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Abstract: Hereditary disorders of connective tissue (HDCT) compromise a heterogeneous group of
diseases caused by pathogenic variants in genes encoding different components of the extracellular
matrix and characterized by pleiotropic manifestations, mainly affecting the cutaneous, cardiovascu-
lar, and musculoskeletal systems. We report the case of a 9-year-old boy with a discernible connective
tissue disorder characterized by cutis laxa (CL) and multiple herniations and caused by biallelic
loss-of-function variants in EFEMP1. Hence, we identified EFEMP1 as a novel disease-causing gene
in the CL spectrum, differentiating it from other HDCT.

Keywords: FBLN3; EFEMP1; fibulin-3; cutis laxa; elastic fiber; extracellular matrix; inguinal hernia;
diaphragmatic hernia

1. Introduction

Hereditary disorders of connective tissue (HDCT) are a heterogeneous group of
diseases, mainly affecting the cutaneous, ocular, cardiovascular, pulmonary, and muscu-
loskeletal systems. HDCT are caused by pathogenic variants in genes encoding structural
and regulatory components of the extracellular matrix (ECM) [1].

Fibulins belong to a protein family implicated in both elastic fiber (EF) assembly
and function. Loss-of-function variants in FBLN4 and FBLN5 both cause severe reces-
sive cutis laxa (CL), characterized by loose redundant skin folds and variable systemic
involvement, including prominent emphysema [2,3]. Fibulin-3, encoded by EFEMP1, is a
secreted extracellular matrix glycoprotein, which is abundantly expressed in skin fibrob-
lasts, retina, fascia, and vasculature [4]. It is believed to function as an important modulator
of ECM biology via its interaction with various ECM molecules, including tropoelastin and
(tissue inhibitors of) matrix metalloproteinases [5]. A recurrent gain-of-function variant
(p.(Arg345Trp)) in EFEMP1 has previously been associated with Doyne honeycomb retinal
dystrophy [6]. However, biallelic pathogenic variants in EFEMP1 were recently reported in
two probands with a pronounced connective tissue phenotype, characterized by multiple
herniations and joint hypermobility [7,8].
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In this study, we present a 9-year-old Turkish boy with a novel, discernible connective
tissue disorder characterized by cutis laxa and multiple herniations, associated with biallelic
loss-of-function variants in EFEMP1.

2. Materials and Methods
2.1. Consent

The legal guardian of the patient in this manuscript gave written informed consent to
publication of the case details. Specific informed consent was obtained for the publication
of clinical pictures. This study was conducted in accordance with the 1984 Declaration of
Helsinki and its subsequent revisions.

2.2. Molecular Analysis

Exome sequencing (ES) of the proband was performed on genomic DNA extracted
from peripheral leukocytes. Target enrichment of the gDNA was obtained by the Sure-
SelectXT Low Input Human All Exon V7 (Agilent Technologies, Santa Clara, CA, USA).
Sequencing was performed on a NovaSeq 6000 platform (Illumina, San Diego, CA, USA)
with a minimal expected coverage depth of 20×. All obtained variants were analyzed
using the Seqplorer software, an in-house developed pipeline, which integrates population
frequencies (GnomAD) [9] and in silico splice predictions (e.g., Mutationtaster, PolyPhen,
SIFT (sorting tolerant from intolerant), CADD (Combined Annotation Dependent De-
pletion), Revel (Rare Exome Variant Ensemble Learner), Ada (Adaptive boosting), and
RF (Random Forest scores) [10–15]. Variants with a minor allele frequency > 0.01 in the
GnomAD database were filtered out and the remaining variants were selected according
to their functional consequences, whereas only splice-site and stop-gain variants, inser-
tions, deletions, and missense variants were retained. Candidate variants were classified
according to the refined American College of Medical Genetics and Genomics (ACMG)
guidelines [16,17] and confirmed by Sanger Sequencing on an ABI 3730 platform (Applied
Biosystems, Waltham, MA, USA) in the proband and both parents. Obtained sequence
profiles were compared with the EFEMP1 reference sequence (Refseq NM_001039348.3).

All variants were reported according to the nomenclature of the Human Genome
Variation Society (HGVS, http://www.hgvs.org/VARONEM, accessed on 28 February
2021) [18].

3. Case Presentation

The proband is a boy with suspected HDCT. He was born at term after an uncompli-
cated pregnancy to consanguineous parents of Turkish origin. At birth, he presented with
cutis laxa and a congenital diaphragmatic and right inguinal hernia, which were surgically
corrected at the ages of 8 months and 1.5 years, respectively. During clinical examination
upon referral aged 7, he showed failure to thrive (length: 112 cm (−0.67 SD); weight: 15.9
kg (−2.5 SD)), despite reportedly normal intake. His head circumference was normal (50
cm (−1.28 SD)). He presented with discernable craniofacial characteristics, including a
long face, a high anterior hairline, telecanthus, blepharochalasis, sagging lower eyelids and
cheeks, a long philtrum, full lips, downturned mouth corners, retrognathia, dental caries,
malocclusion, and cutis laxa (Figure 1A). He further presented with muscle hypotonia and
generalized joint hypermobility. His skin was markedly redundant, thin, translucent, and
bruised easily. Scars healed normally. Routine laboratory tests including peripheral blood
cell analysis, liver and kidney function tests, and coagulation were normal. Although his
initial neuromotor development was normal, he showed mild intellectual disability (ID).
Hearing, vision, the cardiovascular system, and the urinary tract were assessed as normal.
Aged 9, he developed a left inguinal hernia. Exome sequencing identified a homozygous
nonsense variant (c.1201C > T, p.(Arg401*)) in EFEMP1 (Figure 1C). This variant is ab-
sent in the Gnomad exomes and genomes databases, is classified as “pathogenic” by all
used in silico prediction programs, and segregates with disease and carrier status in the
reported family.
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Pedigree of the reported consanguineous family of Turkish descent. The proband is indicated by 
the black arrow. (C) Sanger sequencing confirms the presence of a homozygous EFEMP1 nonsense 
variant (c.1201C > T, p.(Arg401*)) in the proband and identifies both parents as heterozygous 
carriers. 
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and fascia [4]. Fibulin-3 is structurally most related to fibulin-4 and -5, both critical 
molecules for EF assembly. Pathogenic variants in FBLN4 (EFEMP2) and FBLN5 cause 
autosomal recessive cutis laxa (ARCL) type 1b and 1a, which are associated with severe 
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system, as well as congenital diaphragmatic hernia. ARCL1c, a third disorder within the 

Figure 1. (A) Clinical photographs taken at age 7. Note the long face, high anterior hairline, tele-
canthus, blepharochalasis, sagging lower eyelids and cheeks, long philtrum, full lips, downturned
mouth corners, retrognathia, dental caries and malocclusion, and cutis laxa. (B) Pedigree of the
reported consanguineous family of Turkish descent. The proband is indicated by the black ar-
row. (C) Sanger sequencing confirms the presence of a homozygous EFEMP1 nonsense variant
(c.1201C > T, p.(Arg401*)) in the proband and identifies both parents as heterozygous carriers.

4. Discussion

We present a 9-year-old Turkish boy with a discernible connective tissue disorder con-
sisting of cutis laxa and multiple herniations with homozygous loss-of-function mutations
in EFEMP1 (OMIM#601548), which encodes fibulin-3. Several lines of evidence support
the causality of the identified loss-of-function variant for the observed phenotype in the
reported individual.

Firstly, fibulin-3 belongs to a family of 8 ECM glycoproteins associated with basement
membranes and elastic fibers and is abundantly expressed in skin fibroblasts and fascia [4].
Fibulin-3 is structurally most related to fibulin-4 and -5, both critical molecules for EF
assembly. Pathogenic variants in FBLN4 (EFEMP2) and FBLN5 cause autosomal recessive
cutis laxa (ARCL) type 1b and 1a, which are associated with severe vasculopathy and
developmental pulmonary emphysema, respectively. Of note, the latter condition is also
associated with diverticula of the gastrointestinal and genitourinary system, as well as
congenital diaphragmatic hernia. ARCL1c, a third disorder within the ARCL type 1
spectrum, shows considerable overlap with ARCL1a and is caused by pathogenic variants
in LTBP4, which is an interaction partner of both FBLN4 and FBLN5 [2,3,19].

Secondly, Efemp1-knockout mice demonstrate herniations, loose skin, small body size
or mass, atrophy of muscle and fat tissue, and dermal EF fragmentation. Interestingly,
the resulting phenotype is highly dependent on the genetic background of the mice, as
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herniations are predominantly manifested in Efemp1−/− mice on the C57BL/6 background,
but not the BALB/c background [20].

Thirdly, biallelic loss-of-function variants in EFEMP1 have previously been reported
in 3 individuals of 2 distinctive families with multiple herniations and joint hypermobility,
supporting loss-of-function as the molecular mechanism of a novel heritable connective
tissue disease (Table 1). Our patient shows significant clinical overlap with the previously
reported patients, with hernias of the integument and diaphragm and the presence of
discernible facial features (with a long face and downslanted palpebral fissures) [7,8,21].
In contrast to the previously published individuals, our patient did not present with
scoliosis, pectus deformity, or myopia. He further exhibited mild ID, which usually
manifests in patients with ARCL type 2 and 3, but has not been associated with ARCL
type 1 [19,22,23]. Exome analysis did not identify other pathogenic variants that could
explain the ID, however this does not exclude genetic and non-genetic causes of ID. Our
proband had a normal cardiovascular and pulmonary work-up, while multiple pulmonary
bullae developed during puberty in one individual with biallelic truncating variants
in EFEMP1 [8]. Although several mild cutaneous features were present in 3 patients,
our proband was the only case exhibiting cutis laxa and easy bruising with infantile
onset [7,8,21]. Of note, pulmonary emphysema was only reported in one patient [8].
Overall, this report adds evidence that biallelic loss-of-function variants in EFEMP1 are
associated with a specific connective tissue disorders characterized by multiple hernias
and skeletal and pulmonary manifestations. Although clinically variable, this disorder
should be classified within the group of ARCL type 1 [7,8,19,21].

Table 1. Summary of molecular and clinical characteristics of individuals with EFEMP1 pathogenic variants and comparison
with ARCL type 1.

EFEMP1-Related CL ARCL1a ARCL1b ARCL1c

This study Bizzari et al. [7]
Driver et al. [8]Mégarbané et al. [21]

Beyens et al. [24]

Clinical characteristics
Craniofacial dysmorphism + a + a + a + a + b + c + d

Dental crowding − + + − − − −
Cutis laxa + − − − + + +

Thin translucent skin + − − + − − +
Diaphragmatic hernia + − + + + + +

Inguinal hernia + + + + + + +
Hypermobile joints + + + + + + +
Muscle hypotonia + + + + − − +

Scoliosis − − + + − + −
Pectus deformities − + + + − + +

Tall Stature − + + + − − −
Aortopathy − − − − + + +
Emphysema − − − + + − +

Gastrointestinal
abnormalities − + + − − − +

Bladder diverticula − + + + + − +
Molecular characteristics EFEMP1 EFEMP1 EFEMP1 EFEMP1 FBLN5 FBLN4 LTBP4

cDNA level c.1201C > T c.163T > C c.163T > C
c.320_324delTG

GCA
c. 615T > A

Protein level p.(Arg401*) p.(Cys55Arg) p.(Cys55Arg) p. (Met107fs)
p.(Tyr205*)

Zygosity Homozygous Homozygous Homozygous Heterozygous
Other VCPKMT and MYO3 variants

Note: ARCL, autosomal recesssive cutis laxa; +: characteristic present; −: not present; a: long face, telecanthus, downslanted palpebral
fissures; b: high anterioir hairline, hypertelorism; c: high anterior hairline, large ears, broad nose, sagging cheecks; d: high anterior hairline,
large ears, long philtrum; Grey background color indicates that the data refer to what is generally observed in ARCL1a, ARCL1b, or
ARCL1c. Based on these data and the following papers: Bizzari et al. (2020) [7], Megarbane et al. (2012) [21], Driver et al. (2020) [8], and
Beyens et al. (2020) [24].
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In conclusion, biallelic loss-of-function variants in EFEMP1 cause a novel HDCT
characterized by cutis laxa and recurrent herniations. As these patients additionally
present with mild cutaneous and pulmonary manifestations, we propose this HDCT to be
a classified as a subtype of ARCL type 1. This observation confirms that EFEMP1 has a
pivotal role in abdominal wall integrity.
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