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Huntington disease (HD) is a fatal progressive neurodegenerative disorder for which only symptomatic treatment
is available. A better understanding of the pathology, and identification of biomarkers will facilitate the develop-
ment of disease-modifying treatments. HD is potentially a goodmodel of a neurodegenerative disease for develop-
ment of biomarkers because it is an autosomal-dominant disease with complete penetrance, caused by a single
gene mutation, in which the neurodegenerative process can be assessed many years before onset of signs and
symptoms ofmanifest disease. PreviousMRI studies have detected abnormalities in gray andwhitematter starting
in premanifest stages. However, the understanding of how these abnormalities are related, both in time and space,
is still incomplete. In this study, we combined deep gray matter shape diffeomorphometry and white matter DTI
analysis in order to provide a better mapping of pathology in the deep gray matter and subcortical white matter
in premanifest HD.We used 296MRI scans from the PREDICT-HD database. Atrophy in the deep graymatter, thal-
amus, hippocampus, and nucleus accumbens was analyzed by surface based morphometry, and while white mat-
ter abnormalities were analyzed in (i) regions of interest surrounding these structures, using (ii) tractography-
based analysis, and using (iii) whole brain atlas-based analysis. We detected atrophy in the deep graymatter, par-
ticularly in putamen, from early premanifest stages. The atrophywas greater both in extent and effect size in cases
with longer exposure to the effects of the CAG expansion mutation (as assessed by greater CAP-scores), and pre-
ceded detectible abnormalities in the whitematter. Near the predicted onset of manifest HD, theMD increase was
widespread, with highest indices in the deep and posterior white matter. This type of in-vivo macroscopic map-
ping of HD brain abnormalities can potentially indicate when and where therapeutics could be targeted to delay
the onset or slow the disease progression.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Huntington's disease (HD) is a devastating progressive neurodegen-
erative disorder that affects multiple domains, including motor, cogni-
tive, and emotional, leading to incapacity for activities of daily living
and, eventually, to death (Huntington, 1872; Folstein, 1991; Ross
et al., 2014). It is caused by CAG repeat expansion in the geneHuntingtin
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(HTT), leading to polyglutamine expansion in the protein huntingtin
(The Huntington's Disease Collaborative Research Group, 1993).
Starting at the threshold of 36 CAGs, longer expansions lead to earli-
er ages of motor onset of HD. Diagnosis of “motor onset” of “manifest
HD” is currently made in someone at risk, or tested genetically posi-
tive for the CAG expansion, on the basis of the clinical history and
standardized Unified HD Rating Scale (UHDRS) motor exam yielding
a clinical impression with “99% confidence” of the presence of HD in
the context of the unequivocal presence of an otherwise unexplained
extrapyramidal movement disorder (The Huntington's Disease
Collaborative Research Group, 1993; The Huntington's Disease
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Group, 1996, Dorsey et al., 2013; Reilmann et al., 2014; Ross et al.,
2014; Oster et al., 2015).

The course of HD can be divided into ‘premanifest’ and ‘manifest’ pe-
riods (Zhang et al., 2011; Dorsey et al., 2013; Tabrizi et al., 2013; Paulsen
et al., 2014a, 2014b; Ross et al., 2014). The premanifest period can be fur-
ther subdivided (Reilmann et al., 2014; Ross et al., 2014), andwe use ter-
minology from these references. First is a period when individuals are
not distinguishable clinically (either by subjective symptomsor objective
findings on exam) from controls (“presymptomatic”), usually up to
10–15 years before “motor onset.” Individuals may then enter the “pro-
dromal” period, which is characterized by subtle motor, cognitive and
behavioral changes, but not sufficient for a diagnosis of motor onset.
Once motor and cognitive signs and symptoms begin, they progress in-
exorably over the course of the illness, which—with the exception of
late-onset cases, who may die of other causes—is uniformly fatal (Ross
et al., 1997; Dorsey et al., 2013).

A useful index of the length and severity of the individual's exposure
to the effects of the mutant HTT gene is achieved by calculating a score
based on the individual's age multiplied by (CAG – L), where L is a con-
stant near the threshold of CAG repeat expansions for disease (Penney
et al., 1997). This is termed the CAG-Age-Product (or CAP score). This
score is useful for comparing data from cohorts of patients with a range
of ages and CAG repeat lengths (Zhang et al., 2011; Ross et al., 2014).

There is growing consensus that intervention and treatment in HD
should occur at the earliest stage possible. The development and testing
of neuroprotective treatments will be facilitated by the identification of
biomarkers in the manifest HD period and, optimally, premanifest
stages. Neuroprotective treatments could include administration of
gene silencing or other reagents directly into localized regions of the
brain (Huntington's Disease Collaborative Research Group et al., 2014;
Kay et al., 2014; Ross et al., 2014). Because of the inverse relationship be-
tween the length of the CAG repeat expansion and age of onset, HD is a
model disease that may provide proof of concept for neurodegenerative
disease therapeutic modification. It also involves increasingly well-
understood natural history, as demonstrated by largemulticenter studies
such as TRACK-HD (Tabrizi et al., 2009, 2012, 2013) and PREDICT-HD
(Paulsen et al., 2006, 2008, 2014a, 2014b). These studies have identified
white abnormalities in pre-manifest stage, in addition to the well-
known atrophy of striatum and other subcortical gray matter structures.

Structural imaging from PREDICT, TRACK-HD, and other studies re-
vealed striatal atrophy starting as early as 15 years before the onset,
and continuing throughout the pre-manifest periods (Aylward et al.,
1997, 2000, 2003, 2011, 2012; Paulsen et al., 2010, 2014a, 2014b;
Tabrizi et al., 2012, 2013). Extent of striatal atrophy adds predictive
power for motor onset beyond age and CAG repeat length alone
(Aylward et al., 2012, 2013; Paulsen et al., 2014a, 2014b). In addition,
themeasurement of shape has enabled the delineation of regional atro-
phy in the striatum and other subcortical structures in the premanifest
period (Younes et al., 2014a, 2014b). In parallel, diffusion tensor imag-
ing (DTI) has revealed abnormalities in architecture and integrity in
whitematter and subcortical graymatter structures in both premanifest
(Reading et al., 2005; Rosas et al., 2006; Kloppel et al., 2008; Stoffers
et al., 2010) and manifest phases (Douaud et al., 2009; Vandenberghe
et al., 2009; Della Nave et al., 2010; Bohanna et al., 2011; Delmaire
et al., 2013; Sanchez-Castaneda et al., 2013).

In this study,we combine deep graymatter shape diffeomorphometry
andwhitematter DTI analysis asmeans of better defining the topography
of deep gray andwhitematter abnormalities in the premainifest stages of
HD. Diffeomorphometry and geodesic shape analysis in computational
anatomy (Van Camp et al., 2012; Miller et al., 2013, 2014; Younes et al.,
2014a, 2014b) provide information about which structure subregions
are affected. The association of this metric with DTI parameters in white
matter regions through the pre-manifest course may provide additional
details about the mapping of brain abnormalities. This could provide in-
formation about when, where, and how therapeutics could be adminis-
tered in order to delay the onset or slow the progression of HD.
2. Methods

2.1. Participants

The data used here are from the PREDICT-HD study, in which sub-
jects at risk for HD, but without motor signs and symptoms sufficient
for diagnosis of manifest HD, had previously undergone elective predic-
tive genetic testing. Premanifest and prodromal subjects are those that
are found to be gene-expanded (CAG length greater than or equal to
36) but have not yet met traditional motor criteria for a diagnosis of
HD. Diagnosis of HD is based on aDiagnostic Confidence Level (DCL) rat-
ing of “4” according to the motor assessment section of the Unified HD
Rating Scale (UHDRS). Those that were found to negative for the CAG
expansion (CAG at or below 30) were enrolled as comparison subjects.
There were no subjects in with CAG between 30 and 36. Participants
were recruited from 33 sites across the United States, Canada, Europe,
and Australia, and had annual study visits consisting of a neurological
motor examination, cognitive assessment, brain MRI (biennial), and
psychiatric and functional assessment, with blood samples for genetic
and biochemical analyses. Informed written consent was obtained
from all subjects before participating in this study.

Subjects with CAG expansion were divided into three subgroups:
low-CAP, medium-CAP, and high-CAP. Low-CAP individuals are pre-
sumably far from the symptomatic onsetwhile thehigh-CAP individuals
are the closest to the onset. The CAP score was computed as CAP= (age
at entry) × (CAG− 33.66) (Zhang et al., 2011) and presumably indexes
the cumulative exposure to the effects of mutant huntingtin. Cutoffs for
groups were CAP b 290 (Low), 290 ≤ CAP ≤ 368 (Medium), and
CAP N 368 (High).
2.2. MRI

High-resolution structural 3T MRI scans (T1-weighted inversion re-
covery turboflash (MPRAGE), were used for the analyses of
diffeomorphometry. Due to the multicentre and longitudinal nature of
the PREDICT study, the image acquisition was heterogeneous, represent-
ed bymultiple vendors (GE, Phillips, and Siemens andover 20 slightly dif-
ferent MR acquisition protocols (i.e., due to transmission and receive
hardware). Themain parameters of the data included in this study varied
as follows: TR: 8–8.4, TE: 3.5–3.8, TI: 826–843, matrix: 256 × 256, voxel
size: 1 × 1, slice thickness: 0.9–1.2. Similar data have been successfully
used in previous publications authored by the Huntington's Study
Group (HSG) PREDICT investigators (Paulsen et al., 2010, 2014a, 2014b;
Muralidharan et al., 2014; Kim et al., 2015).

The DTIs were obtained in 3T scanners, B0 ≅ 1000, in axial orienta-
tion (matrix = 128 × 128, FOV = 256 × 256, slice thickness =
2mm). The number of slices, gradients, and repetitions varied according
to the center/scanner: 1) Phillips: 33 gradients, 70 slices, 2 repetitions;
2) Siemens (most common): 31gradients, 70 slices, 2 repetitions, 3) Sie-
mens (minority): 79 gradients, 50 slices, 3 repetitions. The repetitions
were concatenated within a single section using DTIPrep (http://
www.nitrc.org/projects/dtiprep/) (Oguz et al., 2014), followed by qual-
ity control inspection, and then converted to nifti format using
DWIConvert. Details about the tensor calculation and quality control
are fully described in our previous publications (Magnotta et al.,
2012); similar data was used in (Matsui et al., 2015). The six elements
of the diffusion tensor, the fractional anisotropy (FA), and themean dif-
fusivity (MD) were calculated using DTIStudio software (Laboratory of
Brain Anatomical MRI and Center for Imaging Science at Johns Hopkins
University), and visual quality control was performed to ensure that the
values for scalar images were in proper range and that gross anatomical
FA values were appropriate. Our previous publications showed that sca-
lar measures such as FA and MD are stable in face of different gradient
number and directions, minimizing the effect of different protocols in
multicenter studies (Magnotta et al., 2012).

http://www.nitrc.org/projects/dtiprep/
http://www.nitrc.org/projects/dtiprep/
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We used scans of 296 individuals enrolled in the PREDICT-HD study.
When more than one session was available for an individual, the first
visit was used. Table 1 summarizes the demographic information.
Twenty-three DTI scans were not included because the original files
were missing or incomplete, or because of rejections at the first step
of the quality control, in the tensor and scalar calculations. For the
shape diffeomorphometry, the sample size for each group varied by as
many as five individuals in the comparison for each substructure due
to the quality of the resulting triangulatedmesh associated to each sub-
structural segmentation forming the shape statistics. The demographic
profile of each group was not significantly different among the compar-
ison of shape in different structures and of the DTI.
2.3. Surface-based morphometry of subcortical structures

Weextend the statistical analyses of diffeomorphometry followed in
previous papers (Csernansky et al., 1998, 2000; Ashburner et al., 2003;
Thompson et al., 2004; Wang et al., 2007; Qiu et al., 2009, 2010; Miller
et al., 2013, 2014; Younes et al., 2013). This procedure has three steps:
(i) segmentation of the target structures, (ii) generation of a single tem-
plate coordinate system from the population of baseline scans, and (iii)
mapping of the template onto each of the target segmented structures
represented via triangulated meshes.

The first step (segmentation of the target structures)was done using
the BRAINS AutoWorkup processing pipeline published in (Pierson
et al., 2011). After completion of AutoWorkup, all scans were individu-
ally inspected and manually corrected where necessary to ensure cor-
rect realignment and coregistration, tissue classification, and accuracy
of brain and subcortical structures. The description of this process and
its reliability is fully described in (Kim et al., 2014). The resulting pre-
processed data included T1, T2, PD, and tissue classification volumetric
imageswhere the anterior commissure (ACpoint)was set to be the cen-
ter of the image resampled to 1mmresolution in a 256× 256× 256ma-
trix. Details of each step of MPRAGE pre-processing are found in our
previous publication (Young Kim and Johnson, 2013).

Binary images for the six substructures (caudate, globus pallidus, pu-
tamen, thalamus, hippocampus, and nucleus accumbens) were evaluat-
ed. To generate shape biomarkers indexed to a common coordinate
system, we follow the procedure published in Younes et al. (2013) in
which all surfaces aremeshed and rigidly aligned via rotation and trans-
lation, with right subvolumesflipped before alignment to ensure that all
structures could be compared. From rigidly aligned volumes, an average
template triangulatedmesh was generated based on a generative prob-
ability model over the entire population in which the observed surfaces
are modeled as random deformations of the template (Ma et al., 2010).
This template generation procedure solves a maximum-likelihood esti-
mation problem for a statistical model in which the population is de-
scribed as a random deformation of the template, itself defined as an
unknown deformation of a fixed surface called hypertemplate. This pro-
cedure provides a coordinate system that represents the population via
surface mapping onto the template. The resulting templates for the
Table 1
Demographic information and sample size used in each comparison.

Controls

Total 84
DTI 79

Diffeomorphometry

Caudate 84
Putamen 81
Globus pallidus 82
Thalamus 84
Hippocampus 79
Nc. accumbens 84

Age 46.3 ± 11.1
Gender 53F/31M
caudate, putamen, globus pallidus, thalamus, hippocampus, and nucle-
us accumbens (Fig. 1) become the coordinate systems, which are refer-
enced for our p-value statistics and FWER (Family-wise Error Rate)
calculations. These were computed by running the template generation
algorithm on the population of baseline scans and are blind to group
labels.

The high-dimensional diffeomorphometry shape statistics are gen-
erated indexed to each location of the template by computing the
diffeomorphic correspondence between the template and each surface
using large deformation diffeomorphic metric mapping (LDDMM) sur-
face registration (Vaillant and Glaunes, 2005). The algorithm computes
a smooth invertible mapping of the triangulated surface template Stemp

onto the target surfaces Starget by minimizing the geodesic transforma-
tion energy and thematching cost that is the distancemeasurement be-
tween the mapped template (ϕ1 ⋅Stemp) and the target surface.

E ¼ δ ϕ1 � Stemp; Starget
� �þ α

Z1

0

vt2Vdtwith
_

ϕt

̇
¼ vt ϕtð Þ ð1Þ

The matching cost term δ(ϕ1 ⋅Stemp,Starget) computes a norm be-
tween surfaces.

Shape coordinates are then deduced from the optimal diffeomor-
phism, resulting in one scalar measure per vertex on the template sur-
faces. For computational efficiency, we sub-discretized these measures
by averaging them over small segments computed on the surface tem-
plate (Younes et al., 2014a, 2014b). These segments are obtained by
spectral clustering of the surface, a method that only relies on the sur-
face geometry. This is achieved by computing the first k eigenvectors
of the Laplace–Beltrami operator associated with the surface, where k
is the intended number of segments, associating with each vertex a k-
dimensional vector formed with the values of the eigenvectors evaluat-
ed at this point. These vectors are then used in a standard K-means al-
gorithm to provide the k-desired segments. The number of segments
was adjusted so that they cover an area of 150mm2 on average, yielding
10 segments on the putamen, 8 on the caudate, 3 on the globus pallidus,
12 on the thalamus, 1 on the nucleus accumbens, and 6 on the
hippocampus.

2.4. White matter analysis with DTI

The pipeline for the whitematter DTI analysis consisted onmapping
each subject's brain to a common brain template (JHU-MNI-SS) (Mori
et al., 2008), using a sequence of linear transformations and then
LDDMM (Miller et al., 2005; Wang et al., 2007; Ceritoglu et al., 2009).
The JHU-MNI-SS is a multi-MRI contrast brain extensively segmented
into more than two hundred structures (Oishi et al., 2008), allowing
the automation of the atlas-based analysis (Faria et al., 2015). We
used LDDMM because of the high accuracy onmapping, even for brains
with large degrees of global or regional atrophy, as shown in previous
studies (Oishi et al., 2009; Faria et al., 2010; Djamanakova et al.,
2013). For the image post-processing, we used DTIStudio, DiffeoMap,
Low-CAP Medium-CAP High-CAP Total

58 76 78 296
54 68 72 273
57 76 78 295
57 76 73 287
57 75 77 291
58 76 74 292
56 75 73 283
58 76 78 296
35.1 ± 9.9 42.8 ± 9.3 47.9 ± 9.8
17F/41M 23F/53M 29F/49M



Fig. 1.Template generated for themultiple brain structures. The colors represent the segments used for the surface basedmorphometry. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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and ROIEditor (Laboratory of Brain Anatomical MRI and Center for Im-
aging Science at Johns Hopkins University).

In order to identify the relationship between deep gray matter and
deep white matter in HD, we used three approaches: A) the analysis
of regions of interest (ROIs) in the white matter adjacent to the deep
gray matter; B) the analysis of white matter pathways between the
deep gray matter and cortex, using dynamic programming (DP);
C) the analysis of the total white matter, regionally parcellated, using
an atlas-based approach (ABA) (Fig. 2).

2.4.1. Analysis of the white matter adjacent to the deep gray matter
Each subregion defined in the surface of caudate, putamen, globus

pallidus, and thalamus for the gray matter shape analysis (Fig. 2B, left
panel) was expanded radially by 5 voxels (in a 1mm3 image resolution)
through the adjacent white matter. Therefore, each segment in the
shape analysis has the corresponding “white matter neighbor”, except
where the surfaces are adjacent to the ventricles and in the putamen–
globus pallidum interface.

2.4.2. Analysis of the white matter pathways between the striatum and the
cortex

White matter pathways were traced using DP between each of the
surface segments in striatum used for diffeomorphometry and the 38
cortical parcels in each hemisphere. The cortical parcelswere previously
defined in the template, as mentioned above. The DP algorithm applied
is detailed in our previous paper (Li et al., 2014). Our choice of a proba-
bilistic path-generation algorithm aims to minimize the false negatives
that simple line propagation methods would generate, given that our
seeds are located in the gray matter. Since high-angular resolution im-
ages are not available, DP is the natural option for tracing. Using a
“not” operation we removed connections crossing a third seed or the
ventricles. This minimized the double sampling of pathways and
excluded implausible pathways. The streamlines traced in the template
were eventually converted to regions of interest.

It is worth noting that algorithms such as DP trace the “shortest
path” between chosen initial and terminal points that globallyminimize
a sequentially additive energy constraint defined by the tensor and, as
happens to any other DTI-based tract-tracing method, does not neces-
sarily reflect the existence of a biological connection. Therefore, they
have to be interpreted as a macroscopic reconstruction of the white
matter architecture or a region-growing tool, which can cluster anatom-
ically related pixels based on DTI data, rather than a tool with which to
investigate connectivity based on a cellular level structure.

2.4.3. Regional analysis of the whole white matter
Using our pre-segmented template and accurate imagemapping,we

automatically parceled the whole white matter of each individual into
98 ROIs. The segregation of cortex and peripheral white matter was
threshold by FA N 0.2. This “atlas-based” analysis carries information
about the structural anatomy, since each parcel is defined based on pre-
vious anatomical knowledge.

2.5. Group based linear effects statistical analysis

We have performed statistical analyses on each of the subcortical
structures, making separate comparisons of the shape diffeomorpho-
metry markers corresponding to the degree of atrophy relative to the
template between the groups. We modeled the shape diffeomorpho-
metry markers via linear effects. The analysis includes age, gender and
log intracranial volumes as covariates, and computes statistics at each
segment of the triangulated template surface returning p-values
corrected for multiple comparisons using permutation testing.

The group analysis quantifies amixed linear effects model of atrophy
between the groups including controls and the low, medium and high-



Fig. 2. Schematic representation of the white matter analysis. A) ROIs in the white matter adjacent to the deep gray matter subregions used for shape diffeomorphometry (B, left
panel). B) Examples of connections between deep gray matter and cortex; the cortical subregions in right panel are the parcels pre-defined in the template. C) Parcellation of the
whole white matter in the atlas-based approach. GP = globus pallidus.
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CAP score defined groups, and is given for each vertex v, scan j and sub-
ject s. For each control and patient subject, left and right structures are
registered to the template, resulting in the computation of a normalized
deformation marker Jv(s) that measures the amount of expansion/atro-
phy at vertex v of the template surface in registering it to subject s. The
raw expansion/atrophy measure is defined as the logarithm of the local
expansion/reduction in surface area around thevertex, and is interpreted
mathematically as a log-jacobian on the template surface. Wemodel the
group variables as g(s) equaling 1 if subject s belongs to the group (either
low,medium or high), and zero otherwise belonging to the controls. Our
analysis uses gender (denoted d) and intracranial volume (denoted i) as
covariates, resulting in the model

Jv sð Þ ¼ αv þ βvg sð Þ þ γvd sð Þ þ δvi sð Þ þ ϵv sð Þ ð2Þ

with ϵv(s) representing our noise model with ϵv(s) Gaussian distributed
with variance σv

2. We test for the null hypothesis with Hv
0:βv=0 for all

v, while correcting for multiple comparisons.
For volume testing the logarithmof the volume is used. The p-values

of these models are computed using permutation sampling (using ran-
dom permutations of residuals of the null hypothesis model). The test
statistic is the log-likelihood difference between the null hypothesis
and theHv

1:βv≠0 general hypothesis, which is equivalent to computing,
for each coordinate v, the logarithm of ratio of the residual variance for
the complete Hv

1 hypothesis to the one obtained from the null hypothe-
sis. Denoting this statistic by Sv, the family-wise error rates (FWER) are
calculated by evaluating the maximum S* = maxvSv.

To compute p-values, the same statistic S⁎ is computed a large num-
ber of times with permuted residuals under the null, i.e., taking

Jπv sð Þ ¼ α0
v þ γ0

vd sð Þ þ δ0v i sð Þ þ ϵ0v πsð Þ ð3Þ
where π is a randompermutation of the subjects and the parameters
and residuals are those obtained using maximum likelihood under the
null hypothesis. The p-value is given by the fraction of times the values
of S⁎ computed after permuting the residuals is larger than the value
obtained with the true groups. The p-values that were observed via
the linear effectsmodeling of deformationmarkers of Eq. (2) are provid-
ed for each structure including the left and right sides of the brain in the
Supplementary Table 1. The volume statistics shown in the third col-
umn for the three groups provides p-values for the same linear effects
model, also evaluated via permutations, in which J is replaced by the
structure volume, for which no multiple testing correction is required.

For the DTI analysis, after mapping each subject brain scan to the
common template, mean values of fractional anisotropy (FA), mean dif-
fusivity (MD), radial diffusivity (RD), and axial diffusivity (AD)were ob-
tained in each region of interest, in each of the three approaches
mentioned before. Similarly, differences among groups (controls and
each of the premanifest HD) were evaluated with permutation test
and corrected for multiple comparisons with FWE. Monotonic linear
fittingwas used to describe the relationship between shape and DTI pa-
rameters versus CAP scores.

3. Results

3.1. Shape diffeomorphometry

The shape diffeomorphometry analysis of subcortical gray matter
change demonstrated differences in all three pre-manifest stages versus
controls (Fig. 3). Modest differences, both in terms of location (restrict-
ed to central segments of putamen) and effect size were detected in the
low-CAP group. In the medium-CAP, the differences extended to the
whole surface of putamen, caudate, globus pallidus, and nucleus accum-
bens. In the high-CAP group, differences were also noticed in thalamus
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and hippocampus. The effect size was different in different regions of
striatum and other subcortical structures. Especially large atrophy
were noted in some regions, such as tail of caudate, showing up to
25% of atrophy.

3.1.1. Analysis of the white matter adjacent to the deep gray matter
Medium Diffusivity (MD) was the most sensitive metric of white

matter difference in HD.MDwas increased in thewhitematter adjacent
to the posterior portion of thalamus in the medium-CAP group. The in-
crease was greater and widespread in the high-CAP group (Fig. 4). The
MD values for each segment analyzed are reported in the Supplementa-
ry Table 2. The source ofMD increasewas the increase of both radial and
axial diffusivity. Fractional anisotropy was not significantly different
among groups.

3.1.2. Analysis of the white matter pathways between striatum and cortex
None of the pathways traced by DP between the striatum and corti-

cal areas showed significant difference in DTI between controls and
low-CAP or controls and medium-CAP group. Pathways between stria-
tum and many cortical areas had significant MD increase in high-CAP
group compared to controls, as shown in Table 2.

3.1.3. Regional analysis of the whole white matter
Once again, MD was the most sensitive DTI metric, showing differ-

ences between controls and high-CAP group as shown in Fig. 5. The ef-
fect size detected (maximum 8% of MD increase) was smaller than that
detected in the analysis of the neighborhood of the deep gray matter
(Fig. 4). The most affected areas were the posterior thalamic radiations,
corpus callosum, and the peripheral occipital white matter. The MD in-
crease was again due to increases in both radial and axial diffusivities.
Although the comparison of MD between medium-CAP group and
Fig. 3.Results from shape diffeomorphometry in both lateral (left panel) andmedial (right pane
the bottom rows show the average degree of atrophy, if any. In the second and fourth rows, put
visualization of structures lying behind them.
controls did not reveal significant differences, some areas showed in-
creased MD close to the significance threshold, such as the posterior
thalamic radiations. The MD values for each segment analyzed are re-
ported in the Supplementary Table 3. The splenium of the corpus
callosum had the lowest FA in the high-CAP group, although no area
achieved the significance threshold for FA differences between groups.

3.2. Relationship between shape, DTI metrics, and CAP scores

Fig. 6 shows the trends of shape and MD (y axis) abnormalities ac-
cording to the CAP scores (x axis), fitted by monotonic curves. There is
a positive correlation between the CAP scores and the MD, i.e., MD in-
creases with higher CAP scores. There is a negative correlation between
the CAP scores and the amount as each vertex dislocates to match the
template (log-Jacobian), i.e., the atrophy increases with higher CAP
scores.

4. Discussion

In this study, we combined deep gray matter shape diffeomorpho-
metry and white matter DTI analysis as means of better defining the to-
pography of deep gray and white matter abnormalities in the
premanifest stages of HD. We used images from the PREDICT-HD
study, which as noted above successfully includes sources of brain
MRIs from multiple centers. Across-scanner variations might interfere
with the detection of disease-specific structural abnormalities, thereby
potentially limiting the use of group analysis collected at several cen-
ters. On the other hand, multicenter studies increased generalizability
of results, and improved efficiency, particularly for rare or hard-to-
recruit cases, such as HD (Paulsen et al., 2008; Tabrizi et al., 2009).
Both the algorithm for segmenting subcortical structures and the scalar
l) views. The top rows showwhether there are significant differences between groups, and
amen (in the lateral view) and thalamus (in themedial view)were removed, to enable the



Fig. 4. Differences in MD between controls and each of the premanifest HD groups in the white matter adjacent to the segments of the deep gray matter and thalamus used for the
diffeomorphometry analysis. Lateral view is shown. The top rows show whether there are significant differences between groups, and the bottom rows shows the respective MD
increase of each groups compared to controls. In the second and fourth rows, putamen was removed, to enable the visualization of globus pallidum and thalamus.
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measures used for DTI analysis applied in this study has shown high
multicenter reliability (Magnotta et al., 2012; Kim et al., 2015).

Volumetric structural imaging has identified imaging biomarkers for
HD onset, such as the extent of caudate atrophy (Paulsen et al., 2014a,
2014b). The striatum has been shown to demonstrate strong cross-
sectional and longitudinal atrophy in the pre-manifest phase (Aylward
et al., 1997, 2000; Rosas et al., 2001; Peinemann et al., 2005; Henley
et al., 2009; Vandenberghe et al., 2009; Ginestroni et al., 2010;
Georgiou-Karistianis et al., 2013; Sanchez-Castaneda et al., 2013).
Other regions, such as the globus pallidus, thalamus and hippocampus,
also undergo atrophy, though in smaller magnitude (Paulsen et al.,
2010; Aylward et al., 2011; Younes et al., 2014a, 2014b) and mostly
after motor the onset. In addition, the measurement of shape has en-
abled the delineation of regional abnormalities in the striatum and
other subcortical structures in the premanifest period (Younes et al.,
2014a, 2014b). Reduction of white matter volume was also reported
(Tabrizi et al., 2009) in both premanifest and early HD cohorts
(Crawford et al., 2013). DTI studies differ regarding specific areas of
white matter abnormality in the premanifest stage (Reading et al.,
2005; Rosas et al., 2006; Kloppel et al., 2008; Stoffers et al., 2010;
Poudel et al., 2014).

In the present study, we integrated the characterization of deep gray
matter shape with regional white matter DTI metrics in subjects with
premanifest HD to improve the regional mapping of the abnormalities
that precede HD onset. Regional abnormalities in the putamen shape,
which can be anatomically interpreted as atrophy, occur in the very
early stage, with differences being detected between the controls and
the low-CAP group. In the medium-CAP group, shape is already exten-
sively affected over the surface of caudate, putamen, and globus
pallidus. The atrophy is greater in both location (involving thalamus
and hippocampus) and degree in the high-CAP group compared to the
other groups.

The MD in the white matter surrounding the deep gray matter was
consistently increased close to the disease onset. In addition, higher
MD was observed in the neighborhood of the posterior thalamus in
the medium-CAP group. According the regional whole brain analysis
of the white matter, MD was extensively larger in high-CAP compared
to controls, particularly in posterior areas. A trend of increasing MD
was seen even in the low-CAP group; in the medium-CAP, areas such
as the splenium of the corpus callosum, posterior thalamic radiations,
and occipital white matter had MD increase close to the threshold sig-
nificance. Note that our method was conservative regarding the p-
value cutoff, after the permutation and multiple comparisons correc-
tions. This may explain the disagreement with other publications that
showed white matter abnormalities occurring at least as early as sub-
cortical gray matter abnormalities (Aylward et al., 2011; Tabrizi et al.,
2013).

The tractography analysis revealed increased MD in the topography
of streamlines traced between the striatum and multiple cortical areas
in the high-CAP group, compared to controls, suggesting that pathology
may follow paths of anatomic connections. This needs to be interpreted
carefully, since DTI tractography may identify streamlines that imper-
fectly correspond to actual anatomic connections. Recently, Novak
et al. (Novak et al., 2015) showed widespread differences in basal
ganglia-cortical structural connectivity in early manifest HD subjects.
Variations of DTI indices such as MD and FA may be interpreted as axo-
nal disorganization or axonal degeneration, or defective myelination, or
other effects. Our studies cannot define the cellular bases of the changes,
but can help map their topography.

The sensitivity ofMDor FA to detect group differences depends both
on the regional microstructural architecture in question and on the dis-
turbance to this architecture (Oh et al., 2009). In this study, MD was
more sensitive than FA in detecting group differences, indicating that
HD causes disturbances on the microstructural organization that are
more sensitively detected by MD than by FA. Nevertheless, FA tends to
bemore sensitive to image noise (Pierpaoli andBasser, 1996) as demon-
strated in our previous study about MultiCenter Reliability of Diffusion
Tensor Imaging (Magnotta et al., 2012), in which among all the DTI sca-
lar measures, FA was the one that had the largest coefficient of variance
among all the protocols, although still quite small.



Table 2
Differences inMD between high-CAP group and controls, in pathways between the striatum and the cortex. The numbers indicate theMD ratio of high-CAP/controls. Red cells are signif-
icant differences between groups, empty cells are pathways that couldn't be traced, i.e., DP resulted in zero streamlines. The subregions of striatum are ordered according to their anatom-
ical position, from anterior to posterior, as much as possible.

Caudate Putamen
Segments 1 4 2 5 8 3 4 9 10 7 5 6 2 3

F
ro

n
ta

l

Superior frontal 1.04 1.033 1.031 1.035 1.03 1.031 1.032 1.03 1.03 1.031 1.034 1.03 1.03 1.032

Superior frontal pole 1.066 1.065 1.058 1.065 1.061 1.067 1.06 1.066 1.062 1.059 1.06 1.064

Pre-frontal 1.052 1.051 1.051 1.044 1.052 1.05 1.053 1.052 1.054 1.051 1.05 1.049 1.053 1.047

Medium frontal 1.041 1.043 1.042 1.042 1.041 1.043 1.042 1.04 1.039 1.038 1.043 1.037 1.038 1.037

Dorsal pre frontal 1.053 1.053 1.053 1.052 1.055 1.056 1.057 1.054 1.056 1.05 1.053 1.05 1.045 1.049

Pars opercularis—inferior frontal 1.055 1.053 1.049 1.047 1.045 1.04 1.055 1.034 1.023 1.036 1.033 1.036 1.032 1.032

Pars orbitalis—inferior frontal 1.048 1.05 1.048 1.048 1.052 1.053 1.05 1.058 1.061 1.042 1.05 1.061 1.047

Pars triangularis—inferior frontal 1.048 1.045 1.047 1.046 1.049 1.05 1.049 1.045 1.047 1.039 1.05 1.05 1.046 1.037

Lateral fronto-orbital 1.042 1.043 1.048 1.03 1.064 1.061 1.039 1.069 1.04 1.06 1.048 1.051

Medial fronto-orbital 1.037 1.035 1.038 1.035 1.068 1.038 1.054 1.036 1.058 1.039 1.04

Rectus gyrus 1.039 1.039 1.045 1.056 1.07 1.069 1.04 1.053 1.043 1.056 1.047 1.053 1.042

Pre Central 1.035 1.037 1.036 1.04 1.036 1.036 1.035 1.032 1.032 1.032 1.034 1.032 1.03 1.031

P
a

ri
e

ta
l

Post Central 1.042 1.034 1.04 1.041 1.037 1.035 1.038 1.037 1.035 1.034 1.02 1.035 1.035 1.034

Superior parietal 1.038 1.042 1.038 1.032 1.036 1.032 1.031 1.034 1.034 1.032 1.033 1.034

Supramarginal 1.034 1.026 1.035 1.033 1.033 1.032 1.032 1.033 1.039 1.034 1.034 1.032 1.038

Angular 1.039 1.036 1.039 1.04 1.039 1.041 1.037 1.037 1.046 1.042 1.042 1.046 1.042

Pre Cuneus 1.033 1.034 1.045 1.027 1.037 1.037 1.033 1.031 1.037 1.029 1.032 1.03

Insula—posterior portion 1.071 1.071 1.066 1.063 1.063 1.072 1.062 1.072 1.067 1.067 1.065 1.077 1.049 1.073

Insula—anterior portion 1.043 1.045 1.045 1.04 1.041 1.037 1.04 1.038 1.048 1.043 1.046 1.063 1.041

T
e

m
p

o
ra

l

Pole temporal, superior pars 1.012 1.036 1.094 1.019 1.068 1.025 1.072 1.025

Superior temporal, anterior pars 1.049 1.053 1.052 1.047 1.05 1.048 1.042 1.038 1.04 1.056 1.038 1.036 1.042

Superior temporal, posterior pars 1.038 1.039 1.041 1.036 1.036 1.036 1.041 1.044 1.045 1.053 1.039 1.04 1.044

Middle temporal, anterior pars 1.049 1.035 1.031 1.048 1.047 1.035 1.042

Middle temporal, posterior pars 1.042 1.038 1.04 1.036 1.035 1.036 1.029 1.039 1.035 1.054 1.032 1.032 1.033

Inferior temporal, anterior pars 1.033 1.026 1.067 1.043 1.05 1.047 1.039 1.035 1.015 1.03 1.037 1.04

Inferior temporal, posterior pars 1.047 1.043 1.042 1.043 1.038 1.041 1.044 1.032 1.034

Pole temporal, inferior pars 1.043 1.093 1.049 1.041 1.063 1.05 1.052 1.059

Fusiform 1.048 1.051 1.047 1.04 1.042 1.039 1.037 1.037 1.037 1.044 1.038 1.038 1.038

O
cc

ip
it

a
l

Superior occipital 1.045 1.047 1.047 1.042 1.049 1.048 1.043 1.046 1.043 1.048 1.047 1.046 1.046

Medium occipital 1.06 1.058 1.06 1.061 1.072 1.068 1.039 1.043 1.047 1.04 1.045 1.039 1.04 1.04

Inferior occipital 1.031 1.043 1.033 1.03 1.033 1.033 1.031 1.03 1.03 1.03

Lingual 1.059 1.068 1.055 1.053 1.052 1.063 1.044 1.059 1.058 1.07 1.05 1.054 1.04 1.039

Cuneus 1.027 1.033 1.049 1.027 1.03 1.029 1.032 1.027 1.028 1.03

li
m

b
ic

Rostral cingulate 1.039 1.04 1.041 1.039 1.067 1.063 1.063 1.071 1.053 1.135 1.046 1.057

Subcallosal cingulate 1.028 1.085 1.055

Subgenual cingulate 1.072 1.046 1.05 1.049 1.047 1.047

Dorsal cingulate 1.033 1.048 1.052 1.05 1.057 1.056 1.061 1.057 1.057 1.062 1.06 1.059 1.049 1.054

Posterior cingulate 1.045 1.046 1.046 1.037 1.039 1.033 1.059 1.059 1.063 1.059 1.063 1.057 1.076 1.061
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These results, while cross-sectional, rather than longitudinal, may be
interpreted in relationship to CAP score(which is a genetic measure of
the degree of exposure to the effects of the CAG repeat expansion in
HTT), as the cross-sectional reflection of progressive changes in HD. In-
formation from cross-sectional studies such as this one may be useful
for guiding therapeutic trials, since subjects in clinical trials will be
ascertained based on cross-sectional information and may be selected
or stratified based on CAP score or comparable indices. Atrophy started
in putamen and caudate, followed by globus pallidum, thalamus, and
hippocampus. Our results are consistent with the hypothesis that de-
tectible atrophy in the deep gray matter would precede detectible ab-
normalities in the white matter, and with a centripetal and posterior
Fig. 5. Atlas-based white matter DTI analysis. The colors code the increase of MD in areas of
references to color in this figure legend, the reader is referred to the web version of this article
gradient of abnormalities in the white matter. There are, however, lim-
itations on comparing white matter microstructural abnormalities and
atrophy by imaging. The findings reported in this study may reflect a
true biological phenomenon, or just the ability of MRI and of the
image analysis employed to detect these abnormalities, or both. Differ-
ences in diffeomorphometry and diffusivity between groups were
analyzed by the same statistical procedure, via linear effects corrected
for multiple comparisons using permutation testing, as detailed in
Section II.5. However, DTI is inherently noisier than T1-WIs, which may
result on decreased power on detecting DTI abnormalities compared to
atrophy. In this sense, our analysis may ensue very conservative results,
particularly for DTI. Differences found at conservative group-level
significant differences between controls and high-CAP group. (For interpretation of the
.)



Fig. 6. Examples of plots of CAP scores (x-axis) vs. degree of atrophy (first plots, y-axis: log (Jacobian)) in putamen, caudate, globus pallidus, and thalamus; or vs. MD (second plots, y-axis:
MD e10−4, inmm2/s) in the adjacentwhitematter. For spatial localization, the various sub-segments of each structure are shown in the center. The colors represent the degree of atrophy
in high-CAP versus vs. controls, as in Fig. 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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analysis, as in this study, can be interpreted with more confidence, and
have greater chance to become features on predictive models, which is
one of the PREDCIT-HD goals, than those found with a less conservative
approach. The latter would better indicate small trends at group level
and, indirectly, uncover underlying diseasemechanisms,which are actu-
ally unlikely to be revealed by any MRI study in humans.

Our data suggest that atrophy is detected earliest in the deep gray
matter, but that subjacent and closely connected white matter also be-
comes affected prior to predicted onset. A major current strategy for
therapeutics involves lowering levels of mutant Htt, via RNA- or DNA-
based strategies. One implementation currently in clinical trials in-
volves infusion of antisense oligonucleotides into the lumbar CSF and
thus, after CSF circulation, over the cortex. A concern based on our re-
sults is that these ASOs may not penetrate to deep gray and deep sub-
cortical while matters structures we demonstrate to be affected
during the pre-manifest period. A second potential implementation
for clinical trials involves injection of viral vectors into the striatum.
Our data suggest that this should be done early (as defined by CAP
score), prior to the development of pathology in the deep white matter
(thus perhaps even preventing the spread of pathology to the white
matter). In addition, it may be necessary to inject the therapeutic agents
into the white matter itself.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2016.02.014.
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