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Insulin resistance (IR) is a precursor event that occurs in multiple organs and underpins
many metabolic disorders. However, due to the lack of effective means to systematically
explore and interpret disease-related tissue crosstalk, the tissue communication
mechanism in pathogenesis of IR has not been elucidated yet. To solve this issue, we
profiled all proteins in white adipose tissue (WAT), liver, and skeletal muscle of a high fat
diet induced IR mouse model via proteomics. A network-based approach was proposed
to explore IR related tissue communications. The cross-tissue interface was constructed,
in which the inter-tissue connections and also their up and downstream processes were
particularly inspected. By functional quantification, liver was recognized as the only organ
that can output abnormal carbohydrate metabolic signals, clearly highlighting its central
role in regulation of glucose homeostasis. Especially, the CD36–PPAR axis in liver and
WAT was identified and verified as a potential bridge that links cross-tissue signals with
intracellular metabolism, thereby promoting the progression of IR through a PCK1-
mediated lipotoxicity mechanism. The cross-tissue mechanism unraveled in this study
not only provides novel insights into the pathogenesis of IR, but also is conducive to
development of precision therapies against various IR associated diseases. With further
improvement, our network-based cross-tissue analytic method would facilitate other
disease-related tissue crosstalk study in the near future.

Keywords: network analysis, tissue crosstalk, multi-tissue analysis, glucose homeostasis, insulin sensitivity
INTRODUCTION

Insulin resistance (IR) is a precursor event to metabolic syndromes and underpins many metabolic
disorders such as obesity, type 2 diabetes (T2D), and cardiovascular disease (1, 2). So far,
considerable efforts have been devoted to investigate the pathogenesis of IR, thereby revealing
several molecular basis for IR in individual tissues (3, 4). However, as a metabolic disorder affecting
multiple organs, the tissue crosstalk mechanism underlying IR has not been elucidated yet.

In physiological conditions, tissues in body are not isolated and their dynamical interplay lays a
cornerstone for the maintenance of whole-body homeostasis. Inter-tissue communication is such a
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vital mechanism for metabolic regulation (5, 6). Several lines of
investigations even pointed a crucial role of tissue communication
in metabolic diseases (7, 8). For example, by integrating multi-
tissue transcriptomics data, the human metabolic activities in
healthy and unhealthy conditions can be precisely predicted (9).
By detecting metabolic profiles of eight tissues, circadian metabolic
relationships were found to be rewired by nutrient challenges (10).
Based on observations from multiple tissues, these outstanding
works offered a whole-organism view for the understanding of
metabolism. Nevertheless, due to the lack of effective means for
crosstalk exploration, the tissue communications related to
metabolic regulation were merely researched.

Although previous researchers tried to use the pair of secreted
molecules and their receptors to describe inter-tissue connections
(5, 11), there is still lack of a systematical characterization for the
entire process of tissue crosstalk and related regulatory events.
Network analysis is a powerful technology which helps to
reproduce all activities within a biological system (12) and hence
has been tried to solve multi-tissue problems (13). Theoretically,
the tissue communications can be represented in form of the
interface across networks of single tissue. Unfortunately, so far,
most of the existing multi-network analysis algorithms were
developed to mine either conservative motifs or dissimilarities
among different networks (14–16). A method targeting
interactions across networks, especially multi-organ networks,
has not been reported yet.

To solve this issue, we proposed a network-based strategy to
explore IR related tissue communications. The protein profiles of
insulin sensitive organs, namely, white adipose tissue (WAT),
liver, and skeletal muscle were detected in an insulin resistance
mouse model via proteomics. A network-based method was
developed to identify the interface between tissues, by which
cross-tissue interactions as well as their up and downstream
functions were particularly inspected. The functional
interpretation of IR related tissue crosstalk not only provided a
novel framework for exploring multilayer network connections,
but also would benefit further precision therapies against various
IR associated diseases.
METHODS

Animals and Samples
Previous studies have shown strong causative relation between
restricted intrauterine growth and adult metabolic reprograming
in rodents (17, 18). To reduce the potential impact of uneven
intrauterine nutrition accompanied by different litter size, we
used a previously developed ICR mouse model (19). Adult (6- to
8-week-old) male and female ICR mice were purchased from
Beijing Vital River Laboratory Animal Technology Co., Ltd. and
caged. Three-week-old pups were weaned and randomly
assigned to insulin resistance (IR) and control (Con) group.
Respectively, they were fed ad libitum for 19 weeks with either
high fat diet (n = 9) composed of 60% Kcal from fat (Beijing HFK
Bioscience Co., LTD., H10060) to induce IR or standard chow
diet (n = 12, Beijing HFK Bioscience Co., LTD., H10010). All
mice were maintained on a 12 h-light/12 h-dark cycle in a
Frontiers in Endocrinology | www.frontiersin.org 2
specific pathogen-free barrier facility. Mice were fasted
overnight before sacrifice. Liver, epididymal fat, quadriceps
femoris and gastrocnemius were collected, shock-frozen in
liquid nitrogen and stored at −80°C. All animal experiments
were performed with the approval of the Animal Ethics
Committee of Hebei General Hospital.

Assessment of Insulin Sensitivity
To assess the insulin sensitivity of experimental mice,
intraperitoneal glucose tolerance test (IPGTT) was performed.
Mice were fasted for 8 h with free access to water before IPGTT.
For each mouse, 50% glucose was injected in abdominal cavity at
dose of 2 g glucose per kg body weight (2 g/kg BW). Blood
glucose of fasting (0), 15, 30, 60, and 120 min were detected from
tail vein blood by glucose analyzer (OneTouch® UltraVue™).
Fasting level of peripheral insulin was measured by ELISA or
according to manufacturers’ instructions (80-INSMSU-
E01, APLCO).

TMT-Based Proteomics Analysis
A total of 9 subjects/group were selected for TMT-based
quantitative proteomics. In this study, technical replicates were
used to increase the number of identified peptides and also to
improve the quantification. Equal protein extracts from each
subject in the same group were pooled together and trypsin
digested to perform LC–MS/MS analysis, which was repeated for
three times. Details on sample preparation, LC–MS/MS assay
and data analysis were provided in Supplementary Methods.
The proteomics data has been deposited to PRIDE (20) with
identifier PXD021046. Proteins with Fold Change ≥1.2 or ≤0.83
and P-value <0.05 (Student’s t test of log2 transformed signals)
were regarded as differentially expressed proteins (DEPs)
between two groups.

Functional Enrichment Analysis
The Gene Ontology annotation about biological process of DEPs
were obtained by BINGO (21). Pathway distribution of DEPs was
extracted from KEGG (22). For better functional interpretation,
disease pathways and global maps in KEGGwere excluded and the
remaining basic pathways were selected into subsequent
enrichment analysis. False discovery rate (FDR) correction of
hypergeometric test was used to measure the significance of
differential proteins co-existing in a GO term or KEGG
pathway. FDR <0.05 was regarded as a sign of significance.

Identification of Metabolic Enzymes and
Signaling Proteins
Metabolic enzymes and signaling proteins are two kinds of
widely-studied functional proteins. In this study, we identified
enzymes from the protein profiles based on whether there was an
EC number corresponding to the protein. To exclude kinases
which functioned as signaling proteins, metabolic enzymes were
further restricted as enzymes that could only be mapped onto a
metabolic pathway in KEGG. As many KEGG signaling
pathways contain both signaling proteins and their target
enzymes, we defined signaling proteins as those could be
mapped to signaling pathways but not to metabolic ones.
January 2022 | Volume 12 | Article 756785
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Chi-square test was used to assess the difference in proportions
of enzyme and signal protein within each tissue’s protein profile.

Constructing Tissue-Specific
Networks of IR
Networks of liver, skeletal muscle, and WAT were separately
constructed via a developed core network generating strategy
(23). Firstly, a Perl script was written to extract all the proteins
and their interactions from the *.kgml files of each mouse
pathway in KEGG (22). Then, for each tissue, its DEPs were
regarded as seed nodes and their connected proteins according to
KEGG were screened. Afterwards, the seed nodes and their
neighbors were connected to generate a seed net specific to one
tissue. Finally, this seed net was simplified by Steiner minimal
tree algorism, helping to cut unnecessary branches mainly
composed by non-DEPs and keep important nodes bridging
seed proteins (24). In order to avoid loss of information, all the
connected components in the seed net were traversed during the
Steiner tree step. In addition, to reduce the computational
complexity, the constructed networks were all undirected.
Finally, all trees obtained from the Steiner step were retained
to constitute the tissue-specific network.

To assess the goodness of these tissue-specific networks, their
topological structures, namely, connected nodes, edges, and
density were compared to random situations. Here, density is
defined as the ratio of existing edges (E) to all potential ones
(E * (E − 1)/2), which descripts sparsity of a net. For each tissue, a
protein set with the same node number as differential proteins
was randomly selected from the background network, thereby
generating a random network. In total, 100 random networks
were constructed for each tissue-specific network. Compared to
corresponding randomizations, tissue-specific network showing
all parameters with |Z| >2.33 (25) was supposed to be
successfully constructed.

Constructing the Interface of Multi-Tissue
Crosstalk Relevant to IR
The interface of tissue crosstalk was constructed to investigate
the communications between different tissues involved in IR. As
primary proteins responsible for tissue communication, secreted
proteins were identified. Based on Uhlén’s prediction (26),
human secreted proteins were converted to their homologous
genes in mouse. Any proteins that cannot be identified as
secreted ones were assigned into non-secreted proteins. Then,
we used the manually curated information in KEGG PATHWAY
(22) as background knowledge for regulatory relationships
between proteins. Notably, these collected interactions were
directed, which further helped to define the up and
downstream processes involved by a given protein. For each
secreted DEPs in tissue A, their regulated non-secretory proteins
in tissue B were searched in network of tissue B and then
regarded as non-secreted receptors. Thus, the cross-tissue
interactions between secretory DEPs and their cross-tissue targets
were extracted. Afterwards, to find the inner-tissue regulatory
events relevant to tissue communication, the (a) connections
between secreted DEPs and their upstream neighbor DEPs and
(b) those between cross-tissue targets and their downstream
Frontiers in Endocrinology | www.frontiersin.org 3
neighbor DEPs within one organ were identified. The inter- and
intra-tissue connections together constituted the interface of
tissue crosstalk.

In addition, for each tissue, to exclude the interference of
secreted proteins coming from other organ, their tissue
specificity was further estimated according to the Genotype
Tissue Expression (GTEx) Project (27). Among the three
insulin sensitive tissues, proteins whose mRNA levels were
more than 10 times lower than any other tissue were
considered to be low-expressed and were excluded from this
tissue when constructing the interface.

Functional Analysis of Cross-Tissue
Interface
To functionally interpret the interface of tissue crosstalk, the up
and downstream regulatory processes of cross-tissue interactions
were investigated. Here, the upstream processes were defined as
the pathways regulating or interacting with secreted proteins.
In the interface of crosstalk, upstream processes can be measured
by the pathways enriched by upstream and secreted proteins
within one tissue (FDR <0.05). Similarly, downstream processes
were defined as the pathways receiving regulation from secreted
proteins and can be measured by pathways enriched by non-
secreted proteins and their targets on the interface.

Validation
Since pooled samples were used during proteomics detection, which
might implicate the significance of DEP signals, the expression of
candidate DEPs was further validated by Western blotting (WB)
assay of individual subjects. Total protein of each sample was
extracted using total protein extraction kit (BC3710, Solarbio)
according to the manufacturers’ instructions. Western blots were
performed by using specific antibody of CD36 (ab133625, Abcam),
ACTIN (4970, CST), fatty acid-binding protein 1 (FABP1, 13368,
CST), fatty acid-binding protein 3 (FABP3, 10676-1-AP,
Proteintech), fatty acid-binding protein 4 (FABP4, 3544, CST),
peroxisome proliferators-activated receptor a (PPARa, 15540-1-
AP, Proteintech), peroxisome proliferators-activated receptor g
(PPARg, 2443, CST), and phosphoenolpyruvate carboxykinase 1
(PCK1, 12940, CST). The images were captured viaMinichemi 610
Plus (Sagecreation, Beijing, China). Serum thrombospondin 4
(THBS4) were measured via enzyme-linked immunosorbent assay
(ELISA) according to manufacturers’ instructions (SED824Mu,
Cloud-Clone Corp.).
RESULTS

High Fat Diet Induced Insulin Resistance
Compared with control group, high fat diet fed mice showed
significantly higher body weight and body mass index (BMI)
(P <0.05, two-tailed Student’s t-test, Supplementary Figures 1A,
B). After 17 weeks of feeding, high fat diet fed mice showed
elevated blood glucose at 0.5, 1, and 2 h after injection of glucose
(P <0.05, two-tailed Student’s t-test, Figure 1A). Correspondingly,
the area under intraperitoneal glucose tolerance test (IPGTT)
curve (AUC) was significantly enlarged as well (P <0.05, two-tailed
January 2022 | Volume 12 | Article 756785
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Student’s t-test, Figure 1B). Besides, higher fasting insulin
demonstrated hyperinsulinemia in high fat diet fed mice (P
<0.05, two-tailed Student’s t-test, Figure 1C), further confirming
insulin resistance in IR group.

Overview of Tissue-Specific Protein
Profiles
In total, 5,854, 5,116, and 3,039 proteins were respectively
quantified in WAT, liver, and skeletal muscle by proteomics. A
total of 1,554, 477, and 219 differential proteins were identified in
WAT, liver, and skeletal muscle, which are respectively listed in
Supplementary Tables 1–3. It was unexpected that only 8
proteins were simultaneously up/downregulated in these
tissues (Figure 2A), which are listed in Supplementary
Table 4. Despite the low coincidence rate, the three DEP
profiles showed quite similar biological functions. Among the
TOP20 most enriched GO terms in the three tissue (see
Supplementary Figure 2), there were more than 50% were
annotated as metabolism-related processes (Figure 2B), which
was in line with their mission as metabolic organs. Similarly, the
three sets of DEPs commonly enriched in 3 KEGG pathways:
pyruvate metabolism, PPAR signaling pathway and
thermogenesis (Figure 2C), which accounted for 12.5, 9.4, and
21.4% of total pathways enriched by WAT, liver, and muscle.
Notably, PPAR pathway was the only signaling pathway
simultaneously enriched by the three tissues, highlighting its
important role in regulation of IR.

Tissue-Specific Networks of IR Showed
Widespread Metabolic Alterations
Based on DEPs, tissue-specific networks of WAT, liver, and
skeletal muscle were constructed, which were shown in
Figures 3A–C. Compared to corresponding random networks,
significantly larger number of connected nodes, edges and
density were found in adipose, liver, and muscle network
(Supplementary Figure 3), suggesting successful construction
of these nets.

It was worthy to note that enzyme-involved interactions
dominated 57.9, 83.5, and 62.1% of the adipose, liver, and
muscle network (Figure 3D), indicating widespread metabolic
Frontiers in Endocrinology | www.frontiersin.org 4
alterations in these tissues. This might be related to their
proportion of metabolic enzymes. Separately, there were 26.8,
41.1, and 37.9% of DEPs in WAT, liver, and skeletal muscle
belonging to metabolic enzymes, the proportion of which was
consistently higher than signaling proteins (Figure 3E).
Especially in liver and skeletal muscle, proportions of
metabolic enzymes in DEPs were significantly larger than
detecting pool (P <0.05, chi-square test, Figure 3E). It was
strongly suggested that, rather than signaling interactions,
wide-ranging metabolic processes were altered during the state
of IR.

Cross-Tissue Alterations Were Preferred
in State of IR
Considering secreted proteins are important functional vehicle
for tissue communication, we screened secreted proteins in
insulin sensitive tissues. According to Uhlén’s prediction (26),
360, 227, and 158 secreted proteins were identified inWAT, liver,
and skeletal muscle (Figure 4A). The most secreted proteins
were detected in WAT, implying its stronger potential for tissue
communication than liver and skeletal muscle. Intriguingly,
although secreted proteins in the three tissues only accounted
for 5% of detected pool on average (Figure 4A), their differential
rates were all significantly higher than non-secreted ones
(P <0.05, chi-square test, Figure 4B). It was suggested that,
compared to inner-tissue perturbations, the cross-tissue
alterations may be prioritized in state of IR.

The Cross-Tissue Interface of IR Was
Featured by Metabolic Processes
To explore tissue communications perturbated in process of IR,
we used secreted proteins to trace the connection between
networks of different tissues, the rationale of which was shown
in Figure 5A. To guarantee the correct direction of tissue
crosstalk, low-expressed secreted proteins in each tissue were
firstly excluded. Then the cross-tissue interactions from secreted
DEPs to non-secreted proteins were identified according to
protein relationships annotated by KEGG database (22).
Finally, the upstream DEP neighbors of secreted DEPs and the
downstream DEP neighbors of non-secreted receptors were
A B C

FIGURE 1 | Metabolic measurements of experimental mice. (A) Intraperitoneal glucose tolerance test (IPGTT, 2 mg/kg), age 21 weeks (Con, n = 12; IR, n = 9);
(B) Area under the IPGTT curve; (C) Fasting insulin level of experimental mice, age 21 weeks (n = 6/group). *P < 0.05, compared to control group, Student’s t-test;
the normality of corresponding data was determined by Shapiro–Wilk test (P > 0.05).
January 2022 | Volume 12 | Article 756785
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extracted to describe the up/down regulatory processes of tissue
crosstalk. Together, the secreted DEPs, all possible cross-tissue
receptors and their up/downstream DEP neighbors constituted
the cross-tissue interface of IR. All involved interactions are
listed in Supplementary Table 5.

Furthermore, the main function of these elements in the
interface was investigated by searching their enriched pathways
(FDR <0.05), which are shown in Figure 5B. Surprisingly, among
the up- and down-stream processes (Figure 5B), metabolic
pathways dominated an average of 66.08% of all enriched
pathways (95% Confidence interval: 53.21–78.95%). This
proportion was significantly higher than that in background
database (P <0.01, one-sample z-test), where 91 (37.45%) out of
243 basic pathways were annotated as metabolic ones. It was
suggested that the metabolism alterations accompanied by IR
participated or even drove the communications between WAT,
liver, and skeletal muscle. By characterizing the cross-tissue
interactions via their dominant upstream pathways (Figure 5B),
the crosstalk from liver to WAT was found as the only tissue
communication driven by carbohydrate metabolism during IR.
The main reason for this was due to the high proportion of
glucose metabolic enzymes in upstream regulatory proteins of
Frontiers in Endocrinology | www.frontiersin.org 5
liver. Among the 6 differential upstream regulatory proteins in
liver (Supplementary Table 6), 5 were enzymes related to glucose
metabolism: glucosamine-6-phosphate isomerase, transketolase,
glucose-6-phosphatase, hexokinase-3, and glucokinase. These
enzymes may connect to secreted proteins through a series of
linked metabolic reactions, thereby outputting abnormal glucose
metabolic signals from liver. Besides, in WAT and skeletal muscle,
carbohydrate metabolism accounted for one-third of the processes
receiving hepatic signals (Figure 5B). It was stressed that liver played
a pivotal role in regulation of glucose homeostasis during IR.
CD36-PPAR Axis Was Highlighted as Vital
Target for Tissue Crosstalk Relevant to IR
The interface of WAT, liver, and muscle is displayed in detail in
Figure 6. As shown in Figure 6, many of the secreted proteins
participating in tissue crosstalk were extracellular matrix (51.9%,
see Supplementary Table 7 for more details), while non-secreted
receptors varied a lot. As one of the 5 commonly upregulated
proteins in three tissues (Supplementary Table 4), CD36 was
highlighted as receptor in WAT and liver. It was indicated that
adipose and hepatic CD36 might be a vital receptor receiving
A B

C

FIGURE 2 | General information of DEPs in WAT, liver and skeletal muscle. (A) Overlapping of differential proteins; (B) Coincidence of TOP20 enriched GO terms,
where the TOP20 GO terms with the lowest FDR in distinct tissue were graphed; (C) Word cloud of KEGG pathways enriched by tissue-specific protein profiles. The
words with the largest font size represent pathways simultaneously enriched by three tissues; the words with medium font size represent pathways commonly enriched
by two tissues; and the words with small font size represent pathways only enriched by one tissue.
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cross-tissue signals. WB assay confirmed the elevated CD36 in
three tissues (P <0.05, Student’s t-test, Figures 7A, B). Muscular
CD36 was not included in the interface because no
corresponding secreted proteins were differentially expressed in
WAT and liver.

As it was exhibited in the cross-tissue interface of IR (Figure 6),
both adipose and hepatic CD36 were linked with muscular
thrombospondin-4 (THBS4). According to the proteomics
detection, THBS4 in skeletal muscle was significantly increased in
IR group (P <0.05, Student’s t-test, see Supplementary Table 3).
Additionally, we also detected elevated THBS4 in serum of IR mice
(P <0.05, Student’s t-test, Figure 7C). In liver and WAT, CD36-
mediated lipid uptake could directly regulate the activity of PPAR
Frontiers in Endocrinology | www.frontiersin.org 6
pathway, which is an important controller for glucose homeostasis
(Figure 7D). Hence, further effect of CD36–PPAR axis on
metabolic regulation was subsequently evaluated. As a target
gene of PPAR pathway, PCK1 is a rate-limiting enzyme of
glyceroneogenesis in which gluconeogenic precursors such as
pyruvate, lactate, and alanine were converted into the glycerol
backbone of triglyceride (28, 29). It was identified as
downregulated DEP in WAT and liver according to proteomics
data. Following WB assay also confirmed decreased PCK1 in WAT
and liver (P <0.05, Student’s t-test, Figure 7E), suggesting impaired
metabolic homeostasis in IR group.

In addition, as the only signaling pathway commonly
enriched by three tissues, the activity of PPAR pathway was
A B

FIGURE 4 | Distribution of secreted proteins. (A) Distribution of secretory and non-secretory proteins in detecting pool; (B) Differential rate of secretory and non-
secretory proteins. *P < 0.05, chi-square test.
A B

D E

C

FIGURE 3 | Tissue-specific networks of IR. (A–C) tissue-specific networks of IR. Where, fold changes of all differential proteins were shown in bar plots; signaling
protein-related and metabolic enzyme-related interactions were respectively highlighted in red and green; (D) Distribution of metabolic and signaling interactions in
tissue-specific networks; (E) Proportion of metabolic enzymes and signaling proteins in differential and detected proteins. *P < 0.05, chi-square test.
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FIGURE 6 | Detailed information of the tissue crosstalk interface relevant to IR. Where, fold changes of all differential proteins were shown in bar plots; the
differentially expressed secretory proteins and their differential non-secreted receptors were labeled in color corresponding to each tissue; the up- and down-stream
regulators were labeled in gray; the cross-tissue interactions started from WAT, liver, and skeletal muscle were respectively colored in red, blue and green.
A

B

FIGURE 5 | Functional interpretation of tissue crosstalk interface relevant to IR. (A) Schematic diagram of cross-tissue interface; (B) Functional classification of up
and downstream processes in the interface of IR.
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examined. FABPs are a class of lipid carrier which binds and
delivers ligands to PPAR. Unchanged FABP1 (P = 0.76, Student’s
t-test) and significantly decreased FABP4 (P <0.05, Student’s t-
test) was respectively detected in liver and WAT (Figures 7A, F),
which was in line with the quantification result from proteomics.
Although proteomics did not capture signals of PPAR, WB assay
showed unchanged PPARa and decreased PPARg in liver and
WAT of IR group (Figure 7F). PGC-1a was consistently
decreased in liver and WAT of IR group (P <0.05, Student’s t-
test, Figure 7F). Therefore, PPAR pathway was suppressed in
WAT and liver, which may resonate with the cross-tissue signals
input by CD36. In parallel, the protein level of PPARg and
FABP3 in skeletal muscle was measured to be elevated in IR
group (P <0.05, Student’s t-test, Figure 7F), suggesting enhanced
muscular PPAR pathway. But neither proteomics nor WB assay
detected protein expression of PCK1 in skeletal muscle,
suggesting a rather weak effect of muscular PPAR pathway on
PCK1 mediated metabolic dysfunction.
DISCUSSION

The present study developed a network-based strategy for tissue
crosstalk identification, which was applied to the protein profiles
of WAT, liver, and skeletal muscle in IR mice. From a network
perspective, the tissue crosstalk relevant to IR was systematically
Frontiers in Endocrinology | www.frontiersin.org 8
explored and the potential cross-tissue mechanism
was characterized.

As secretory proteins are essential for signal transduction
between individual tissues, we screened them in all proteins
detected from WAT, liver, and skeletal muscle. It was found that
secreted proteins only accounted for a small fraction (5% on
average) while presented significantly higher differential rates
than non-secretory ones, suggesting a strong tendency of IR
group towards impairing tissue communications. In this context,
we proposed a secreted protein-based strategy for identifying
tissue crosstalk relevant to IR. Inter-tissue connections including
secretory proteins and their receptors as well as the inner-tissue
up- and down-stream regulatory events were searched from
distinct tissue-specific networks, thus generating a multi-tissue
interface of IR.

We observed widespread metabolic alterations not only inside
tissue-specific networks but also on the cross-tissue interface of
IR, highlighting a significant role of metabolism in tissue
communication during IR. Extraordinarily, liver was revealed
as the only organ outputting abnormal glucose metabolic signals.
Approximately 5 out of 6 differentially expressed upstream
proteins of hepatic secreted proteins were glucose metabolism
related enzymes. It was strongly suggested that, in IR subjects,
the transduction of abnormal glucose metabolic signals was
probably started from liver. As targets receiving hepatic signals,
almost 1/3 downstream processes in WAT and skeletal muscle
A

B

D

E F

C

FIGURE 7 | Validation of CD36–PPAR axis. (A) Representative WB bands of candidate proteins; (B) Relative quantity of CD36 based on WB bands (n =4/group);
(C) Serum THBS4 level of experimental mice, (n = 9/group); (D) A potential cross-tissue mechanism of CD36-PPAR axis; (E) Relative quantity of PCK1 based on WB
bands (n = 3–4); (F) Relative quantity of regulators in PPAR pathway based on WB bands (n = 4). *P < 0.05, compared to control group, Student’s t-test; the
normality of corresponding data was determined by Shapiro–Wilk test (P > 0.05).
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were classified into carbohydrate metabolism, further confirming
the pivotal role of liver in regulation of glucose metabolism.

In the extracted cross-tissue interface of IR, we noticed that
one of the 5 consistently upregulated proteins in three tissues
CD36 was commonly highlighted as crosstalk receptors in both
WAT and liver. In metabolic organs, CD36 is a major importer
for fatty acids which were then delivered by FABPs to PPAR as
ligands (30, 31). Coincidently, PPAR pathway was the only
signaling pathway commonly enriched by three tissues, thus
emphasizing the significance of CD36–PPAR axis in
pathogenesis of IR. In fact, the effect of PPAR pathway in
progressing IR was widely confirmed in individual tissues (32,
33), but its role in cross-tissue communications has not been
clarified. As PPARs can activate the transcription of many rate-
limiting enzymes and control glucose and lipid metabolism (34),
we then respectively investigated the upstream cross-tissue
signals and downstream metabolic effects of CD36–PPAR axis.

In IR group, both proteomics data and WB assay confirmed
elevated CD36 in WAT, liver, and skeletal muscle, which was
consistent with previous observations on individual tissues (35–
38). As a membrane receptor, CD36 can bind various ligands like
fatty acids and thrombospondins (39). In the crosstalk interface
of IR, hepatic and adipose CD36 was pointed to receiving
external signals from muscular THBS4. THBS4 is a member of
thrombospondins which has been identified as secreted proteins
regulating cell communications (40). We detected increased
THBS4 in skeletal muscle and confirmed elevated THBS4 in
serum of IR mice. Consistently, a recent study observed higher
peripheral THBS4 levels in patients with type 2 diabetes (41).
Conversely, THBS4-/- mice also showed lower fasting glucose
level than wild type and relieved hyperinsulinemia in nutrient
challenge (42). It was indicated that the altered THBS4
highlighted in the upstream of CD36-PPAR axis may be
important regulators for whole-body glucose metabolism.

To further verify the intracellular metabolic effect of CD36–
PPAR axis, the protein expression of a PPAR target, PCK1 was
examined. PCK1 is a key enzyme controlling the conversion of
oxaloacetate into phosphoenolpyruvate, which is further used in
glycerol 3-phosphate production for triglyceride synthesis (28,
29). In our study, both proteomics and WB assay detected
decreased PCK1 in WAT and liver of IR mice. Low expression
of PCK1 in liver andWAT has been implicated with IR through a
lipotoxicity mechanism in transgenic mice (43). The reduced
PCK1 in WAT can suppress fatty acids re-esterification and
cause excessive accumulation of fatty acids derived toxic
metabolites, thus resulting in lipotoxicity in ectopic tissues
such as liver and skeletal muscle (44). Liver-specific PCK1-
knockout experiment also confirmed the peripheral lipotoxicity
of reduced hepatic PCK1 in chow-diet condition and its effect on
exacerbating IR in high fat diet condition (45). Therefore, the
downregulation of PCK1 here may contribute to the impaired
glucose metabolism through a lipotoxicity mechanism,
mechanically confirming a depressed effect of CD36–PPAR
axis on glucose homeostasis in our IR mice.

Meanwhile, interference from the inherent activity of PPAR
pathway was assessed by measuring main isotypes of its
Frontiers in Endocrinology | www.frontiersin.org 9
regulators, namely, FABPs, PPARs, and PGC-1a. FABPs are
lipid carriers which bind and deliver ligands to PPAR (46). Our
study respectively confirmed unchanged FABP1 and significantly
reduced FABP4 in liver andWAT of IR group by proteomics and
WB assay. Although proteomics did not capture signals of
PPARs and PGC-1a, WB assay showed decreased PPARg in
both liver and WAT and downregulated PGC-1a in WAT of IR
group. It was suggested that the activity of PPAR pathway was
consistently depressed in liver and WAT of IR group. In parallel,
skeletal muscle of IR group showed elevated FABP3 and PPARg.
But no signals of muscular PCK1 were captured by proteomics or
WB, indicating a mechanism different from liver and WAT in
regulation of glucose homeostasis. Taken together, it can be
concluded that adipose and hepatic PPAR pathways are integral
channels bridging external signals to intracellular glucose
homeostasis in progression of IR.

In addition to the CD36-mediated signals, many extracellular
matrix (ECM) related proteins were highlighted in the cross-
tissue interface. ECM-related proteins are known as structural
support can be released into circulation. A growing body of
reports have shown strong correlation between altered ECMs
and metabolic disorders (47, 48). Mechanically, ECM attachment
has been reported to be required for cell communication (49)
and regulation of metabolic processes (50), yet few direct pieces
of evidence linking ECMs and tissue crosstalk can be found. In
this study, our unbiased proteomics analysis provided a
computational clue for the potential role of ECM-related
proteins in tissue communication during IR, which may hint
an alternative aspect of ECM functions.

This study is not without limitations. Our observation is
based on static experiments in freshly isolated mouse organs.
Dynamic experiments with further technical supports from
conditional knockout animals or in vivo tracer techniques
would provide more solid evidences for the transduction of
cross-tissue signals. As obesity is the most common cause of
IR (51), we chose high fat diet fed mice as our subjects.
Inevitably, the results here may be specific to dietary fat
induced IR. Technically, we used the same database during
network construction and functional assessment and performed
one sample z-test to reduce the possible circularity. Future random
network analysis might be helpful to further improve this issue.
Currently, as there was no standard dataset collecting tissue crosstalk
interactions, we were not able to evaluate the performance of our
approach. Alternatively, the results obtained from network analysis
were partially verified by experimental assays. Overall, our
systematical analysis of multi-organ proteomics paved a novel way
to deciphering inter-tissue communications in dietary fat
induced IR.
CONCLUSION

It has been widely accepted that tissue communication underlies
pathological basis of many diseases such as obesity, diabetes,
metabolic syndromes, and so on. However, due to the lack of
effective means to explore and functionally infer cross-tissue
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interactions, current study on disease-related tissue crosstalk has
been tremendously hindered. To solve this issue, we proposed a
network-based approach to explore the interface between
multiple tissues, which was then applied to the proteomics
data of WAT, liver, and skeletal muscle in IR mice.
Interestingly, widespread metabolic alterations not only were
observed in tissue-specific networks, but also dominated the
cross-tissue interface related to IR, emphasizing their significance
in development of IR. By quantifying functional pathways
involved in the interface, liver was recognized as the only
organ that can output abnormal carbohydrate metabolic
signals, clearly highlighting its central role for glucose
homeostasis. Especially, CD36–PPAR axis was identified and
verified to potentially link inter-tissue signals with intracellular
metabolism in liver and WAT, thereby promoting the
progression of dietary fat induced IR through a PCK1-
mediated lipotoxicity mechanism.

Although this CD36–PPAR axis mediated crosstalk mechanism
requires validation from more functional experiments such as
conditional transgenic assays, the present study still provides
novel insights into understanding the tissue communications in
pathogenesis of IR. With further improvement, our network-based
function mining method would shed a light on other disease-related
tissue crosstalk exploration in the near future.
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