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Chitin-based barrier immunity and its loss predated
mucus-colonization by indigenous gut microbiota
Keisuke Nakashima 1, Satoshi Kimura2,3, Yu Ogawa2,8, Soichi Watanabe4, Satoshi Soma4,9, Toyoji Kaneko4,

Lixy Yamada5, Hitoshi Sawada5, Che-Huang Tung6,10, Tsai-Ming Lu6,11, Jr-Kai Yu 6, Alejandro Villar-Briones7,

Sakura Kikuchi1 & Noriyuki Satoh 1

Mammalian gut microbiota are integral to host health. However, how this association began

remains unclear. We show that in basal chordates the gut space is radially compartmenta-

lized into a luminal part where food microbes pass and an almost axenic peripheral part,

defined by membranous delamination of the gut epithelium. While this membrane, framed

with chitin nanofibers, structurally resembles invertebrate peritrophic membranes, proteome

supports its affinity to mammalian mucus layers, where gut microbiota colonize. In ray-finned

fish, intestines harbor indigenous microbes, but chitinous membranes segregate these

luminal microbes from the surrounding mucus layer. These data suggest that chitin-based

barrier immunity is an ancient system, the loss of which, at least in mammals, provided

mucus layers as a novel niche for microbial colonization. These findings provide a missing link

for intestinal immune systems in animals, revealing disparate mucosal environment in model

organisms and highlighting the loss of a proven system as innovation.
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Mammalian guts harbor indigenous microbial commu-
nities that show high population densities, diverse
taxonomic compositions, and beneficial effects on host

health1. Mucosal immune systems maintain gut homeostasis by
eliminating pathogens, while tolerating and harnessing the indi-
genous microbes for beneficial associations2,3. Reciprocally, gut
microbiota affect proper development of mucosal immune sys-
tems by stimulating innate and adaptive immune responses4,5.
Although it was generally believed that the memory competence
of adaptive immunity enhances resistance to previously encoun-
tered pathogens, growing evidence suggests that it provides more
versatile means to shape and manage a complex microbial
community in the intestine6,7. In fact, gut microbiota of inver-
tebrates, which lack adaptive immunity, are generally far less
complex and prone to be shaped by environmental microbial
composition8,9. It remains unclear how the mammalian gut
microbiota arose and coevolved with mucosal immune systems in
the diverse milieu of animal–microbe association10. Based on the
notion that complex biological systems can be discriminated into
ancestral and derived features when properly set in an evolu-
tionary framework, we addressed these questions by conducting a
comparative analysis of chordates, an animal lineage that includes
two invertebrate groups, tunicates and lancelets, as well as
vertebrates11.

Results
Compartmentalization of the gut space by envelope mem-
branes. Chordates show a remarkable diversity of food habits that
is accompanied by morphological changes in the pharyngeal
region (Supplementary Fig. 1). We point out that the diverse food
habit of chordates originated from a distinct type of particulate
feeding. Tunicates and lancelets employ unique mucus nets
secreted from the endostyle, a pharyngeal organ that is a chordate
invention and that is homologous to the vertebrate thyroid, to
separate particulate matter from seawater flowing through the gill
slits12 (Fig. 1a–d; Supplementary Fig. 2; Supplementary Movies 1
and 2). The high capacity and non-selectivity of this filtration
system subject the intestinal mucosal surface to an immense and
continual bacterial load, but how these invertebrate chordates
protect themselves from food microbes that include potential
pathogens is unknown. We found that the tunicate, Ciona
intestinalis Type A, defecates filtrating mucus nets that are
enveloped by transparent membranous structures (Fig. 1e, f). We
observed by dissection that this envelope membrane first appears
in the stomach and wraps mucus nets through the gut. Scanning
electron microscopy (SEM) showed that the formation of envel-
ope membranes proceed in the manner of delamination from the
gut epithelium (Fig. 1g–k). Cross-sections revealed that envelope
membranes confine ingested microbes to the luminal space,
maintaining the ciliated epithelium free of microbes (Fig. 1m, n).
PCR-amplification of 16S ribosomal RNA (rRNA) genes con-
firmed the axenic condition (Fig. 1o).

Envelope membranes are framed with chitin nanofibers. We
then examined structural features and chemical composition of
the envelope membranes. Alkaline removal of proteinous com-
ponents from intact porous membranes revealed a multilayered,
meshed framework of randomly oriented nanofibers (Fig. 1k, l).
Nanofibers are the plausible morphology of natural chitin. The
average size of the mesh was 65.6 ± 23.0 nm (n= 100), which is
smaller than most marine bacteria (1 μm). Fourier transform
infrared spectroscopy (FT-IR), which provides information of
chemical composition, and X-ray diffraction, which provides
scattering profiles of crystalline compounds, demonstrated that
the purified frameworks are composed of chitin and cellulose

(Fig. 2a, b). Tunicates are the only animal group known to syn-
thesize cellulose13. Negative-staining TEM confirmed two types
of crystalline nanofiber: abundant thin fibers (>10 nm diameter)
and sparse thick ones (>20 nm diameter) (Fig. 2c). Electron dif-
fraction of a single thick fiber gave clear reflection signals char-
acteristic of cellulose (Fig. 2d), whereas a bundle of thin fibers
emitted obscured signals of chitin, probably due to the small
crystallite size (Fig. 2e). Chemically purified frameworks, which
can be visualized using fluorescent probes conjugated with chitin-
binding domain protein (Fig. 2g), were eliminated by chitinase,
but not cellulase treatment. In the chitinase reaction, mass
spectrometry analysis detected the release of N-acetylglucosamine
and N-acetylchitobiose, which are the expected degradation
products of chitin (Fig. 2f, Supplementary Fig. 3). Together, these
data show that the meshed framework of envelope membranes
consists chiefly of chitin with intermingled cellulose nanofibers.

Envelope membranes contribute to gut barrier immunity.
Next, we tested the possibility that the chitinous membranes are
relevant to formation and maintenance of the axenic space over
the gut epithelium (Fig. 1m–o). We isolated the Ciona chitin
synthase gene, Ci-CHS (Supplementary Fig. 4), and verified its
expression in the stomach and the intestine using RNA in situ
hybridization (Fig. 2h). Inhibition of chitin synthase activity using
a substrate analog Nikkomycin Z14 caused disruption of envelope
membranes, which allowed direct microbial contact with gut
enterocytes (Fig. 2i). This caused a drop of survival rate from
76.2% (n= 84) in a control group, which was reared in filtered
seawater, to 4.8% (n= 84) in the experimental group, reared in
the presence of pathogenic marine bacteria (Fig. 2j). Because the
antibiotic Streptomycin maintained higher survivorship (83.3%,
n= 102), toxic effects of Nikkomycin Z to Ciona can be excluded,
similar to the case of amphibians14. These data suggest that
envelope membranes framed with endogenous chitin promote
gut homeostasis by acting as a physical barrier.

Proteome of envelope membranes. The chitinous framework
of envelope membranes is buried within the surface matrix
(Fig. 1k, l). To gain functional insights into this matrix, we
identified protein components of envelope membranes using
mass spectrometry (MS)-based proteomic analyses (Supplemen-
tary Table 1). The most abundant protein component was
Ci-MACPF1, a putative, secreted, pore-forming protein of the
membrane-attack complex/perforin (MACPF) family15 (Fig. 3a,
Supplementary Fig. 5a–c). MACPF family proteins are essential
for cytolytic activities in various organisms, e.g., nematocyst
toxin, malaria virulence factor or human complement system15.
Our attempt to assess recombinant Ci-MACPF1 proteins for
cytolytic activities is in progress.

Second in abundance was a variable region-containing chitin-
binding protein (VCBP) VCBP-C (Fig. 3b). This protein binds to
gut luminal bacteria via its N-terminal variable-type immuno-
globulin domains, thereby acting as an opsonin to enhance
bacterial phagocytosis in the lamina propria16. It has been also
suggested that the C-terminal chitin-binding domain (CBD)
recognizes self and non-self chitin, based on immunostaining
data for VCBP-C and a chimeric human IgG1 Fc-CBD protein17.
Our proteomic data add another line of evidence in favor
of this view. VCBP-C recognizes endogenous chitin in the
envelope membranes. Furthermore, recombinant VCBP-C tethers
gut-derived Bacillus sp. to chitin beads (Fig. 3c, Supplementary
Fig. 5d). These data suggest that VCBP-C helps minimize
microbial access to the epithelium by trapping bacteria on the
chitinous barrier.
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Fig. 1 Gut barrier membrane of the tunicate Ciona intestinalis Type A. a–c The feeding mechanism of C. intestinalis Type A (a, juvenile specimen; b, anatomy;
c, horizontal section at the dotted line in b). Cyan and magenta arrows denote the flows of seawater and mucus nets (MuN), respectively. While seawater,
drawn from the oral siphon (OrS) into the branchial sac (BrS, gray), passes through the gill slits (GiS) to be expelled from the atrial siphon (AtS),
particulate matter in seawater is trapped with mucus nets covering the inside of the branchial sac (magenta dotted lines in c). Mucus nets, secreted
from the endostyle (En) and conveyed to the dorsal lamina (DoL), are rolled up as a single mucus cord (MuC, a red line in b), which is then
transported posteriorly to the esophagus (Es) and the stomach (St). The mucus cord is recognizable due to trapped red beads. d An SEM image of
rectangular mucus net and a trapped microbe (arrowhead). e A mucus cord isolated from the dorsal lamina. f Feces. A winding mucus cord is enveloped
inside a transparent membrane. g–l The formation of envelope membranes (SEM images). g Intestinal mucosal surface with epithelial ridges. h The apical
side of epithelial cells projects into the luminal space, and cilia extend from spaces between projections. i The epithelial surface is covered with a
membrane that cilia penetrate (arrows). j A delaminating membrane from the epithelium. Cilia, but not projections, are recognizable. k The porous surface
of a delaminated membrane. l The chemically purified framework of a membrane: meshed nanofibers. m, n Cross-sections showing axenic spaces (double-
headed arrows) over the gut epithelium (Ep) (m, TEM; n, light microscopy). Intestinal microbes (Mi) are confined to the luminal space by multi-layered
membranes (* or false-colored green). An arrowhead indicates one of the cilium sections. o Confirmation of the axenic condition by PCR amplifications
of 16S rRNA genes. M, markers; Pc, positive control (food microbes); Me, isolated membranes enclosing food residues. Scale bars a 200 μm; d, m 1 μm;
e, f, 500 μm; g–j, 5 μm; k, l 100 nm, and n 8 μm
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Third in abundance was a large mosaic protein (2880 amino
acids) having 30 domains of 13 types. The overall arrangement
of these domains and 113 cysteine residues is conserved
with human gel-forming mucins (GFMs)18 and von Willebrand
factor (VWF)19 (Fig. 3d, Supplementary Fig. 5e). GFMs and
VWF diverge from a common progenitor gene by acquiring
different modules in their central regions: densely O-glycosylated
proline–threonine–serine-rich (PTS) domains in GFMs and
platelet-binding VWA domains in VWF20. We noted a small
PTS domain (50 amino acid residues) in the central region of the
Ciona protein, so we named it Ci-GFM1. Ci-GFM1 retains all
five cysteine residues that form intermolecular disulfide bonds
essential for multimeric structures of GFM and VWF18,19 (Fig. 3e,

Supplementary Fig. 5e). Ci-GFM1 also harbors a CBD. We thus
predict that multimeric Ci-GFM1 lines the chitinous wall of
the intestinal barrier, though this needs to be tested in future.
Collectively, the proteomic data support the view that the
intestinal physical barrier is immunologically fortified with
matrix components (Fig. 4a).

Intestinal chitinous membranes are prevalent in chordates. The
finding of chitin-based barrier immunity in the gut of the tunicate
Ciona raises the question of how it is related to intestinal immune
mechanisms of other animal groups (Fig. 4b). In many inverte-
brate groups, a membranous matrix surrounds food residues in
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Fig. 2 The chitinous framework of Ciona barrier membranes. a, b Spectroscopic and crystalline profiles of the meshed framework purified from Ciona barrier
membranes (a, FT-IR spectra; b, X-ray diffractograms). Magenta and cyan vertical lines indicate peak positions that are specific to chitin (α allomorph) or
cellulose (Iβ allomorph), respectively. c A negative stain TEM image of a purified framework showing two types of crystalline nanofiber. A white arrowhead
indicates a sparse, thick fiber meshed with abundant thin fibers. d An electron diffractogram of a single thick fiber showing cellulose (Iβ allomorph)-specific
reflections indexed with the lattice planes (110) (white arrowhead) and (004) (white double arrowhead). e An electron diffractogram of thin fibers,
showing chitin-specific signals assigned to the lattice planes (020) (arrowhead) and (002) (double arrowhead). f Mass spectrometry-based time course
relative quantification of N-acetylglucosamine (NAG) and N-acetylchitobiose (di-NAG) released from a purified framework under chitinase treatment. For
details, see Supplementary Fig. 3. g A purified framework visualized with a fluorescent probe conjugated with a chitin-binding domain protein. h Whole-
mount in situ hybridization showing expression of the chitin synthase gene Ci-CHS in the stomach (St) and anterior intestine (In). i, j Barrier membranes
are essential for survival. i A TEM image of gut cross-section of the specimen treated with the chitin synthase inhibitor, Nikkomycin Z (30 μM). Intestinal
microbes (Mi) directly contact the gut epithelium (Ep). j Reduced survivorship caused by Nikkomycin Z treatment, which can be compensated in aseptic
conditions promoted by the antibiotic, streptomycin (50 μg/mL). NIK nikkomycin Z; STM streptomycin. Scale bars c 100 nm; g, h 100 μm, and i 5 μm
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the midgut, persists through the intestine and often accumulates
in fecal pellets21. This so-called peritrophic matrix (PM) contains
chitin in arthropods and annelids, although other groups lack
detectable chitin21,22. Because insect PMs are targets of pest
control and malaria research23, we were able to compare them in
detail with the Ciona membrane. They share a mesh of chitin

nanofibers synthesized by homologous chitin synthases, but they
differ in protein composition. Insect PM proteomes commonly
consist of proteins with multiple CBD or PTS domains, or both,
but lack MACPF, VCBP, and GFM23. In contrast, our proteomic
data suggest an affinity to mammals, because GFMs are the
main structural components of mammalian mucus layers18,24.
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Therefore, we hypothesize that the envelope membrane of Ciona
represents an evolutionary link between invertebrate PMs and
mammalian mucus layers (Fig. 4b). To bridge the gap between
them, we examined the guts of chordate lineages that occupy
phylogenetically intervening positions between invertebrates and
mammals, as follows: a basal chordate Branchiostoma floridae
(lancelet), a jawless vertebrate Eptatretus atami (hagfish), and a
jawed vertebrate Oreochromis mossambicus, known as Mozam-
bique tilapia, one of the popular aquaculture species worldwide
(ray-finned fish). Using structural, chemical, crystallographic, and
gene expression criteria, we demonstrated intestinal chitinous
membranes devoid of cellulose in these organisms (Figs. 5, 6b,
Supplementary Fig. 6a–q).

Chitin-based barrier immunity in ray-finned fish. We further
investigated the ray-finned fish, O. mossambicus, because the
presence of intestinal chitinous membranes seemingly contradicts
the widely accepted view that gut mucosal surfaces of ray-finned
fishes are covered with a mucus layer colonized with indigenous
microbes, as in mammals25,26. Actually, intestines of O. mos-
sambicus harbor an indigenous microbial community, as revealed
by 16S rRNA gene analysis of digesta (Fig. 6c and Supplementary
Table 2). In the posterior intestine, called the distal major coil, the
dominant group (61.8%) at the generic level was Cetobacterium, a
fusobacterium that is widely distributed in intestines of freshwater
fish and is regarded as the source of host vitamin B1227,28. The
second most abundant group (5.1%) was the verrucomicrobe,
Akkermansia, which includes a key mucin-degrader in human
guts29. These indigenous microbes are associated with digesta
mucus, which is derived from the gills and the esophagus30

(Fig. 6d). Nevertheless, this microbial community was separated
from the surrounding mucus layer that is secreted by goblet cells
in the epithelial crypts, and enclosed by the chitinous membranes
(Fig. 6e, f and Supplementary Fig. 6r–t). We noted a small
number of DAPI signals at the surface of the mucus layer, yet it
remains unclear whether these signals are occasional bacterial
breaches or mucus-colonizing taxa. Numbers of nuclear-staining
DAPI signals in the luminal or peripheral spaces, demarcated by
a CBD-visualized membrane, were 95.9 ± 29.0 and 0.6 ± 1.0 (in a
quadrat frame of 50 × 50 μm, n= 26), respectively.

This segregation between gut microbes and the mucus layer
contrasted with what is known about mice, in which mucus
organization varies along the longitudinal axis of the intestine31.
While ileum mucus is loose and unattached to the gut epithelium
(Fig. 6h), colonic mucus covers the epithelium, forming two

layers: the inner layer is firm and devoid of bacteria, and the outer
is loose and densely colonized by gut microbes (Fig. 6i–l). Indeed,
we were unable to detect chitin in mice by either CBD-staining
or chemical purification. On the other hand, we obtained CBD-
staining signals in gut sections of ray-finned fishes, zebrafish
and rainbow trout (Fig. 6n–s). These data provide in situ profiles
of possible chitinous membranes, irrespective of diverse gut
morphology. We further attempted to confirm chitin by chemical
purification from fish feces, but failed due to a paucity of chitin.
Collectively, these data favor the view that the chitin-based
ancestral system is somehow retained in ray-finned fishes, but
was lost in lobe-finned fishes on the evolutionary course to
mammals (Fig. 6m).

Discussion
This comparative study showed the presence of chitin-based
barrier immunity in chordate guts (Fig. 4a). While intestinal
chitinous membranes, termed PM, have been appreciated for
barrier immunity, nutrition and other physiological functions in
invertebrates21,32, it has long been held that chitin was lost in
chordates22. This notion was recently challenged by mining
chordate genomes for putative chitin synthase genes33, followed
by obtaining an infrared spectrum of chitin from Atlantic salmon
scales34. Intestinal chitin has also been suggested in zebrafish34

and C. intestinalis Type A17 based on staining data using CBD
and calcofluor-white, but it remains obscure because these
molecules are not specific to chitin. For instance, this type of
CBD, classified in the carbohydrate-binding module family 14,
recognizes at least chitin, hyaluronan and N-glycans on glyco-
proteins35. Calcofluor-white binds firmly to several β-1,3- and β-
1,4-glucans beside chitin36. Given this technical limitation, care
should be taken to avoid confusion due to misinterpretation of
staining data, as exemplified by past cases for wheat germ
agglutinin or aqueous iodine, known as chitosan test21,22. In these
staining methods, the presence of chitin is sufficient to raise
staining signals; however, staining signals does not necessarily
mean the presence of chitin. Actually, these molecules are ver-
satile and practical tools to detect “potential” chitin in situ
(Fig. 6f, o, p, r, s). Instead, the present structural data at the
nanoscale, combined with physical and chemical evaluations,
demonstrated intestinal chitin in chordates and allowed us to
consider its physiological relevance.

In light of animal phylogeny, the chitin-based barrier immu-
nity in chordate guts bridges the gap between the invertebrate PM
and the mammalian mucus layer, which have not been thought to

Fig. 3 Protein components of the Ciona barrier membrane. a Domain structure of the membrane-attack complex/perforin family protein, Ci-MACPF1 (951
amino acid residue [aa]). Ci-MACPF1 consists of a signal peptide, 10 thrombospondin type 1 repeats (TSR) domains (cyan), an MACPF domain (yellow)
and an epidermal growth factor (EGF)-like domain (magenta). MACPF domains are essential for cytolytic activities, as in human complement factor 6 (Hs-
C6) and human perforin (Hs-Perforin). For details, see Supplementary Figure 5. b Domain structure of the variable-region containing chitin-binding protein,
VCBP-C (349 aa). VCBP-C consists of a signal peptide, two variable-type immunoglobulin (Ig-V) domains and a chitin-binding domain (CBD) of
carbohydrate-binding module family 14. Horizontal lines denote the regions corresponding to N-terminally His-tagged recombinant proteins: Wt, ΔC, and
ΔV. c Upper panels show that VCBP-C binds to chitin beads using CBD. Recombinant proteins are visualized with chromogenic detection of His-tag
(purple). Lower panels show that Wt tethers Ciona-gut derived bacilli on chitin beads. Recombinant proteins and bacilli were visualized with confocal laser
scanning microscopy using fluorophore-conjugated anti-His tag antibody (blue) and a nuclear staining reagent, TO-PRO-3 (red), respectively. d Domain
structure of the gel-forming mucin, Ci-GFM1 (2880 aa). Ci-GFM1 is a mosaic protein composed of 30 domains of 13 types. It shares core organization with
human von Willebrand factor (Hs-VWF, 2813 aa) and human GFM (Hs-MUC2, 5179 aa). Common scaffolding consists of D1 (cyan), D2 (yellow), D`D3
(magenta), and D4 (green) assemblies, two von Willebrand C (VWC) domains and a C-terminal cystine knot (CK) domain (blue). Each protein has
additional domains with specific functions. For example, CBD for chitin-binding in Ci-GFM1, von Willebrand A (VWA) domain for platelet binding in Hs-
VWF and proline–threonine–serine-rich (PTS) domain for hyper glycosylation in Hs-MUC2. FN fibronectin type II domain, VWD von Willebrand D domain,
C8 cysteine 8 domain, TIL trypsin inhibitor-like domain, E E domain. e Intermolecular disulfide bonds in D`D3 (magenta) and CK (blue) are essential for the
multimeric structures, concatenating rope of Hs-VWF (left) and flat hexagonal net of Hs-MUC2 (right), which are the structural bases of the physiological
functions of these molecules18, 19. Scale bars c 100 μm
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share common descent (Fig. 4b). This helps us infer how gut
microbes have coevolved with mucosal immune systems that
maintain gut homeostasis in chordates. The co-occurrence of
chitin-based barrier immunity in invertebrate outgroups and the
two basal chordates, lancelets, and tunicates, indicates that an
equivalent system existed in the chordate ancestor. This means
that as filter-feeding non-selectively transported environmental
microbes into the gut space as food (Supplementary Fig. 1 and 2,
Supplementary Movies 1 and 2), these potential pathogens were
confined to the luminal space and kept away from the gut epi-
thelium, being enclosed by chitinous barrier membranes (Fig. 4a).
This radial compartmentalization of the gut space, which we posit
as an ancestral condition of chordates, is observed in the ray-
finned fish, O. mossambicus (Fig. 6), but luminal microbes can be
assimilated in different ways. In suspension-feeding invertebrates,
including basal chordates, enzymatic digestion gradually occurs
across the semi-permeable chitinous membranes, and viable
passage of ingested microbes through the gut is common37. In
contrast, the majority of ingested microbes do not reach the
intestine in jawed vertebrates, including O. mossambicus, because
of bactericidal gastric juice38–40. Although gut dilation for food
storage occurs in invertebrates and termed stomach, as in Ciona,
gastric secretion of hydrochloric acid is an invention of jawed
vertebrates41,42. This gastric barrier to microbial influx appears to
exert further compartmentalization of the gut space long-
itudinally, thereby providing the intestine as a new ecological
niche for survivors. Indeed, microbial profiling confirms dense
population of non-environmental microbes in intestines of var-
ious ray-finned fishes including O. mossambicus43–45 (Fig. 6c).
Thus, the chitinous barrier of O. mossambicus likely contributes
to homeostasis with indigenous microbes as the first line of
defense, together with a broad representation of innate and
adaptive immune responses that are largely conserved in mam-
mals26. Although we consider the condition of O. mossambicus as
a transitionary state from the chordate ancestor to mammals, this
does not preclude other possible states, given the vast diversity of
food-habits and anatomy in ray-finned fishes, e.g., the massive
secondary loss of acidic stomach46 (Fig. 6n, q and Supplementary
Fig. 6g).

The salient feature of the mammalian gut is that chitin-based
barrier immunity no longer exists, and luminal microbes directly
interact with the surrounding, goblet cell-derived GFM mucus.
This GFM mucus fulfills the primordial necessity of limiting
microbial access to host tissue through joint actions with diffusive
effector molecules (e.g., mucosal antibodies or antimicrobial
peptides) in regionally diversified manners3,47 (Fig. 6h–l).
Simultaneously, this protective mucus has a role as a nutrient
source for gut microbes. GFM is heavily and diversely glycosy-
lated on its PTS domains, and these glycans are recognized
and consumed by gut microbes48. This glycan-foraging drives
microbial adaptation to this novel mucosal interface through
competition for persistence49. Especially in the distal gut, where
food-derived carbohydrate is scarce, GFM mucus forms a distinct
niche for dense microbial colonization24,50 (Fig. 6i–l). In turn,
glycan-feeding enables hosts to shape microbial compositions by
manipulating the glycan landscape51. Ecological theory predicts
that this host control over microbial ecosystems was a key for
establishment of the mammalian gut microbiota that is diverse,
but beneficial52. This highlights the loss of chitin as a prerequisite
for colonization of goblet cell-derived GFM mucus by indigenous
gut microbes in mammals. With or without this novel type of
animal–microbe association, the guts of mammals and ray-finned
fish likely provide disparate mucosal environments that impose
distinct selective pressures on microbial composition. This may at
least partly explain why, in reciprocal transplantation of indi-
genous gut microbes between mice and zebrafish, transplanted
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bacteria-seizing VCBP-C (center), and possible multimeric protein Ci-GFM1
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blue dotted circle)21,32, which encloses food matter and luminal
microbes (ovals). The mammalian subgroup of lobe-finned fishes
possesses a GFM-based mucus layer (a yellow circle) that covers the
mucosal surface and hampers microbial access to the epithelium, while
harboring dense microbes (ovals)24,31. The second diagram shows the
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communities change their composition to resemble that of reci-
pients53. In this way, an approach to integrate microbiome data
into evolutionary trajectories of host natural histories would
advance our understanding of this coevolved association.

In conclusion, this comparative study provided a glimpse of
gradual changes in the intestinal mucosal surface in chordates.
We propose a transition from a chitin-based ancestral condition
to a mucin-based derived state (Fig. 7). Concomitantly, gut
microbes appear to have changed position from transient pas-
sengers that are incorporated from the surrounding environment,
as food, to a selected assembly that inhabits the mucus layer as an
integral part of the host fitness. We begin to appreciate that
spatial organization of gut microbes lays the foundation of this
microbial ecosystem54,55. Compartmentalization, which is usually

neglected in gut homogenates prepared for microbiome studies,
may give us further insight into animal–microbe associations in
this digestive and the largest immune organ of the body, the gut.

Methods
Animals. C. intestinalis Type A were supplied by the National BioResource Project
[marinebio.nbrp.jp/index.jsp]. B. floridae and E. atami were collected from Tampa
Bay, Florida, USA and Sagami Bay, Kanagawa, Japan, respectively. O. mossambicus
were obtained from a stock maintained at the University of Tokyo. D. rerio and O.
mykiss were purchased from local fish farmers. C. intestinalis Type A, B. floridae,
and E. atami were maintained in separate tanks supplied with circulating filtered
seawater at 18, 22, and 10 °C, respectively. O. mossambicus, D. rerio, and O. mykiss
were maintained in separate tanks supplied with circulating filtered freshwater at
25, 20 and 20 °C, respectively. Mice were wild-type C57BL/6N (male, 10 weeks,
Charles River Laboratories Japan, Inc). C. intestinalis Type A and B. floridae were
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fed on diatoms (Chaetoceros gracillis) once a day. E. atami can be kept without
feeding for at least 3 weeks. D. rerio and O. mykiss were fed on minced fish once a
day. O. mossambicus were fed on a commercial carp chow (Nihon Haigou Shiryo,
Japan) once a day. Mice were fed a laboratory rodent diet 5001 (Japan SLC, Japan).
Animal experiments were conducted in accordance with guidelines from the
Okinawa Institute of Science and Technology Experimental Animal Committee.

Isolation and purification of envelope membranes. Adult specimens of Ciona
were starved for 2 weeks to clear the gut contents, and then were fed with sepia ink
(Liofresh, TOYO ADL, Japan) or dyed polystyrene beads (Polybead microsphere
10 μm, Polysciences, USA) for 2 h and starved again in a new tank for 4 h. Animals
were anesthetized with gradual addition of 0.8% (w/v) l-menthol (Nacalai tesque,
Japan) in ethanol to the seawater. Intestines were surgically isolated and transferred
to a petri dish filled with phosphate-buffered saline (PBS). Intestines were long-
itudinally opened using scissors and forceps for microsurgery, allowing isolation of
intact envelope membranes. Isolated membranes were rinsed with PBS and fixed
with 4% paraformaldehyde phosphate buffer solution (PFA) (Wako Pure Chemi-
cal, Japan) at 4 °C for 1 h. Fixed membranes were washed with PBS, treated with 1
N KOH at room temperature (RT) for 18 h, washed with PBS and treated with
0.3% NaClO2, buffered at pH 4.8 in acetate buffer, at 80 °C for 3 h. After several
washes with ultrapure water, purified envelope membranes were kept in distilled
water at 4 °C until use.

B. floridae were starved for 1 day to clear the gut contents. Animals were then
fed with sepia ink or polystyrene beads. Feces were collected, fixed with 4% PFA at
4 °C for 1 h and washed with ultrapure water. Fixed specimens were treated with 1
N NaOH at RT for 1 h, which allowed separation of envelope membrane fragments
from feces. Membrane fragments in the supernatant were collected by decantation,

followed by a centrifugation at 10,000×g at RT for 10 min. Precipitates were
chemically purified as described above.

E. atami intermittently excretes a hollow tube of almost the entire gut length.
Tubes were collected, fixed and chemically purified as described above.

O. mossambicus were fed with a chitin-free food prepared from fish meat and
wheat flour for 3 days. Fish were anesthetized with 0.1% 2-phenoxyethanol and
decapitated. Whole intestines were surgically isolated, fixed and chemically purified
as described above.

SEM. Intestines were surgically isolated from anesthetized Ciona, cut open into
small pieces (5 × 5 mm), fixed with 2.5% glutaraldehyde, 4% PFA, 150 mM NaCl,
100 mM HEPES-KOH (pH 7.2) at RT for 2 h and postfixed with 1% osmium
tetroxide, 150 mM NaCl, 100 mM HEPES-KOH (pH 7.2) for 2 h on ice. Fixed
specimens were dehydrated in a graded ethanol series, substituted in t-butyl alcohol
and freeze-dried. Dried specimens were coated with osmium (Neo Osmium Coater,
MeiwaFosis, Japan) and examined using a Hitachi S-4800 at an accelerating voltage
of 0.5–1.0 kV. Mucus cords isolated from the dorsal lamina of Ciona, feces of B.
floridae and chemically purified envelope membranes of C. intestinalis Type A, B.
floridae, E. atami, and O. mossambicus were examined following this protocol.

TEM and negative staining. Young adult specimens (3 months) of C. intestinalis
Type A and adult specimens of B. floridae were reared in natural seawater for
3 days, anesthetized with l-menthol and fixed as for SEM. Fixed specimens were
dehydrated in a graded ethanol series, substituted in propylene oxide and
embedded in epoxy resin, followed by polymerization at 70 °C for 16 h. Ultrathin
sectioning (80 nm thickness) was done with a diamond knife (Diatome, USA) and
an Ultracut UCT ultramicrotome (Leica, Germany). Sections were picked up on
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Formvar-coated copper grids, stained with aqueous uranyl acetate and lead citrate
and examined under a JEM 2000 EX II (Jeol, Japan) operated at 200 kV with a
CCD camera (Keen view, Olympus soft image solutions, Germany). For negative
staining, purified envelope membranes were mounted on carbon-coated hydro-
philic grids, stained with 0.5% uranyl acetate, air-dried, and examined as described
above.

Toluidine blue staining. Young adult specimens (3 months) of C. intestinalis Type
A and adult specimens of B. floridae were fixed, embedded in epoxy resin and
semithin sectioned (1 μm thickness) as for TEM. Sections were stained with 0.05%
toluidine blue solution (pH 7.0) (Wako Pure Chemical, Japan) and photographed
using an M205MA fluorescence microscope (Leica, Germany).

Confirmation of axenic conditions using PCR. Intestines were surgically isolated
from anesthetized adult specimens of C. intestinalis Type A (n= 3), rinsed with
PBS and transferred to a sterile petri dish. After absorbing excess PBS with sterile
filter papers, the intestines were longitudinally cut open as described above, and
envelope membranes were transferred to sterile petri dishes. The middle part of the
anterior or posterior half of each envelope membrane were sectioned (3 mm
length) and collected to separate microtubes. Pieces of the epithelium (3 × 3mm)
were excised from the corresponding part of the remaining gut tissues and collected
to separate microtubes. Specimens were treated with 180 μL of 50 mM NaOH at
95 °C for 10 min, mixed with 20 μL of 1 M Tri-HCl (pH 8.0) and centrifuged at
12,500×g at RT for 10 min. Supernatants were collected for PCR amplification
using KOD FX Neo DNA polymerase (Toyobo, Japan) and 16S universal primers:
27f (AGAGTTTGATCMTGGCTCAG) and 1492r (TACGGYTACCTTGTTACGA
CTT). Reaction products were assessed by agarose gel electrophoresis followed by
SYBR safe staining (Thermo Fisher Scientific, USA). Amplification of 16S rRNA
genes was confirmed by subcloning and Sanger sequencing of PCR products.

FT-IR spectroscopy. Purified membranes were deposited on a Teflon sheet and
allowed to air-dry. FT-IR spectra were recorded with 4 per cm resolution and
64 scans on a Nicolet Magna 860 (Thermo Fisher Scientific, USA) in a transmission
mode.

X-ray diffraction. X-ray diffraction patterns were obtained from purified envelope
membranes using Ni-filtered Cu Kα radiation (λ= 0.15418 nm) from a rotating
anode X-ray generator (RU-200BH, Rigaku, Japan) operated at voltage of 50 kV
and excitation current of 100 mA. Diffraction patterns were recorded using a
camera system equipped with a flat imaging plate (BAS-IP SR127, Fujifilm, Japan).
The camera length was calibrated using NaF (d= 0.23166 nm).

Electron diffraction. Purified membranes were dispersed in ultrapure water by
sonication (Bioruptor UCW-310, BM Equipment, Japan). Aliquots were mounted
on carbon-coated hydrophilic grids and air-dried. Micro-diffraction was done with
a JEM 2000 EX II operated at 200 kV. A small electron probe was generated with a
condenser aperture of 20 μm and focused to a diameter of about 100 nm upon
diffraction. Diffraction patterns were recorded on FDR-UR-V imaging plates
(Fujifilm, Japan) with a camera length of 15 cm and an irradiation period of 1–2 s.

MS analysis of chitinase product. Purified envelope membranes of C. intestinalis
Type A, B. floridae, E. atami and O. mossambicus were separately treated with
recombinant hyperthermophilic chitinase PF-ChiA from Pyrococcus furiosus
(Thermostable Enzyme Laboratory, Japan) following manufacturer’s instructions.
An aliquot (5 μL) was collected from each reaction at 0, 1, 2, 3 and 4 h after the
onset of reaction and subjected to LC-MS analyses. For LC, we used an ACQUITY
UPLC-I-class (Waters, USA) equipped with an ACQUITY UPLC BEH amide
column and performed with a 5-min gradient from 80/20 to 25/75 MeCN/H2O
with 0.1% NH4OH at a flow rate of 0.17 mL/min. For MS, we used a SYNAPT G2-S
(Waters, USA) in ES+ ionization mode with capillary voltage at 2.0 kV, cone
voltage at 25 V, source temperature at 120 °C desolvation temperatures at 350 °C, a
desolvation gas flow of 500 L/h, cone gas flows of 50 L/h, scan time of 0.2 ms at a
high resolution mode (35,000 full-width at half maximum) and a lock mass of Leu-
enkephalin (556.27 m/z) at every 60 s.

Molecular cloning of chordate chitin synthases. Total RNA was isolated from
young adult specimens (1 month) of C. intestinalis Type A, reverse-transcribed and
used for RT-PCR56. Primers were designed from a transcript KH.L22.57.v1.B.ND1-
1 (1481 bp) identified by tblastn searches in the ghost database57 using invertebrate
chitin synthases as queries. It was necessary to conduct rounds of rapid amplifi-
cation of cDNA ends (RACE) (Marathon cDNA amplification kit, Clontech, USA)
to obtain full-length transcripts (5487 bp) encoding Ci-CHS. Primer sequences
used in this study are provided in Supplementary Table 3.

B. floridae EST clones bfad030d07 and bflv038m04 were obtained from the
cDNA database58 by tblastn search with Ci-CHS as a query. These clones partially
encoded 582 and 988 amino acid residues of putative chitin synthases and were
used as queries for blastp searches at NCBI59 to obtain hypothetical proteins

BRAFLDRAFT_68947 and BRAFLDRAFT_118918, respectively. Other putative
chitin synthases of B. floridae were identified in silico elsewhere33.

Total RNA was isolated from whole intestines of O. mossambicus, reverse-
transcribed and used for RT-PCR60. Primers were designed based on results of
tblastn searches with Ci-CHS as a query in the genome assembly Orenil1.1 (http://
www.ncbi.nlm.nih.gov/assembly/354508/) of the sister species, Oreochromis
niloticus. PCR products were subcloned and sequenced as described above.

In situ hybridization. Young adult specimens (1 months) of C. intestinalis Type A
were used for in situ hybridization with an RNA probe synthesized from full-length
Ci-CHS, as previously reported56.

Juvenile specimens (~1 cm long) of B. floridae were used for in situ
hybridization61. We used the EST clones bfad030d07 and bflv038m04 to synthesize
probes for BRAFLDRAFT_68947 and BRAFLDRAFT_118918, respectively.

Whole intestines of O. mossambicus were surgically isolated and fixed with 4%
PFA at 4 °C for 16 h. Fixed specimens were embedded in paraffin, sectioned (10 µm
thickness) and used for in situ hybridization60. An RNA probe was synthesized
from a DNA fragment that was amplified from Om-CHS1 by PCR using primers,
GCTCGCAGGTCAGATTAC and AGGTCTTCAGTTGTCAGGA.

Inhibition of chitin synthesis. Young adult specimens of C. intestinalis Type A
(3 months, n= 84) were reared at 18 °C in natural seawater for 3 days. Water was
switched to filtered seawater containing 30 μM Nikkomycin Z (Sigma, USA),
Serratia fonticola (1.5x104 colony forming unit [CFU]/mL), Staphylococcus epi-
dermidis (7.5 × 104 CFU/mL) and Vibrio ezurae (7.5 × 104 CFU/mL). Control
group (n= 84) lacks Nikkomycin Z, and the second experiment group (n= 102)
contains additional 100 μg/mL Streptomycin sulfate (Wako Pure Chemical, Japan).
Water was changed every 3 days, and viability of animals was evaluated under light
microscopy after 2 weeks.

Proteome analysis. An envelope membrane was isolated from an adult specimen
fed with sepia ink in filtered seawater as describe above, cut open in sterile PBS and
separated from a luminal mucus cord, followed by several washes with PBS. A
small piece of membrane (3 × 3 mm) was excised and treated with 0.1 mL of 2.5%
(w/v) lithium dodecyl sulfate/1% (v/v) dithiothreitol solution at 95 °C for 10 min.
After cooling to RT, the specimen was centrifuged at 10,000×g for 15 min at 20 °C.
Supernatant was collected, 4-fold diluted with ultrapure water and dissolved in
NuPAGE LDS sample buffer (Thermo Fisher Scientific, USA). Proteins were
separated on a 10% SDS-PAGE gel, size fractionated, and digested with trypsin for
liquid chromatography-tandem mass spectrometry62. Digested peptides were
analyzed using a capillary liquid chromatography system Ultima3000 (Dionex,
USA) connected online to a mass spectrometer (LTQ-XL; Thermo Scientific, USA).
Raw spectral data were processed using SEQUEST software to extract peak lists.
Peak lists were analyzed using MASCOT against the Ciona protein database63. As
control experiments, we conducted the same analyses with mucus cords isolated
from the dorsal lamina. We accepted results for envelope membranes when they
are concentrated more than five time than in controls. Full-length transcripts that
encode the most frequently identified three components Ci-MACPF1, VCBP-C,
and Ci-GFM1 were isolated by RT-PCR and RACE, as described above. Primers for
RT-PCR were designed from transcripts KH.C1.45.v1.A.ND1-1, KH.C4.625.v1.A.
nonSL2-1, and KH.L10838.v2.A.ND1-1, respectively.

Binding assay of recombinant VCBP-C. The full-length transcript of VCBP-C,
which encodes 349 amino acid residues, was used as a PCR template to amplify
DNA fragments encoding mature VCBP-C (Wt), a deletion mutant of C-terminal
CBD (ΔC) or that of N-terminal two Ig-V domains (ΔV), which covers residues 22-
349, 22–280, or 278–349, respectively. PCR products were inserted in frame
between the Factor Xa recognition site and the stop codon of pCold I vector
(Takara Bio, Japan) by In-Fusion cloning (Clontech, USA). We added a short
linker of two glycine residues after the Factor Xa recognition site. Recombinant
proteins were expressed in SHuffle Express competent Escherichia coli (New
England BioLabs, USA), followed by cell lysis with B-Per reagent (Thermo Fisher
Scientific, USA) and affinity purification with Talon resin (Clontech, USA). Pur-
ification was assessed by SDS-PAGE and western blotting using anti-His-tag mAb-
HRP-DirecT antibody (Code number: D291-7, Medical & Biological Laboratories,
Japan) at 1:4000 (v/v) dilution with ImmunoStar zeta chemiluminescence reagent
(Wako, Japan) (Supplementary Fig. 5d). Purified recombinant proteins (4 μg each)
were separately mixed with 200 μL of 10% slurry of chitin beads (New England
BioLabs, USA) pre-blocked with 1% casein in PBS (Thermo Fisher Scientific, USA)
and gentry rotated for 5 h at 18 °C. Beads were washed five times with PBS, mixed
with the HRP-conjugated anti-His antibody in PBS (1/5000 dilution), gentry
rotated for 30 min at 18 °C, washed five times with PBS and subjected to color
development with TrueBlue Peroxidase substrate (KPL, USA).

Bacillus sp. isolated from the gut of C. intestinalis Type A were grown in LB
broth at 37 °C. Cells grown to mid-logarithmic phase were harvested by
centrifugation at 5000×g for 5 min and suspended in PBS to 1.5 × 105 CFU/mL. An
aliquot of cell suspension (100 μL) was mixed with equal volume of 10% slurry of
casein-blocked chitin beads together with one of the recombinant proteins (4 μg).
After gentle rotation for 1 h at 18 °C, beads were gently washed twice with PBS by
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gravitational sedimentation and mixed with anti-His-tag mAb-Alexa Fluor 488
antibody (Medical & Biological Laboratories, Japan) in PBS (1/2500 dilution)
containing 0.1% (v/v) TO-PRO-3 nuclear staining reagent (Molecular Probes,
USA). After incubation for 30 min at 18 °C, beads were washed twice with PBS
using gravitational sedimentation, mounted on glass slides with Vectashield
mounting medium (Vector Laboratories, USA) and examined with confocal
microscopy LSM 510 Meta (Zeiss, Germany).

16S rRNA gene analysis of tilapia gut microbes. O. mossambicus was fed with a
chitin-free diet for a week, and the whole intestine was isolated as described above.
The hepatic loop and the distal major coil were longitudinally cut open. Mucus that
covers envelope membranes was removed with sterile filter papers and washed
away with PBS. Envelope membranes were cut open, and luminal digesta was
collected by suction and stored at −80 °C. There was no envelope membrane in the
stomachs of O. mossambicus. Stomach digesta, aquarium water and the chitin-free
food were also collected. Aliquots (20 μL) of thawed specimens were treated with
NaOH, PCR-amplified, subcloned and sequenced, as for axenic PCR. Obtained
sequences were used as queries for blastn searches in 16S ribosomal RNA sequence
database at NCBI. We accepted results when the alignment score was over 200 and
the sequence identity was above 98%.

Alcian blue staining. Whole intestines were isolated from O. mossambicus fed
with chitin-free food. Coiled intestines were extended by cutting mesenteries and
fixed with methacarn solution (60% methanol, 30% chloroform, 10% glacial acetic
acid) for 1 h at RT, then washed with absolute ethanol and dehydrated with
absolute acetone. Dehydrated specimens were embedded in methacrylate resin (n-
butyl methacrylate:methyl methacrylate= 7:3, 1.5% of benzyl peroxide) and
polymerized at 50 °C for 24 h. Semi-thin sections (1 µm thickness) were cut as for
TEM, placed in a drop of water on a glass slides and heat dried at 60 °C. Glass slides
were immersed in acetone to remove resin, followed by rehydration in PBS.
Rehydrated specimens were treated with 3% acetic acid (pH 2.5) for 30 min at RT
and stained with 1% alcian blue in 3% acetic acid (pH 2.5) (Wako Pure Chemicals,
Japan) for 2 h at RT. After washing with 3% acetic acid (pH 2.5), specimens were
dehydrated with an ethanol series, substituted in lemosol (Wako Pure Chemical,
Japan) and mounted on glass slides with MountQuick (Daido Sangyo, Japan).
Images were obtained as for toluidine blue staining.

Mice were fed with cheese that is chitin-free for 24 h. Segments of the ileum and
colon were fixed with methacarn solution for 6 h at RT, and washed and
dehydrated as for O. mossambicus. Specimens were embedded in paraffin,
sectioned (5 μm thickness), de-waxed, and hydrated following standard procedures.
Hydrated sections were stained and photographed as for O. mossambicus with
an additional counterstain using 0.1% nuclear fast red solution (Muto pure
chemicals, Japan).

CBD staining. Gut sections of O. mossambicus and mice were prepared as for
alcian blue staining. D. rerio and O. mykiss were euthanatized by immersion in an
ice bath for 10 min. After fixation with methacarn solution at RT for 1 h, specimens
were embedded in paraffin and sectioned as for mice. Sections were hydrated and
incubated with fluorescein-conjugated CBD (New England BioLabs, USA) in 200-
fold dilution in PBS for 1 h at RT. This CBD derived from chitinase A1 of Bacillus
circulans WL-12 and belongs to the carbohydrate-binding module family 1264.
Sections were washed with PBS, counterstained with 4′,6-Diamidino-2-pheny-
lindole dihydrochloride (DAPI) and mounted with SlowFade antifade reagent
(Thermo Fisher Scientific, USA). Pictures were obtained using an IX71 epi-
fluorescent microscope (Olympus, Japan) with an excitation filter U-MWIB3
(Olympus, Japan) for CBD or U-MWU2 filter (Olympus, Japan) for DAPI.
Numbers of DAPI signal were counted in quadrat frames (50 × 50 μm, n= 26) after
binarization using Photoshop CS6 (Adobe systems, USA).

Expression analysis of Om-CHS1 by RT-PCR. Total RNA was extracted from the
brain, gill, heart, liver, kidney, esophagus, stomach, hepatic loop, proximal major
coil, gastric loop, distal major coil, terminal segment, rectum, muscle and skin of
O. mossambicus, as described above. After checking RNA quality with TapeStation
4200 (Agilent Technologies, USA), RNA samples were reverse-transcribed and
used for RT-PCR with the following primers: TCCTTGTGCTGGTGGTTAT and
AGTTATCTCGCTGTAGTCTGAAT, as previously described60.

Data availability. DNA sequences of Ci-CHS, Ci-MACPF1, Ci-GFM1, and Om-
CHS1 were deposited in DNA Data Bank of Japan with accession codes LC072663,
LC072664, LC072665, and LC072666, respectively. DNA sequences of 16S rRNA
gene amplicons were deposited with accession codes LC409535-LC410039 and
LC410204-LC411764. Proteome data set, including raw data files, processed peak
lists, and database search results, are deposited at jPOST with the Proteo-
meXchange code, PXD010503. The data that support the finding of this study are
available from the corresponding author upon reasonable request.
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