percentages (5%, 50%, 95%) were 
used. The study could be repeated with other values or a 
continuum of values in an interval based on the findings 
above. 

The algorithm that was used to implement the Kalman 
filter, was based on the median fifth of observations after the 
data was sorted by position. It is possible that smaller or 
larger windows can affect the results. 
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