
Sequence analysis

wft4galaxy: a workflow testing tool for galaxy

Marco Enrico Piras*, Luca Pireddu and Gianluigi Zanetti

Data Intensive Computing, CRS4 (Center of Advanced Studies, Research and Development in Sardinia), Pula

09010, Italy

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on May 2, 2017; revised on June 9, 2017; editorial decision on July 12, 2017; accepted on July 21, 2017

Abstract

Motivation: Workflow managers for scientific analysis provide a high-level programming platform

facilitating standardization, automation, collaboration and access to sophisticated computing

resources. The Galaxy workflow manager provides a prime example of this type of platform. As

compositions of simpler tools, workflows effectively comprise specialized computer programs im-

plementing often very complex analysis procedures. To date, no simple way to automatically test

Galaxy workflows and ensure their correctness has appeared in the literature.

Results: With wft4galaxy we offer a tool to bring automated testing to Galaxy workflows, making

it feasible to bring continuous integration to their development and ensuring that defects are de-

tected promptly. wft4galaxy can be easily installed as a regular Python program or launched dir-

ectly as a Docker container—the latter reducing installation effort to a minimum.

Availability and implementation: Available at https://github.com/phnmnl/wft4galaxy under the

Academic Free License v3.0.

Contact: marcoenrico.piras@crs4.it

1 Introduction

Typical bioinformatics analyses involve a number of steps to extract

information from various forms of raw data; these analysis proced-

ures are often referred to as workflows or pipelines. The pattern is

so common that a number of workflow managers have been created

(Leipzig, 2016) to provide high-level platforms on which to imple-

ment these procedures, supporting simpler and more robust imple-

mentations than would be reasonably feasible with simple shell

scripting. Thus, with the help of workflow managers it becomes

practical to implement ever more complex workflows—in fact,

workflows with tens of steps are not uncommon. The increase in

complexity is accompanied by an increased risk of defects. At best,

these will crash and interrupt an analysis procedure; at worst, they

will produce subtly wrong results which may only be detected much

later. Therefore, given the risks, it seems wise to adopt a mitigation

strategy: it is the authors’ opinion the workflow development should

be as rigorous as any other kind of software development, especially

in light of the growing trend to release and share ‘standard’ work-

flows. Automated workflow testing then should become an import-

ant part of the development process—one which as of yet has not

received a lot of attention.

In this work, we present wft4galaxy, the WorkFlow Testing

tool for the Galaxy data analysis platform (Afgan et al., 2016). To

the best of the authors’ knowledge, wft4galaxy is the first pub-

lished automatic workflow testing tool for Galaxy. wft4galaxy

works based on the unit testing model: a test case is specified as a set

of input datasets and parameters, expected output datasets and the

workflow itself; the workflow is run and the actual and expected

outputs are compared. The testing tool uses Galaxy’s RESTful API

through the object-orienterd interface of the BioBlend package (Leo

et al., 2014) to automate the entire test execution operation as well

as much of the work required to compose the test cases. Of note,

our tool is currently used in production within the PhenoMeNal

project (http://phenomenal-h2020.eu) to continuously test the work-

flows integrated in the platform.

2 Materials and methods

The testing model provided by wft4galaxy is centered around test

cases. Each test case defines a workflow and a specific scenario

which is to be tested. It contains: the path of the workflow definition

file; optionally, the parameters of the various workflow steps; the

VC The Author 2017. Published by Oxford University Press. 3805

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 33(23), 2017, 3805–3807

doi: 10.1093/bioinformatics/btx461

Advance Access Publication Date: 24 July 2017

Applications Note

https://github.com/phnmnl/wft4galaxy
http://phenomenal-h2020.eu
https://academic.oup.com/


datasets to be used as workflow inputs; and, finally, expected output

datasets. Any number of test cases are collected in a YAML file such

as the one shown in Listing 1.

The test definition file is the input for the wft4galaxy test run-

ner, which automatically executes the entire collection of tests. For

each test, the runner connects to an available Galaxy instance pro-

vided by the user and then, through the Galaxy API: (i) uploads the

workflow; (ii) creates a new Galaxy history; (iii) uploads all the in-

put datasets; (iv) runs the workflow; and (v) downloads output data-

sets. The runner then compares the output to the expected datasets

using a comparator function (by default, simple file equality).

Finally, all test results are collected and reported.

Listing 1. Example of “Test definition file”

workflows:

test_case:

file: “workflow.ga”

params:

3:

“respC”: “gender”

inputs:

“DataMatrix”: “input/dataMatrix.tsv”

expected:

output:

file: “expected/Univariate_variableMetadata.tsv”

comparator: “comparators.csv_srcl”

As an aid to users having to write test definitions, wft4galaxy pro-

vides a template generator: this tool creates a blank definition and a

well-structured directory to contain a test suite. wft4galaxy offers

flexibility in the selection of appropriate comparator functions. The

default one simply verifies that the files are identical. However, this

method is not always appropriate—consider, for instance situations

where an analysis may have multiple solutions of comparable qual-

ity or cases that are subject to some acceptable degree of round-off

error. To handle these cases wft4galaxy allows the user to over-

ride the default behaviour with customized comparator functions,

which must be simple Python callables with the signature shown in

Listing 2. When specified in a test definition, the custom comparator

is automatically loaded and invoked by the wft4galaxy frame-

work to decide whether or not the generated output is acceptable for

the test. The wft4galaxy framework provides a growing package

of ready-made comparators (called wft4galaxy.comparators),

which also includes the default base_comparator. Of course, users

can also implement their own comparator functions for their tests.

Listing 2. Signature of a comparator function.

def my_comparator(generated_file_path, expected_file_path):

“““Return True if the two files are “equal”; False otherwise.”””

As the individual tests are executed, wft4galaxy prints to standard

output information about the tests in progress. The format of

the output is modelled after the one presented by the Python Unit

Test Framework—i.e. for every test case, wft4galaxy prints

whether it passed or failed. For debugging, more detailed logging

can be activated; users can also choose to retain all output files pro-

duced by a test run for further analysis and debugging (by default,

as soon as the test completes all its datasets and Galaxy histories are

deleted).

Automatic test case generation. The wft4galaxy framework

further simplifies the creation of workflow test cases through the

wft4galaxy-wizard, which generates ‘ready-to-run’ workflow

test cases from existing Galaxy histories. With the wizard, the steps

to create a working test case are reduced to the following. First, the

user creates a new history with the required input datasets. Then,

the user runs the workflow, after setting any required tool param-

eters. The workflow should produce a set of new output datasets

within the same history. Now, assuming that the workflow has pro-

duced correct results, the history can be transformed into a test case

by running the wft4galaxy-wizard. The wizard will inspect the

history to extract and store the underlying workflow (i.e. its .ga def-

inition file) and all its datasets (both input and output) in a new test

directory. The suite definition file is then automatically generated: it

will contain a single test case configured to execute the extracted

workflow on the input datasets and compare the generated datasets

to the outputs of the recorded workflow run.

Programmatic Usage. To integrate wft4galaxy with third-party

tools or for elaborate automation requirements, it can also be used

programmatically. Its API is organized around two main packages:

wft4galaxy.core and wft4galaxy.wrapper. The former contains

the core logic of the test framework, exposing an Object-Oriented

(OO) API for defining and running test cases and test suites pro-

grammatically (Listing 3 shows an example of its usage). On the

other hand, the latter package contains an OO representation of

Galaxy workflows and histories providing a simplified way to inspect

inputs, parameters and outputs of tested Galaxy workflows and

histories.

Listing 3. Programmatic test case definition and execution.

from wft4galaxy.core import WorkflowTestCase

workflow_filename¼“workflow.ga”

inputs¼ {“InputText”: {“file”: “input”}}

expected¼ {“OutputText”: {“file”: “expected_outputs”}}

test_case¼WorkflowTestCase(base_path, workflow_filename,

inputs, expected_outputs)

test_result¼ test_case.run(enable_logger¼True)

test_result.check_output(“OutputText”)

Docker integration. wft4galaxy can easily run within a Docker

container, completely avoiding any installation hassles. This feature

is particularly useful when using continuous integration (CI) services

such as Travis CI and Jenkins, where users benefit from not using

root privileges for installing new software packages. To simplify the

usage of the wft4galaxy Docker image, we provide the wft4ga-

laxy-docker script, which configures the container execution to

use wft4galaxy as if it were locally installed. The script can be run

standalone, after simply downloading it from the wft4galaxy

GitHub repository.

3 Conclusion

wft4galaxy is a tool to simplify and automate workflow tests. It

supports the adoption of ‘unit testing’ and continuous integration

into the workflow development and maintenance process. Its native

support for Docker enables easy integration with specialized CI sys-

tems, such as Jenkins. Indeed, within the PhenoMeNal project,

Jenkins with wft4galaxy are used to test complex workflows such

as the ones described by De Atauri et al. (De Atauri et al., 2016).

Although in its current version wft4galaxy is tied to the Galaxy

platform, in the future we would like to investigate the feasibility of

extending it to work with other workflow management systems and,

in particular, implementations of the Common Workflow Language

(Amstutz et al., 2016). The full documentation for wft4galaxy is

available at http://wft4galaxy.readthedocs.io.

3806 M.E.Piras et al.

http://wft4galaxy.readthedocs.io


Acknowledgement

The authors would like to thank the fellow members of the PhenoMeNal

team for their valuable feedback.

Funding

This work was partially supported by the European Commission’s

Horizon2020 programme under the PhenoMeNal project (grant agreement

number 654241) and by the Region of Sardinia under project ABLE.

Conflict of Interest: none declared.

References

Afgan,E. et al. (2016) The Galaxy platform for accessible, reproducible and

collaborative biomedical analyses: 2016 update. Nucleic Acids Res., 44,

gkw343.

Amstutz,P. et al. (2016) Common Workflow Language, v1. 0. figshare.

De Atauri,P. et al. (2016) Workflows For Fluxomics In The Framework Of

Phenomenal Project.

Leipzig,J. (2016) A review of bioinformatic pipeline frameworks. Brief.

Bioinf., 18, bbw020.

Leo,S. et al. (2014) BioBlend.objects: Metacomputing with galaxy.

Bioinformatics, 30, 2816–2817.

wft4galaxy 3807


