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Abstract 

Heart failure (HF) with preserved ejection fraction (HFpEF) is the most common form of HF in older adults, and is increasing in preva-
lence as the population ages. Furthermore, HFpEF is increasing out of proportion to HF with reduced EF (HFrEF), and its prognosis is 
worsening while that of HFrEF is improving. Despite the importance of HFpEF, our understanding of its pathophysiology is incomplete, and 
optimal treatment remains largely undefined. A cardinal feature of HFpEF is reduced exercise tolerance, which correlates with symptoms as 
well as reduced quality of life. The traditional concepts of exercise limitations have focused on central dysfunction related to poor cardiac 
pump function. However, the mechanisms are not exclusive to the heart and lungs, and the understanding of the pathophysiology of this dis-
ease has evolved. Substantial attention has focused on defining the central versus peripheral mechanisms underlying the reduced functional 
capacity and exercise tolerance among patients with HF. In fact, physical training can improve exercise tolerance via peripheral adaptive 
mechanisms even in the absence of favorable central hemodynamic function. In addition, the drug trials performed to date in HFpEF that 
have focused on influencing cardiovascular function have not improved exercise capacity. This suggests that peripheral limitations may play 
a significant role in HF limiting exercise tolerance, a hallmark feature of HFpEF. 
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1  Introduction  

Heart failure (HF) with preserved ejection fraction 
(HFpEF) is the predominant form of HF in older adults, and 
is increasing in prevalence as the overall population ages.[1] 

Although the long-term mortality in HFpEF is similar to HF 
with reduced EF (HFrEF), guideline based medications that 
improve survival in HFrEF have not been successful in re-
ducing mortality in HFpEF patients.[2–7] 

This syndrome was historically considered to be caused 
exclusively by left ventricular (LV) diastolic dysfunction. 
However, recent data from multiple sources indicating that 
even in well-characterized, symptomatic HFpEF, many pa-
tients do not have echo-Doppler indexes of diastolic dys-
function that differ greatly from that expected based on age 
and comorbidities.[8,9] These findings suggested that abnor-
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malities of intrinsic diastolic function may not always be 
present during or completely explain the occurrence of 
HFpEF.[10] In acknowledgement of these considerations, as 
well as data supporting a broader paradigm for HFpEF pa-
thophysiology and outcomes, the 2013 American College of 
Cardiology/American Heart Association (ACC/AHA) HF 
management guideline takes a practical, approach to HFpEF. 
It states that the diagnosis of HFpEF is based on: (1) typical 
symptoms and signs of HF; (2) normal or near normal 
LVEF; and (3) no other obvious factors to account for the 
apparent HF symptoms, including significant valvular ab-
normalities.[11]  

Substantial attention has focused on defining the central 
versus peripheral mechanisms underlying the reduced func-
tional capacity and symptoms among patients with HF.  
Numerous prior studies have investigated the physiological 
mechanisms underlining the reduced exercise intolerance in 
patients with HFrEF,[12–14] however much less is known 
regarding its mechanisms in patients with HFpEF. In this 
review, we will summarize the current understanding of the 
pathophysiology of exercise intolerance and how peripheral 
limitations, including skeletal muscle, contribute to exercise 
intolerance in HFpEF patients. 
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2  Epidemiology of HFpEF  

HFpEF is the most common form of HF in older adults. 
The annual incidence of HF in both men and women dou-
bles with every decade increase in age after age 65, and the 
prevalence of HF increases from less than 0.5% in the age 
group of 20–39 years to more than 10% in those 80 years of 
age and older.[1] Elderly persons have a substantial risk for 
death after a diagnosis of HF, and a normal LVEF does not 
ensure a favorable outcome, (Figure 1).[15] Although the ad-
justed mortality risk was greatest in participants with HFrEF, 
only a minority of community-based elderly persons were in 
this category.[15] Outcomes following hospitalization for 
decompensated HFpEF are quite poor, with over 1/3 of pa-
tients dead or rehospitalized within 60–90 days of dis-
charge.[16]  

 

Figure 1.  Survival of patients in the cardiovascular health 
study. Control: nested case controls without heart failure; DHF: 
heart failure with a normal ejection fraction; Asx LVD: reduced 
ejection fraction with no symptoms of heart failure; SHF: systolic 
heart failure. Modified from: Gottdiener, et al.[15] 

3  Pathophysiology of exercise intolerance  

The primary chronic symptom in patients with HFpEF, 
even when well compensated, is severe exercise intolerance, 
which can be measured objectively as decreased peak oxy-
gen consumed during maximal effort exercise (peak VO2), 
and is a strong determinant of prognosis and reduced quality 
of life.[17,18]  

According to the Fick equation, VO2 is equal to the 
product of cardiac output (CO) and arterial–venous oxygen 
content difference (A-VO2 Diff); therefore, the reduced 
peak VO2 in patients with HFpEF may be caused by de-
creased CO or by decreased oxygen delivery to or impaired 
oxygen utilization by the exercising skeletal muscles. Early 
studies suggested that the reduced peak VO2 in HFpEF pa-
tients was primarily due to reduced CO secondary to an 
inability to increase end-diastolic volume and stroke volume 
via the Frank-Starling mechanism.[19] However, this study 
had a very small number of patients, only four of whom 

would be considered typical HFpEF by current criteria. 
Further, in that study, there was a trend toward reduced 
“calculated” A-VO2 Diff in HFpEF. Later, other investiga-
tors found that the blunted CO was secondary to chrono-
tropic incompetence,[20,21 impaired systolic reserve function 
and vasodilator reserve,[21] or abnormal ventricular -vascular 
coupling.[22] In contrast, others have found that the reduced 
peak VO2 is due to reductions in both peak CO and “calcu-
lated” A-VO2 Diff [19,23,24] or primarily due to reduced peak 
A-VO2 Diff secondary to impaired skeletal muscle oxidative 
metabolism.[25] Although peak VO2 has been observed to 
correlate with both changes in CO and A-VO2 Diff with 
exercise in patients with HFpEF, recent studies have re-
ported that peak A-VO2 Diff or the change in A-VO2 Diff 
from rest to peak exercise is the strongest independent pre-
dictor of peak VO2.[20,23,26] Reduced peak heart rate (chrono-
tropic incompetence) was present in the HFpEF patients and 
contributed to reduced CO, however there was no difference 
in stroke volume response compared to healthy age-ma-
tched controls. Moreover, Haykowsky, et al.[27] found that 
improved peak “calculated” A-VO2 Diff accounted for the 
nearly all of the improvement in peak VO2 following exer-
cise training with no significant improvement in CO. Simi-
larly, a full year of training in 12 invasively studied HFpEF 
patients failed to alter cardiac compliance or improve ven-
tricular-arterial coupling.[28] In a recent updated and more 
comprehensive meta-analysis of six randomized controlled 
trials of exercise training in patients with HFpEF revealed 
exercise training improved peak VO2 and quality of life 
without any significant change in resting diastolic or sys-
tolic function.[29] Accordingly, impaired skeletal muscle O2 

extraction may be an important factor limiting exercise tol-
erance in HFpEF.  

Importantly, the finding of increased peak A-VO2 Diff 
indicates that after exercise training there was an improve-
ment in either diffusive oxygen transport via improved pe-
ripheral vascular, microvascular function and/or skeletal 
muscle adaptations that increase diffusive oxygen transport 
and/or improvements in oxygen extraction by skeletal mus-
cle.[28,30,31] 

4  Impaired arterial function 

In healthy older adults, the 11-fold increase in blood flow 
to the active muscles during peak cycle exercise is caused 
by sympathetic-mediated redistribution of blood from 
non-exercising regions to the working muscles coupled with 
metabolic-mediated vasodilation in the exercising mus-
cles.[32,33] Normal aging is associated with significant altera-
tions in peripheral arterial blood flow responses at rest and 
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after a variety of stressors, including exercise.[34–37] Changes 
in central and peripheral arterial function may result in inef-
ficient distribution of CO to the active muscles and contrib-
ute to exercise intolerance in patients with HFpEF.[17] 

Conduit artery (aorta and large artery) stiffening occurs 
as part of the normal aging process which can be accentu-
ated by many of the diseases associated with HFpEF. Both 
aortic distensibility[38] and carotid artery distensibility[39] are 
severely reduced in elderly HFpEF patients and correlate 
with their degree of exercise intolerance and objectively 
measured peak exercise VO2. Puntawangkoon, et al.[40] found 
that post-exercise submaximal exercise leg blood flow was 
reduced in older HF patients versus healthy controls. They 
also indicated that older HF patients have reduced leg blood 
flow with exercise beyond that which is associated with 
normal aging.  

Impaired peripheral arterial endothelial function may re-
sult in impaired exercise blood flow reserve in patients with 
HFpEF. Using phase-contrast magnetic resonance imaging 
(superficial femoral artery), Hundley, et al.[41] showed that 
resting and flow-mediated increases in leg blood flow in 
elderly HFpEF patients are not significantly impaired and 
are similar to those of age-matched healthy subjects. Hay-
kowsky, et al[42] using high resolution brachial artery ultra-
sound to assess flow-mediated dilation and healthy age 
matched controls, found no reduction in endothelial function 
in HFpEF patients who were free of clinically significant 
coronary, cerebrovascular, and peripheral arterial disease. 

Similarly, in elderly HFpEF patients, 16 weeks of endur-
ance exercise training improved peak VO2 without altering 
endothelial function or arterial stiffness.[43] In a recent pilot 
study, four weeks of exercise training in HFpEF patients 
significantly improved VO2 without affecting endothelial 
function assessed by brachial artery flow-mediated dila-
tion.[44] This suggests that large vessel endothelial dysfunc-
tion may not be an inherent feature of HFpEF. An important 
feature of these studies was exclusion of patients with any 
evidence of clinical atherosclerosis, which is known to in-
dependently reduce endothelial function.  

However, flow-mediated vasodilation in large conduit 
arteries (e.g., femoral) may differ from that observed in the 
microvasculature. Microvascular endothelial dysfunction as 
measured by digital artery tonometry was impaired in 
HFpEF compared with controls and correlated with reduced 
exercise capacity and greater symptoms.[21] Similarly in an-
other study microvascular endothelial dysfunction was an 
independent predictor of poorer prognosis, mainly readmis-
sion, in patients with HFpEF.[45] A consequence of the 
blunted microvascular reserve is that it may be associated 
with decreased diffusive oxygen transport to the active  

muscle, which would reduce exercise tolerance. Recently in 
an autopsy-based study, Mohammed et al.[8] reported re-
duced microvascular density in HFpEF patients which was 
independent of coronary artery disease and hypertension 
and in adjusted analyses appeared to account for the in-
creased fibrosis. Their findings suggest that co morbidities 
other than hypertension may perpetuate microvascular rare-
faction.[8] Advanced age and common HFpEF comorbidities 
such as obesity, systemic hypertension and diabetes mellitus 
have been shown to be associated with coronary microvas-
cular dysfunction.[46,47] This supports an over-arching hy-
pothesis for HFpEF pathogenesis as originally proposed by 
Paulus: a systemic pro-inflammatory state that results in 
systemic arterial and microvascular dysfunction.[48] Indeed 
peripheral endothelial dysfunction might impair matching of 
perfusion to regional demand in skeletal muscle microcir-
culation.[49] 

5  Role of skeletal muscle in exercise intolerance 

After delivery of O2 to skeletal muscle, O2 utilization is 
dependent on the pathway consisting of skeletal muscle 
tissue microcirculatory O2 exchange vessels and muscle 
units. Decreased AVO2D diff may suggests a potential role 
of impaired skeletal muscle vasodilatory capacity in small 
resistance vessels. Moreover In healthy individuals, there is 
a net increase in level of O2 extraction relative to O2 deliv-
ery during exercise.[50] This is indicated by an exer-
cise‐related fall in O2 levels in venous blood, consistent with 
increased utilization of O2 by respiring mitochondria rela-
tive to the rate of increase in O2 delivery.[50] It is known that 
in conditions in which there is a defect in oxygen utilization, 
such as mitochondrial myopathies, the peak VO2 is de-
pressed despite normal cardiac function.[51] 

Esposito and colleagues have demonstrated that HFrEF 
severely reduces muscle oxygen diffusion conductance and 
this may also account for poor muscle function and exercise 
intolerance.[49,52] It is well known that in HFrEF every facet 
of the O2 transport pathway is compromised, which can 
explain the premature fatigue in this condition.[49] In addi-
tion, morphologic and histochemical changes in skeletal 
muscle have been described in HFrEF, including marked 
abnormalities in skeletal muscle mass, density, fiber type, 
oxidative metabolism, mitochondrial mass, and mitochon-
drial function.[53–57] The multinational SICA-HF study found 
that muscle wasting is a frequent co-morbidity among pa-
tients with chronic HFrEF and associated with worse exer-
cise capacity.[58]  

As most of these studies have been performed in patients 
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with HFrEF, the specific changes of skeletal muscle in pa-
tients with HFpEF were limited.  

6  Skeletal muscle mass, oxygen utilization 
and exercise intolerance in HFpEF 

Using dual energy X-ray absorptiometry, Haykowsky 
and colleagues found percent body fat and percent leg fat 
were significantly increased, whereas percent body lean and 

leg lean mass were significantly reduced, in older HFpEF 
patients versus healthy controls.[59] Moreover, the slope of 
the relation of peak VO2 with percent leg lean mass was 
markedly reduced in the HFpEF versus healthy control 
group. These investigators extended these results by directly 
characterizing thigh muscle composition using phase-con-
trast MRI, which showed abnormal fat infiltration into the 
thigh skeletal muscle and that this was associated with re-
duced peak exercise VO2 in HFpEF (Figure 2).[60]  

 

Figure 2.  Magnetic resonance imaging axial image of the mid-thigh in a patient with HFpEF and HC. Red = skeletal muscle; green = 
IMF; blue = subcutaneous fat; purple = femoral cortex; yellow = femoral medulla. IMF (green) is substantially increased in the patient with 
HFpEF compared with the HC despite similar subcutaneous fat. HC: healthy controls; HFpEF: heart failure with preserved ejection fraction; 
IMF: intermuscular fat. 

In adipose tissue, either adipocytes directly or infiltrating 
macrophages produces pro-inflammatory cytokines,[61] and 
these cytokines have direct catabolic effects on skeletal 
muscle. Thus, a pro-inflammatory state may be one of the 
key factors in creating a vicious cycle of decreased muscle 
strength among older adults. Moreover, it has been hy-
pothesized that muscle fat infiltration causes insulin resis-
tance in obese individuals.[62,63] Insulin resistance promotes 
muscle catabolism, mitochondrial dysfunction, and impairs 
protein synthesis in skeletal muscle. Heinonen, et al,[64] us-
ing positron emission tomography, found that adipose tissue 
blood flow adjacent to the active muscles increased seven-
fold during continuous isometric knee-extension exercise in 
non-obese younger healthy sedentary women. Thus, in-
creased thigh intermuscular fat in older patients with HFpEF 
may “steal” blood that would normally be delivered to the 
active muscles during exercise thereby reducing perfusive 
oxygen delivery to the thigh muscle. Thus, fatty infiltration 
of skeletal muscle is associated with reduced strength[65.66] 
and functional status,[67] muscle dysfunction,[66] decreased 
contractility,[66] and reduced mitochondrial mass, biogenesis, 

oxidative metabolism.[68] Indeed, using phosphate-31 mag-
netic resonance spectroscopy during and after performing 
static leg lifts, they revealed impaired skeletal muscle oxi-
dative metabolism in patients with HFpEF.[25] 

Together, these findings support the concept that altered 
skeletal muscle composition (remodeling) and poor “qual-
ity” of skeletal muscle may contribute to the reduced peak 
VO2 found in older HFpEF patients.  

Kitzman, et al.[69] further showed compared with HC 
subjects, older HFpEF patients had a shift in skeletal muscle 
fiber type distribution with a reduced percentage of slow 
twitch type I fibers and reduced type I-to-type-II fiber ratio 
and reduced capillary-to-fiber ratio. Furthermore, both the 
capillary-to-fiber ratio and percentage of type I fibers were 
significant, independent predictors of peak VO2 (Figure 3). 

A reduction in the percentage of type I fibers could be asso-
ciated with reduced oxidative capacity and mitochondrial 
density and thereby contribute to the reduced peak VO2 in 
HFpEF. The reduction in blood flow to exercising muscle 
may lead to greater reliance on anaerobic glycolysis, pre-
disposing to earlier exhaustion. The pattern of altered skele- 



298 Upadhya B, et al. Exercise intolerance in heart failure with preserved ejection fraction 
 

Journal of Geriatric Cardiology | jgc@jgc301.com; http://www.jgc301.com 

 

Figure 3.  Relationship of capillary-to-fiber ratio (A) and 
percentage of type I muscle fibers (B) with peak O2 uptake 
(VO2) in older patients with heart failure with preserved ejec-
tion fraction (■) and age-matched healthy control subjects (▲). 

tal muscle fiber type and capillary-to-fiber ratio that ob-
served in elderly HFpEF patients is strikingly similar to that 
reported by others in HFrEF patients,[54,70–72] and the fiber 
type alteration is dissimilar to that seen with aging alone.[73] 
This parallels with a recent systematic autopsy-based study, 
that showed HFpEF patients had reduced microvascular 
density in cardiac muscle.[8] Therefore, the reduced capil-
lary-to-fiber ratio in HFpEF patients would be expected to 
result in a decreased diffusive capacity for O2 transport to 
active skeletal muscle during exercise and limit exercise 
capacity.[49] 

Potential causes for the skeletal muscle abnormalities in 
HFpEF patients might include neuroendocrine activation, 
sympathetic overdrive, oxidative stress, inflammation, ab-
normal Ca2+ cycling and excitation-contraction coupling, 
and deconditioning[74] (though skeletal muscle dysfunction 
has been shown to occur in HFrEF in the absence of decon-
ditioning).[75]  

7  Impact of aging, frailty and comorbidities  

Aging is associated with a progressive decline in exercise 

capacity and decreased physiological reserve in cardiovas-
cular function as well as in most other organ systems. Aging 
is associated with a decline in a variety of neural, hormonal 
and environmental trophic signals to muscle that can result 
in loss of muscle mass and mass-specific strength.[76–78] This 
can also contribute to aging associated characteristic chan-
ges in body composition, including decreases in lean body 
mass and muscle strength, and increases in adiposity.[79–81] 

In addition, aging is associated with a systemic pro inflam-
matory state, and associated with increased levels of cyto-
kines,[82–85] that may lead to a functional decline in multiple 
organs even in absence of a specific disease.[86]  

The majority of older HFpEF patients have multiple co-
morbidities and high proportions are frail.[87,88] The adverse 
impacts of aging, frailty and comorbidities on functional 
capacity and clinical outcomes are cumulative and synergis-
tic.[88] This synergy may be mediated in large part by the 
reduction in physical activity that accompanies each condi-
tion. Muscle atrophy leads to reduction in metabolic rate 
both at rest and during physical activity, thus further aggra-
vating the sedentary state, all of which can cause obesity. 
Approximately 85% of elderly HFpEF patients are over-
weight or obese, and the HFpEF epidemic has largely par-
alleled the obesity epidemic.[89] Obesity has a similar pa-
thophysiological burden on skeletal muscle with aging, 
including inflammation, oxidative stress, and insulin resis-
tance.[62,90]  

Furthermore, aging and obesity, which are well estab-
lished, risk factors for both HFpEF and several common 
respiratory diseases [like chronic obstructive lung disease 
(COPD)]. In addition, COPD occurs in approximately 
one-third of HF patients, with a slightly higher prevalence in 
HFpEF patients compared with HFrEF patients.[91] More-
over, patients with preserved EF do not have the alternative 
diagnosis of low EF; they may be more likely to receive a 
COPD diagnosis as an explanation for dyspnea.[92,93] Inter-
estingly, in a recent pilot study, lung function abnormalities 
are seen among 94% in patients with HFpEF, in that cohort, 
93% of patients with a restrictive ventilatory abnormality 
were overweight (BMI > 25 kg/m2).[94] Thus, these lung 
functional abnormalities can be due to either HFpEF itself 
and/or to the presence of concomitant comorbid respiratory 
diseases. 

It is noteworthy that patients with multiple comorbidities 
have often been actively excluded from clinical HF studies, 
thereby producing results that may not be applicable to typi-
cal older HFpEF patients.[95] Mounting evidence indicates 
that in the elderly HFpEF population, non-HF hospitaliza-
tions dominate and non-cardiac reasons account for a large 
proportion of overall deaths.[87] Given such a multi-factorial, 
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complex milieu, it’s not surprising that drugs and interven-
tions aimed primarily at a central hemodynamics repeatedly 
failed to strongly impact overall outcomes in HFpEF.[2–7] 
Given these considerations, what kinds of novel interven-
tions are promising? 

8  Therapeutic options and clinical outcomes 

Pharmacological trials in HFpEF to improve outcomes 
and symptoms have been particularly disappointing.[2–7] Of 
the three large randomized trials of angiotensin-converting 
enzyme inhibitor (ACE-I)/angiotensin II type I receptor 
blocker (ARB) performed to date in HFpEF, only the 
CHARM-preserved study found nominal benefit for cande-
sartan in reducing HF hospitalizations over three years of 
follow-up.[6,7] I-PRESERVE was a very large, multi-center 
trial of HFpEF and enrolled 4,128 patients and randomly 
assigned them to the ARB, irbesartan or placebo. Mortality 
or rates of hospitalizations for cardiovascular causes were 
not improved by treatment with an ARB.[2] The Aldo-DHF 
trial of 12 months treatment of spironolactone aldosterone 
inhibitor improved some measures of diastolic function, 
though maximal exercise capacity, clinical symptoms, and 
quality of life were not changed.[4] The large TOPCAT trial 
of spironolactone failed to show statistically significant 
benefit for the clinical composite primary end -point. Simi-
larly, the role of β-blockers remains uncertain and data to 
date have not been encouraging. Both carvedilol (the J-DHF 
study) and nebivolol (ELANDD study) had neutral effects 
on their primary outcomes in HFpEF patients.[96,97] In the 
Digitalis Interaction Group trial (DIG), there was a trend 
noted towards decreased hospitalization and improved exer-
cise tolerance in a subgroup of 988 patients with EF > 45% 
who were randomized to placebo or to digoxin.[98]  

9  Novel pharmacological agents 

In a recent RELAX trial, sildenafil did not improve 
6-min walk distance or quality of life, and was associated 
with modest worsening of renal function.[99] The DILATE-1 
study showed that riociguat, a soluble guanylate cyclase 
stimulator, did not have any impact on the primary end 
-point of peak change in mean pulmonary artery pressure in 
patients with HFpEF and pulmonary hypertension.[100] Even 
though observational data in HFpEF patients suggest a 
mortality benefit with use of HMG-Co-A reductase inhibi-
tors, definitive trials have not been performed yet.[101,102] In a 
seven-day study, ivabradine, a selective sinus node If so-
dium channel inhibitor increased peak VO2 in 61 patients 
with HFpEF.[103] Compared to valsartan alone, the LCZ696 

(Neprilysin, the zinc-dependent metalloprotease that de-
grades biologically active natriuretic peptides) group had 
significantly lower NT-pro BNP levels and at 36 weeks, 
decreased LA size and showed a trend toward improved 
functional class in PARAMOUNT study.[104] The findings 
of this phase-2 study are promising and a large, multi-center 
trial, PARAGON, is underway comparing LCZ696 to val-
sartan in patients with HFpEF. Serelaxin, a recombinant 
form of human relaxin-2, administered to acute HF patients, 
caused in improvement of symptoms with a reduction in 
180-day mortality, compared with placebo.[105,106] In HFpEF 
patients, treatment with a sitaxsentan sodium selective en-
dothelin type A receptor antagonist appeared to increase 
exercise time on the treadmill. This agent (as were other 
endothlelin type A antogonsits) was not beneficial in multi-
ple outcomes trials of HFrEF; it had hepatotoxicity, and has 
been removed from development. Thus, novel agents tested 
for HFpEF to date have fared only a little better than the 
standard agents adapted from treatment of HFrEF. 

The most evidenced-based promising way strategy at 
present to improve exercise intolerance in HFpEF patients 
appears to be exercise training, but the optimal approach is 
still unknown. Four months of endurance exercise training 
increased peak VO2, ventilatory anaerobic threshold, 6-min 
walk distance, and physical quality-of-life scores in patients 
with HFpEF.[107] These results were confirmed in a subse-
quent multicenter study of 64 HFpEF patients randomized 
to three months of combined exercise training and strength 
training.[108] In four months of upper and lower extremity 
endurance exercise training, Kitzman, et al.[43] found a sig-
nificant increase in peak VO2 without altering carotid arte-
rial stiffness or brachial artery flow mediated dilation in 
HFpEF patients. Taken together, the few studies performed 
to date indicate that endurance exercise training is an effec-
tive nonpharmacologic therapy that improves clinically sta-
ble patients with HFpEF exercise tolerance. In a recent 
meta-analysis, exercise training improves physical function 
and quality of life in patients with HFpEF. This improve-
ment appears to occur primarily through non-cardiac 
mechanisms, such as improved arterial and skeletal muscle 
function.[29]  

Traditional exercise training programs for patients with 
HFpEF have primarily focused on moderate intensity en-
durance exercise training. Despite favorable anti-remodeling 
and quality of life benefits, moderate-intensity training is 
associated with relatively moderate improvements in peak 
VO2.[109,110] A meta-analysis of seven small trials showed 
that high-intensity aerobic interval training in HFrEF pa-
tients was more effective than traditional continuous mod-
erate-intensity exercise in increasing peak VO2 whereas 
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changes in LVEF were not significant.[111] Recently, Angadi, 
et al.[44] showed that in HFpEF patients four weeks of high 
intensity interval training significantly improved peak VO2 

compared to moderate-intensity aerobic continuous training. 

Even though this study had a small sample size, it suggests 
that high intensity interval training might provide a more 
robust stimulus than moderate-intensity aerobic continuous 
training for early exercise training adaptations in HFpEF. A 
randomized multi-center study comparing three months 
supervised moderate intensity continuous training versus 
high intensity interval training versus a control group fol-
lowed by nine months of telemedically monitored home-ba-
sed training is under way.[112] 

Furthermore, the effects of aging, multiple comorbidities, 
and frailty on the use of exercise training in older HF pa-
tients are profound. The marked impairment of aerobic ca-
pacity, ambulatory function, strength, and balance often 
seen in this population presents major challenges to effec-
tively and safely implement exercise training. Progress will 
likely require innovative multidisciplinary team approaches 
that recognize the importance of non-cardiac factors.  

10  New avenues for HFpEF 

In addition, emerging evidence suggests that enhancing 
nitric oxide bioavailability by beetroot juice or inorganic 
nitrate supplementation can effectively lower the mitochon-
drial O2 cost of ATP production, thereby lowering the exer-
cising VO2 requirement.[113] Recently, Zamani, et al.[114] 

found that a single dose of inorganic nitrate administered 
before exercise significantly improves peak VO2 in subjects 
with HFpEF by improving the peripheral response to exer-
cise and by providing greater O2 delivery to exercising 
muscles. Several current clinical trials are testing novel 
agents to regenerate skeletal muscle in elderly with multiple 
comorbidities and sarcopenia; if successful, these could 
inform new approaches to HFpEF. If HFpEF is triggered by 
systemic inflammation, then a promising signal is the novel 
agent LCZ696, an angiotensin receptor neprilysin inhibitor, 
which is currently being tested in a large clinical trial. This 
agent appears to reduce tumor necrosis factor-α levels and 
this correlates with improvements in cardiac features of 
HFpEF.[115] Another potential signal is that statins may 
modify systemic inflammation and stabilize endothelium.[116] 

Intentional weight loss via caloric restriction has the po-
tential to reduce excess adiposity. However, weight loss is 
controversial in patients with HF. More recently, a U-shap-
ed curve relating survival to body weight has shown excess 
mortality at the extremes, morbid obesity and cachexia. 
These trends are seen in HFpEF as well.[117] Therapeutically, 

injection of a myostatin-blocking antibody in mice with 
preexisting HF preserved muscle mass.[118] Thus, myostatin 
inhibition might be a medically relevant avenue for the 
treatment of muscle wasting in HF. In a recent randomized 
trial in patients with HFrEF, growth hormone replacement 
increased peak VO2 and exercise duration, and improved 
quality of life.[119] A meta-analysis of modestly sized ran-
domized, placebo-controlled trials showed that testosterone 
supplementation in patients with HFrEF is associated with 
an increase of about 54 m on the 6 min walk test, as well as 
improvements in peak VO2 and NYHA class.[120] However, 
these hormones also have the potential to increase LV mass, 
which is already abnormally increased in some HFPEF pa-
tients. Thus, these hormones administration requires formal 
testing specifically in older HFpEF patients.  

11   Conclusions 

In summary, recent work indicates that peripheral ab-
normalities contribute significantly to symptoms of exercise 
intolerance in elderly HFpEF patients. Future therapeutic 
strategies are needed to improve exercise tolerance by tar-
geting the integrated functions of these systems. This is par-
ticularly relevant since skeletal muscle and microvascular 
function often have greater capacity for regeneration than 
cardiac muscle. A paradigm shift in our understanding of 
the mechanisms that may be targeted in HFpEF, and the 
patients most likely to benefit from these targeted ap-
proaches, is needed. 
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