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Abstract

Genome-wide association studies (GWAS) have been successful in identifying single
nucleotide polymorphisms (SNPs) associated with many traits and diseases. However,

at existing sample sizes, these variants explain only part of the estimated heritability.
Leverage of GWAS results from related phenotypes may improve detection without the
need for larger datasets. The Bayesian conditional false discovery rate (cFDR) constitutes
an upper bound on the expected false discovery rate (FDR) across a set of SNPs whose

p values for two diseases are both less than two disease-specific thresholds. Calculation of
the cFDR requires only summary statistics and have several advantages over traditional
GWAS analysis. However, existing methods require distinct control samples between stud-
ies. Here, we extend the technique to allow for some or all controls to be shared, increasing
applicability. Several different SNP sets can be defined with the same cFDR value, and we
show that the expected FDR across the union of these sets may exceed expected FDR in
any single set. We describe a procedure to establish an upper bound for the expected

FDR among the union of such sets of SNPs. We apply our technique to pairwise analysis
of p values from ten autoimmune diseases with variable sharing of controls, enabling dis-
covery of 59 SNP-disease associations which do not reach GWAS significance after geno-
mic control in individual datasets. Most of the SNPs we highlight have previously been
confirmed using replication studies or larger GWAS, a useful validation of our technique; we
report eight SNP-disease associations across five diseases not previously declared. Our
technique extends and strengthens the previous algorithm, and establishes robust limits on
the expected FDR. This approach can improve SNP detection in GWAS, and give insight
into shared aetiology between phenotypically related conditions.
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Author Summary

Many diseases have a significant hereditary component, only part of which has been ex-
plained by analysis of genome-wide association studies (GWAS). Shared aetiology,
treatment protocols, and overlapping results from existing GWAS suggest similarities in
genetic susceptibility between related diseases, which may be exploited to detect more
disease-associated SNPs without the need for further data. We extend an existing method
for detecting SNPs associated with a given disease by conditioning on association with
another disease. Our extension allows GWAS for the two conditions to share control
samples, enabling larger overall control groups and application to the common case when
GWAS for related diseases pool control samples. We demonstrate that our technique limits
the expected overall false discovery rate at a threshold dependent on the two diseases. We
apply our technique to genotype data from ten immune mediated diseases. Overall pleiot-
ropy between phenotypes is demonstrated graphically. We are able to declare several SNPs
significant at a genome-wide level whilst controlling at a lower false-discovery rate than
would be possible using a conventional approach, identifying eight previously unknown
disease associations. This technique can improve SNP detection in GWAS by re-analysing
existing data, and gives insight into the shared genetic bases of autoimmune diseases.

Introduction

Genome-wide association studies (GWAS) have enabled identification of genetic variants asso-
ciated with a wide range of complex phenotypes, but in many cases these variants explain only
a proportion of the known heritability [4]. There is increasing evidence that this is due to the
combined contribution of small effects arising from multiple distinct variants [5]. The testing
of a large number of potential variants in parallel, with a comparatively low number of samples,
mandates a stringent threshold for significance in order to limit false positives (type 1 errors),
meaning that discovery of variants responsible for small effects requires very large sample
sizes. Detection of such variants by increasing numbers of samples in studies is time-
consuming and expensive, particularly for rare phenotypes, but it may be possible to improve
detection by re-analysis of existing data [6]. One promising strategy is to co-analyse GWAS re-
sults from similar phenotypes to exploit potential similarities in genetic aetiology. This has
been attempted using several different methods [2, 7, 8].

The assumption that GWAS for similar diseases may yield overlapping sets of disease-associ-
ated variants is based on the phenomenon of pleiotropy, in which a genetic variant is associated
with more than one trait or disease [9]. Pleiotropy is common in human genes: even when ex-
clusively considering single nucleotide polymorphisms (SNPs) with strong evidence of associa-
tion, around 15% of those associated with at least one trait are associated with multiple traits
[10]. Elements of shared genetic aetiology may be suspected in diseases with similar symptom-
atology, such as bipolar disorder and schizophrenia [11] or in diseases with common risk fac-
tors, such as type 2 diabetes and obesity [12]. If two diseases are known or suspected to share
associated genetic variants, a degree of association of a locus with one disease may increase the
likelihood of association with the other. Use of external covariates in this way can alleviate some
of the effect of multiple testing [8], meaning that phenotypic similarity may lead to improved
detection of disease-associated variants. Correspondingly, discovery and specification of shared
genetic aetiology between two diseases may suggest some shared pathophysiology [12].

A technique for improved discovery of disease variants using pleiotropy between pairs of
diseases has been successfully developed and applied by Andreasson et al [3, 13, 14]. The

PLOS Genetics | DOI:10.1371/journal.pgen.1004926 February 6, 2015

2/26


http://ImmunoBase.org

@‘PLOS | GENETICS

Co-analysis of GWAS with Shared Controls

technique extends the empirical Bayesian false discovery rate [15] to a two-phenotype scenario,
in which association with one phenotype is tested conditional on varying degrees of association
with another. We denote the phenotype for which association is being tested as the ‘principal
phenotype’ and the other as the ‘conditional phenotype’.

By successively restricting attention to SNPs with a given strength of association in the condi-
tional phenotype, the number of parallel tests to perform for association with the principal phe-
notype is reduced. If the two phenotypes share common associated variants, this restriction will
retain disease-associated SNPs at a higher rate than null SNPs, resulting in a higher proportion of
disease-associated SNPs in the restricted group than in the whole. The ‘conditional false discovery
rate’ (cFDR), defined as the probability that a SNP is not associated the principal phenotype given
its p values for the principal and conditional phenotypes are below some thresholds, exploits this
effect. By computing cFDRs for schizophrenia conditioned on bipolar disorder and vice versa,
Andreasson et al [3] identified multiple previously undiscovered loci for both. In a separate study
computing cFDRs for hypertension conditioned on 12 related traits [13], 42 new loci associated
with hypertension were reported. These constituted considerable improvement on existing results
using single GWAS, albeit using a rather relaxed threshold of estimated ¢cFDR < 0.01.

A major disadvantage of the algorithm developed and used by Andreasson et al is the require-
ment that control groups for the two GWAS be distinct, in order to ensure that observed effect
sizes are uncorrelated at null SNPs. This requires splitting a pool of potential controls between
studies, with the summary statistics for each GWAS computed from only the controls allocated
to that study. This may be impractical as it requires access to raw genotype data. More important-
ly, accuracy of effect size estimates improves with larger control groups, and consequently split-
ting controls in this way weakens the effect size estimates for individual studies. For this reason,
many researchers employ a study design in which controls are pooled into a large group; for ex-
ample, the Wellcome Trust Case Control and ImmunoChip consortia [16, 17].

Here we extend the cFDR approach to studies with overlapping control groups, exploiting
an approach developed by Zaykin et al, following Lin et al [18, 19] to adjust for the effect of
shared controls. This allows the strongest available estimates of effect sizes to be used for calcu-
lation, and consequently strengthens the power of the technique. Our technique additionally
allows cFDR rates to be computed from summary statistics alone, without the need to recalcu-
late effect sizes after re-allocating controls. We demonstrate the improvement arising from
sharing controls in a type 1 diabetes data set.

We also identify a previously undiscussed difficulty with the technique potentially leading
to a falsely low estimate of false discovery rate amongst SNPs declared non-null. Multiple over-
lapping sets of SNPs may be defined each of which has cFDR < a. However, the union of these
sets does not necessarily have an expected false-discovery rate less than o and is generally
higher. An implication of this is that if we declare non-null all SNPs for which estimated cFDR
is less than @, the expected overall false-discovery rate amongst SNPs declared non-null is
greater than a. We describe an upper bound on the false discovery rate amongst such SNPs
based on areas of regions of the unit square.

We apply our method to summary SNP association statistics for ten phenotypically distinct
autoimmune diseases: type 1 diabetes (T1D) [20], autoimmune thyroid disease (ATD) [21],
coeliac disease (CEL) [22], multiple sclerosis (MS) [23], narcolepsy (NAR) [24], primary biliary
cirrhosis (PBC) [25], psoriasis (PS) [26], rheumatoid arthritis (RA) [27], ulcerative colitis [28],
and Crohn’s disease [28]. All were genotyped using a common SNP array: the ImmunoChip,
designed to provide dense genotype coverage of regions associated with autoimmune disease.
Many autoimmune traits are known to have significant heritability, much of which remains
unexplained [29]. We hypothesised that our method can improve detection of disease-associat-
ed variants in these diseases without the need for distinct control groups.
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Results
Overview of method

The unconditional false discovery rate for a set of SNPs with p values < p; is defined as the
probability that a random SNP from this set is null. We denote this as uFDR(p;), and our esti-

mate as uFDR(p,).

The conditional false discovery rate (cFDR) is defined [3, 14] as the probability that a ran-
dom SNP is null for a phenotype i given that the observed p values at that SNP for phenotypes
iand j are less than (p;, p)); that is, pPr(HY | P, < p, P, < p,), where H” is the null hypothesis
that the SNP is not associated with phenotype i. We denote this quantity as cFDR(p;|p;), and
call phenotype i the ‘principal phenotype’ and phenotype j the ‘conditional phenotype’.

We first apply genomic control to allow the assumption that, globally, P values for null
SNPs are uniformly distributed on [0, 1]. We compute an estimate of the cFDR, which we de-
note cFDR (p; | p;), in a similar manner to that proposed by Andreasson et al, but incorporating
expected non-uniformity in the distribution of P; due to the sharing of controls. As uFDR )
is monotonically related to p;, we set a significance cutoff at the maximum value of uFDR (p,)
with p; < 5 x 107%. Correspondingly, we set a significance cutoff for cFDR (p;, p;) at the maxi-

mum cFDR (p;, p;) with p; <5 x 10~%. Implementation of these steps in R is available from
https://github.com/jamesliley/cFDR-common-controls.

Sharing of control subjects

If no controls are shared between studies, it is reasonable to assume that observed effect sizes for
the two phenotypes are independent under a null hypothesis for the principal phenotype. This im-
plies that the expected quantile of a given SNP’s p value for the principal phenotype is simply the p
value itself regardless of its p value for the conditional phenotype. However, when control samples
are shared, this assumption is invalid. Shared controls induce a positive correlation on estimated ef-
fect sizes for the principal and conditional phenotype [18, 19], meaning that when attention is re-
stricted to SNPs with a given degree of association with the conditional phenotype, the p values for
the principal phenotype will be falsely low; that is, the probability Pr(P; < p, | P, < p;, H) will
not in general be equal to p; (= Pr(P, < p, | H\")); in fact it will usually be higher.

When controls are shared, the distribution of p values for the principal phenotype given p val-
ues for the conditional phenotype depends on the underlying effect of each SNP on the condition-
al phenotype. For any given SNP, this underlying effect size, which we denote 7, is not known.
However, across all SNPs, 77 may be considered to be realisations of a random variable H whose
distribution is mirrored by the distribution of observed effect sizes for the conditional phenotype.
By integrating over this unknown true effect size for the conditional phenotype, allowance can be
made for shared controls, and the ‘expected quantile’ of a p value for the principal phenotype, de-
fined as Pr(P, < p, | P, < p;, H{"), can be calculated, as detailed in the Methods section.

We assume that H has a mixture distribution defined by two parameters (n,, 62), such that
H = 0 with probability 7o and H ~ N(0, o) with probability 1-m,. The parameters (7, o) are
estimated from the observed distribution of effect sizes for the conditional phenotype. In order
to show the effect of our p value adjustment, we simulated p values for 20,000 SNPs for a prin-
cipal and conditional phenotype, with controls shared between simulated studies. All SNPs
were null for the principal phenotype, and were variably null or non-null for the conditional
phenotype with probability 0.9, 0.1 respectively. Z scores at non-null SNPs for the conditional
phenotype were distributed as N(0, 6%), as per our assumption. A value of ¢ = 3 was used,
which was similar to the values of ¢ in real data estimated by our E-M algorithm.
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We considered the set of simulated SNPs with p values for the conditional phenotype less
than 0.05 (Fig. 1). In the absence of shared controls, we expect the distribution of p; amongst
this set to be uniform, and hence expect the black dots to lie along the x-y line. However, we
see the principal p values are biased downward in this set (black dots, Fig. 1). Our computed
expected quantile (blue dots) agrees closely with the observed quantile. In a sense, this consti-
tutes ‘adjusting’ the p values for the principal phenotype so that the expected distribution is

Principal p values and adjusted p values
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Figure 1. Correction for shared controls. Simulation of GWAS summary statistics for 20000 SNPs, all null for phenotype i and variably null or non-null for
phenotype j, with association tested using a shared control group. Black dots show p values for phenotype i at all SNPs with p value for phenotype j less than
0.05, with evident downward bias. Blue dots show our adjustment to expected quantile of p values. The red dots show the expected quantile we would
compute if we were to assume incorrectly that all SNPs were null for the conditional phenotype i. We see that this quantity overestimates the true quantile.

doi:10.1371/journal.pgen.1004926.g001
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uniform under the null hypothesis. Software to generate this simulation is available at https://
github.com/jamesliley/cFDR-common-controls.

Our formula can easily be adapted to arbitrary distributions of H at the cost of increased
computational time, but the form of the distribution of H is not generally known. We show in
S1 Text (section A) that, even for distributions of H which differ markedly from our assump-
tion of normality, the error in the estimate is not large, and generally translates to a negligible

difference in the set of SNPs declared non-null using the cFDR method. While our assumption
has the potential to be anti-conservative if H is bimodal, nonparametric estimates for distribu-
tions of effect sizes suggest they have a uni-modal distribution centred on zero[30]. Reassuring-
ly, our assumption is conservative if H has heavier tails than a normal.

Comparison to split control approach

We compared Andreasson’s approach to SNP discovery which advocated splitting controls
into non-overlapping subsets to our extended shared-control approach using a type 1 diabetes
dataset with a total 12,175 cases and 15,171 controls. Controls and cases were each split into
two sets (control sets had size 7,585 and 7,586, cases 6087 and 6088). ‘Split’ p values were com-
puted using one set of controls and one set of cases and corresponding ‘shared’ p values were
computed using the complete set of controls. As expected, more shared p values reached ge-
nome-wide significance than did split p values (Fig. 2).

We computed cFDR values by labelling one set of cases ‘conditional” and the other ‘princi-
pal’ using the split-control p values using Andreasson’s approach and using the shared control
p values using our method. For reference, we compared these to a naive application of
Andreasson’s method on the shared-control p values (Fig. 2B). More SNPs can be declared sig-
nificant according to cFDR using the shared-control than split-control approach at all reason-
able thresholds, and naive application of Andreasson’s approach to shared-control p values
again increases the number declared significant.

Because the quantity Pr(P, < p, | P, < p;, H") is systematically underestimated when using
this naive method (by assuming it is equal to p;) as shown in S1 Text (section C), it leads to a

falsely low cFDR. The increase in observed number of SNPs declared significant when using
the naive method shows that it can indeed lead to false discoveries.

For principal phenotype p values in the range 5 x 107° — 5 x 107° - effectively the region from
which ‘new’ SNPs may be discovered by cFDR rather than p value alone—the naive cFDR is fre-
quently underestimated by 2-3 fold (S1 Fig,, left panel). For lower p values, the naive cFDR may
underestimate by hundreds- or thousand-fold, with the potential fold underestimation increasing
with decreasing p value (S1 Fig,, right panel). Because of the relatively high ratio of number of
controls to number of cases, the correlation between effect sizes is lower in this constructed case
(c.0.22) than between most phenotypes in our study (c. 0.5). The underestimation of cFDR using
the ‘naive’ method worsens with higher correlation, so we would expect that the fold-underesti-
mate we see here is less severe than that which would be observed if applying this to other studies.

An upper bound on the false discovery rate of all declared SNPs

An important property of our method is the control of the expected false discovery rate (FDR):
the expected proportion of false positives among the SNPs found by our method. The p values
at a SNP for the principal and conditional phenotype correspond to a point in the unit square.
In this sense, we can define the expected FDR of a region R of the unit square as the ratio of the
expected number of null SNPs whose p values are in R divided by the expected total number of
SNPs whose p values are in R. From a result of Benjamini and Hochberg [31], the expected
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A Effect of shared controls on p values

3500 7 W Split control design

O Shared control design

3000 —

2500 —

2000 —

1500 —

1000 —

Number of SNPs with p < cutoff

500 —

Cutoff
B Effect of shared controls on cFDR values
5000 — B Split control design

@ Shared control design (correct)
O Shared control design (naive)

4000 —

3000 —

2000 —

Number of SNPs with ¢cFDR < cutoff

1000 —

. - . © ~ ® = °

5 ? ? P ? P 9 T

s 3 3 3 3 3 3 3
Cutoff

Figure 2. Validation of the shared-control approach and the p-value adjustment due to shared
controls. Panel A shows the effect of splitting controls on power to detect association. The number of SNPs
with p values less than a given cutoff are shown for split-control and shared-control approaches. For all p-
value cutoffs, fewer SNPs reach significance when using a split-control design. Panel B shows the number of

SNPs with ¢cFDR values less than a given cutoff using the existing method on a split-control design, our
extended method on a shared control design with the adjustment for shared controls, or using the split-control

approach naively on the shared-control design; that is, assuming incorrectly that Pr(P, < p; | P, < p;, H)Y =p,.
The second figure shows that failing to correctly calculate Pr(P, < p, | P, < p;,Hy') = p, leads to a subtle
increase in the number of SNPs declared non-null at all cutoffs, due to the incorrect underestimation of cFDR.

doi:10.1371/journal.pgen.1004926.9002
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FDR when R is a rectangle with vertices at (0, 0),(p;, 0),(pi p;),(0, p;) is at most o« =
cFDR(p, | p;)- If we denote by L the closed region defined by the set of p value pairs p;,p; such
that cFDR (p, | p;) < o, then L has the property that the FDR of any rectangle of this form con-

tained within L is less than a.
However, the expected FDR over L is not necessarily bounded by « (Fig. 3). This can be
seen most easily in the extreme scenario in which all non-null SNPs are concentrated in the
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Figure 3. L is the locus of a set of points with cFDR = a. The FDR s the ratio of null SNPs to total SNPs in L. If all the non-null SNPs were concentrated in
the lower left corner, then the number of non-null SNPs in L would be equal to that in any individual rectangle with vertices at the origin and on L, but the
number of null SNPs would be greater, meaning that the expected FDR of all SNPs in L would be greater than a. M" is the largest rectangle by area contained

within L. The false discovery rate within M is less than a”, the value of cFDR atthe upper right vertex, which is usually equal to a, as in this case. The FDR of
L is bounded by a”“v(L)/v(M), where v(L) and v(M") are the expected number of null SNPs in L and M" respectively (S1 Text, section B).

doi:10.1371/journal.pgen.1004926.9003
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lower left corner of the unit square, and all null SNPs are also null for the conditional pheno-
type. In this case, the expected number of null SNPs in a rectangle is proportional to its area,
so L is the union of all rectangles of the form above of a given area containing the lower-left
corner of the unit square; that is, a hyperbola. Clearly the area of L is larger than the area of
these constituent rectangles, yet it contains the same number of non-null SNPs, so it has a
lower FDR.

In the original method [3], SNPs were declared significant if they were contained within any

rectangular regions with a cFDR value of less than 0.01. Our reasoning demonstrates that the
expected false-discovery rate amongst all such SNPs was higher than 0.01. We can derive an

upper bound for the expected FDR of L by considering M", the largest rectangle in L. We show
v(L)
v(M*)

expected number of null SNPs contained within L or M* (approximately the area of L and M*)
and " is the cFDR at the upper-right vertex of M* (Fig. 3).

in S1 Text (section B) that the bound may be expressed simply as ——-o*, where v() denotes the

Application to ten immune mediated diseases

We obtained summary statistics in the form of p values for ten immune mediated diseases
from ImmunoBase (www.immunobase.org, accessed 19/3/14). For each pair of diseases, the
number of shared controls was estimated according to the description of the control samples in
each paper. The numbers of cases, controls and our estimated numbers of shared controls for
each study are shown in Table 1. Uniform quality control criteria were applied to all SNPs, and
the MHC region, which exhibits both strong LD and strong association with immune mediated
diseases was excluded. P values were corrected within each trait for genomic inflation using a
standard algorithm [32] applied to SNPs included on the ImmunoChip to replicate a GWAS
study of reading and maths ability (Steve Eyre and Cathryn Lewis, personal communication),
unlikely to be related to any immune mediated disease studied here.

P values for each principal phenotype were adjusted to p’ as described above in order to ac-
count for the effect of shared controls. For each ordered pair of phenotypes, a Q-Q plot was
generated as per Andreasson et al [3]. A Q-Q plot is a graph of the observed distribution of a
random variable against the expected distribution. We overlaid Q-Q plots for log;o(p’) values

Table 1. Study sizes.

Disease Controls Cases Estimated number of pairwise shared controls

T1D ATD CEL MS NAR PBC PSO RA uc CRO
T1D [20]* 12175 15171 - 9364 12228 8430 4289 8514 4822 8430 4020 4020
ATD [21] 9364 2733 - 9364 8430 4289 8514 4822 8430 4020 4020
CEL [22] 12228 12041 - 8430 4289 8514 4822 8430 4020 4020
MS [23] 24091 14498 - 4289 8430 4822 8430 10102 10102
NAR [24] 10421 1886 - 4289 4289 4289 4020 4020
PBC [25] 8514 2861 - 4822 8430 4020 4020
PSO [26] 22806 10588 - 4822 4020 4020
RA [27] 15870 11475 - 4020 4020
uc [28] 15977 10920 - 15977
CRO [28] 15977 14763 -

Number of cases and controls for each study, and relevant references, together with our estimates of the number of controls shared between studies.*P
values for T1D are from a meta-analysis of case-control and TDT data, with effective numbers of cases computed as shown in the methods section.

doi:10.1371/journal.pgen.1004926.1001
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Figure 4. Q-Q plots for T1D conditional on RA (Panel A) and PSO (Panel B). Y axes show log,,(p%,,); X axes show log quantile (rank) of p values in
various sets of SNPs. The degree of leftward shift of a black point from the diagonal is proportional to the unconditional FDR of that p value for the principal
phenotype, and the degree of leftward shift of a coloured point is proportional to the conditional FDR of the p value for the principal phenotype and the p-cutoff
corresponding to the colour for the conditional phenotype. As expected, a leftward shift is seen even for the unconditional Q-Q plots (black line) owing to the
use of the ImmunoChip, which focuses on potential autoimmune-associated regions. Each colour corresponds to the Q-Q plot for pr1p amongst a subset of
SNPs with pra Or ppso less than the indicated cutoff. P values for T1D are adjusted for the effect of shared controls between studies. A leftward shift with
decreasing pra Or ppso cutoff indicates that SNPs which are associated with the conditional phenotype (RA or PSO) are more likely to be associated with the
principal phenotype (T1D), presumably due to pleiotropic effects on phenotypes. Good enrichment is seen for T1D conditioning on RA (Panel A), and little or
no enrichment conditioning on PSO (Panel B).

doi:10.1371/journal.pgen.1004926.9004

for the principal phenotype for subsets of SNPs exhibiting successively smaller p values for the
conditional phenotype. Fig. 4 shows QQ plots for T1D conditional on RA and PSO; plots for
all other pairwise comparisons may be found in S4-S13 Figs. Notably, if lines shift further left
with more stringent cutoffs on association with the conditional phenotype, then SNPs which
are associated with the conditional phenotype are more likely to be associated with the princi-
pal phenotype, indicating pleiotropic effects of SNPs on the two phenotypes. In many cases,
the Q-Q plots demonstrate considerable leftward shift with conditioning on association with a
second disease, and we see strong evidence for pleiotropy for T1D conditioned on RA and little
or no evidence for pleiotropy for T1D conditioned on PSO.

We estimated the unconditional and conditional false discovery rates, uFDR (p,) and

cFDR (p: | p;), at each SNP for each phenotype and each ordered pair of phenotypes respective-

ly. Fig. 5 shows cFDR for T1D conditioned on RA. The advantage gained by cFDR can be seen
in the left-shift of the region in which a SNP can be declared significant (blue dots), corre-
sponding to a higher p-value cutoff for significance for T1D among SNPs with low p values for
RA. Indeed, if only SNPs with a p value for RA less than some threshold { are considered, a p
value cutoff for significance for T1D is given by the leftmost border of the blue dots on the line
Pi={.
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Figure 5. cFDR (red-yellow) for T1D conditioned on RA. White dots signify the region for which uFDR is less than a correspondingtop < 5 x 1078, Blue
dots signify the region for which cFDR is less than the same a. Note the leftward shift of blue points and the general leftward shift of colours corresponding to
an increased p-value threshold for association with T1D for SNPs with low p values for RA. Black dots show a random sample of the observed p value pairs.

doi:10.1371/journal.pgen.1004926.9005

The degree of leftward shift in the Q-Q plots clearly contains information about the degree
of pleiotropy between diseases. We defined a statistic summarizing some aspects of this evi-
dence for pleiotropy and used it to visualise the set of pairwise relationships between diseases
as a network (Fig. 6). The network encouragingly reflects several pathophysiological associa-
tions: UC is linked to CRO, and T1D to ATD. Strong linkage is also seen both ways for MS and
PBC, and between T1D and RA, findings which can also be seen in the Q-Q plots (S4-S13
Figs.). One way relationships suggest the presence of a larger total number of associated SNPs
for the disease at the start of the arrow than at the end.

Discovery of novel associations

The numbers of SNPs deemed significant for each phenotype by analysis using unconditional

and conditional approaches are shown in table 2, with details in S2-S11 Tables. cFDR allows
certain SNPs with p values as high as 3 x 107 to be declared significant while controlling the
false discovery rate at a relatively low value. Fifty-one of the 59 SNPs we identify uniquely
through cFDR have previously been reported to be associated with the relevant disease through
use of alternative significance thresholds, other genomic control procedures, other GWAS or
additional samples not genotyped by ImmunoChip, a useful verification of our technique.
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Figure 6. Network of degree of pleiotropy between phenotypes. An arrow runs from vertex i to vertexj if
and only if by conditioning on p < 5 x 107° for the conditional phenotype j we can increase the threshold for
significance for the p value for the principal phenotype i from 5 x 10 to 4 x 1077 or greater. Edges are
thickened if the cutoff could be increased more than this. The threshold 4 x 10~ was selected as the
minimum value for which the network is weakly connected; that is, having an arrow to or from each edge.

doi:10.1371/journal.pgen.1004926.9006

Eight of the SNPs we discover uniquely through cFDR were in regions not previously known to
be associated with the corresponding disease (table 3). These will require replication in inde-
pendent samples to be declared truly associated, but they contain some potentially interesting
signals, such as an association for RA at SNP rs72928038 near existing MS, ATD and T1D as-
sociations in BACH?2, a transcriptional regulator involved in transcription repression and acti-
vation by MAFK [33]

The SNP rs1034290 in region 1p13.1, which we found to be associated with PBC, is in intron
three of CD58, which is a surface receptor involved in binding and activation of T-lymphocytes.
The protective effect of the MS-associated allele is postulated to arise from upregulation of the
transcription factor FOXP3 [34] and the patterns of association in the region suggest the two
diseases may share a causal variant here (http://www.immunobase.org).

Discussion

We have extended a technique for computing conditional Bayesian False Discovery Rates to
GWAS for independent diseases with shared control groups. This technique enables improved

PLOS Genetics | DOI:10.1371/journal.pgen.1004926 February 6, 2015 12/26
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Table 2. Number of association signals found by unconditional and conditional methods.

Univariate Conditional Efficiency ratio
N.SNPs FDR N.SNPs FDR
T1D 44 3.79%x 107 4 7.32x 107 0.11
ATD 3 1.04x107° 4 1.02x 107° 0.03
CEL 46 3.97x 107 7 577 x 107 0.24
MS 43 597 x 107 12 1.19x 107° 0.15
NAR 3 1.61x 107 0 3.05x 107 0.83
PBC 25 8.86 x 10™° 2 2.09x 107 0.12
PSO 44 2.33x107° 2 5.45 x 107° 0.06
RA 16 2.04x107° 10 6.00 x 107° 0.11
uc 49 449 x107° 6 6.73x 107 0.14
CRO 80 2.08x 10°® 12 2.73x 107 0.28

Number of SNPs with p < 5 x 1078 after genomic found by analysis of the principal phenotype alone and the estimated equivalent FDR for this set of
SNPs. Conditional analysis shows the number of additional SNPs found through conditional FDR analysis, and the upper bound for the FDR of all SNPs
selected by this method, including adjustment for the multiple phenotypes conditioned upon. Finally, we summarise the performance of the cFDR
approach by the FDR ratio—the ratio of the upper bound for the FDR for all SNPs selected by the cFDR approach, and the estimated FDR of all SNPs
with p less than the maximum p value within this set if we had not conditioned. Note, we list only the most associated SNPs in each LD block by pruning
according to LD, as described in Methods.

doi:10.1371/journal.pgen.1004926.1002

detection of disease-associated SNPs compared to conventional methods. By enabling larger
control groups for each study, our method uses data more efficiently than in corresponding
study designs in which control groups are independent, and is applicable to a wider range of
GWAS datasets for which only summary statistics are available.

Combination of GWAS by analysis of pleiotropy in this sense has several attractive advan-
tages over single-phenotype analysis. The most obvious advantage is improved detection of dis-
ease-associated SNPs using GWAS without the need for additional samples. A secondary
advantage arises from understanding of the pleiotropic structure between phenotypes: if a SNP
is known to exhibit pleiotropy between two conditions, it may be causative for a shared risk

Table 3. Novel SNP-disease associations.

Chr Pos SNP Disease p value C. phen. MAF Nearby Genes
1p31.3 61791863 rs6691768: A > G CEL 8.56 x 107° CRO 0.373 NFIA

1p13.1 117076399 rs1034920: T > C PBC 1.43 x 107° MS 0.100 CD58

2p21 43359275 rs6705577: G > C CEL 3.61x107 MS 0.272 THADA

2g32.1 185501065 rs79248157: T > C uc 1.53 x 1077 CRO 0.031 ZNF804A

6q15 90976768 rs72928038: G > A RA 5.89 x 1077 T1D 0.176 BACH2
16g12.1 51080214 rs12924003: C > T CRO 5.82 x 1078 NAR 0.321 NOD2
20q13.12 44596207 rs6032606: G > C CEL 1.31 x 1077 MS 0.052 ZNF355, MMP9
22q13 37633851 rs9610686: G > A CEL 1.90 x 1077 ATD 0.387 RAC2

Eight SNP associations with the indicated disease discovered by cFDR but not previously published to our knowledge, together with the phenotype upon
which they have been conditioned (C. phen.) and nearby genes. SNPs are shown by RSID: major>minor alleles. The disease (prinicipal phenotype) p
value has been corrected for genomic inflation. Note that a SNP reaching significance by cFDR for the principal phenotype does not constitute evidence of
association with the conditional phenotype (C. phen.). Chr = chromosome, Pos = position (build GRCh37), SNPs are shown with major>minor alleles,
MAF = minor allele frequency in UK controls.

doi:10.1371/journal.pgen.1004926.t003
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factor or pre-disease state. Analysis of such SNPs has the potential to yield information on dis-
ease aetiology, with implications for preventative medicine and development of treatment.

A further potential use for this technique could be the genomic analysis of diseases with
complex phenotypes. In many cases, distinction between two diseases may be difficult; for in-
stance, Crohn’s disease and Ulcerative Colitis [35]. Additionally, many diseases, including nar-
colepsy (http://www.uptodate.com/contents/clinical-features-and-diagnosis-of-narcolepsy,
accessed 20/6/14), are definitively diagnosed on clinical grounds. This implies that these dis-
eases may constitute a range of biochemical and genetic states. Inclusion criteria based on ob-
jective biochemical grounds, such as that used for narcolepsy in the context of this paper [24]
are unlikely to characterise all patients with these diseases, and conclusions drawn from studies
will not necessarily be medically applicable to the whole patient population. Given this, diseases
defined phenotypically with potential genomic diversity may be better analysed by separate
consideration of biochemically-defined subtypes, with a collective analysis performed by a

method such as cFDR, avoiding the assumption that the genomic bases of disease subtypes are
identical.

We identify a counter intuitive property that the FDR in the union of all regions with cFDR
less than a given @ may be greater than a, and propose a method to overcome this problem.
Our methods for adjusting cutoffs to control FDR and account for multiple testing demon-
strate the geometrical elegance of the theory of these techniques, with the possibility for further
improvements and understanding. They are complex to apply, but could be much simplified if
interest was directed to SNPs with conditional p values less than some threshold py. Our meth-

od would ensure that the expected false discovery rate at SNPs with ¢EDR(p, | p,) < o« would
indeed be controlled at . Our more complicated method to control FDR is necessary if the var-
iable p; is used in place of the constant p,.

An important consideration in both our method and the original Andreasson method is

that a cFDR (p: | p;) value which reaches significance does not constitute genome-wide evidence
of association with the conditional phenotype j; indeed, the probability of association with the
conditional phenotype relates to cFDR (p; | p;) and in general cFDR(p, | p) # cFDR (p; | p,)-In
some cases, where the principal p value is very close to genome-wide significance, even condi-
tioning on p; < 0.5 can theoretically be enough to reach the relevant cFDR threshold. This is
not a weakness of the cFDR method as such, but a consequence of using a discrete technique (a

significance cutoff) on a variable which essentially continuous in two dimensions (CFD\R). Prin-
cipal p values greater than 5 x 10~® which can be declared significant conditioning on large
conditional p value cutoffs correspond to an increase in the area of the region L (see results sec-
tion), which is accounted for by our FDR-controlling method.

Our method enables improved detection of SNPs compared to analysis of unconditional
FDR (principal p value alone). However, the improvement is smaller than that reported by
Andreasson et al [3, 13, 14], who detected almost twice as many SNPs using cFDR as they
would have detected with uFDR. This is expected for two reasons. Firstly, the gain in power
from cFDR essentially comes from an increase in the total number of controls and the effective
number of cases. If controls are shared, the only information gain can come from increasing
the number of effective cases. Consequently, the difference in power between cFDR and uFDR
will not be as large when controls are shared, although both outperform their counterparts
when controls are split. Secondly, we were careful to use stringent cutoffs for FDR which were
chosen to mirror the established genomewide significance threshold of p < 5 x 10~%, generally
equivalent to a false discovery rate around 5 x 10~° to 5 x 10, compared to Andreasson et al

who declared non-null all SNPs with cFDR < 0.01.
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One alternative way to exploit pleiotropic relationships is by meta-analysing two related dis-
eases together, as though the diseases were the same. Our method confers several advantages
over this approach. The most important of these is that our method borrows strength from
other SNPs according to the level of genome wide pleiotropy between diseases; that is, if the
two GWAS suggest extensive pleiotropy (such as Fig. 4 for T1D — RA), a low p value for a con-
ditional phenotype will ‘sway’ our judgement of association with the principal phenotype more
than the same p value for a conditional phenotype with poor pleiotropy (such as Fig. 4, for
T1D — PSO). A meta-analysis would not distinguish these two scenarios. A secondary advan-
tage of our technique is that SNP detection is not systematically weakened if the two diseases
do not exhibit pleiotropy, as would be the case in meta-analysis; this arises because we are test-
ing association with only one of the two phenotypes at a time.

Methods
Ethics statement

This paper re-analyses previously published datasets. All patient data were handled in accor-
dance with the policies and procedures of the participating organisations.

Datasets

We obtained SNP summary statistics from ten studies on autoimmune diseases from Immuno-
Base (www.immunobase.org). Inclusion and exclusion criteria for the studies are described in
detail in the original publications ([20-28, 28]. Generally, some or all controls from different
studies were obtained from common data sources, resulting in overlapping control groups. All
studies used the ImmunoChip array [17].

P values for type 1 diabetes were from a meta-analysis of a case-control study and familial
study using the transmission disequilibrium test (TDT). In order to calculate the correlation
between p values for different diseases, we needed to calculate effective numbers of cases and
controls for the combined T1D study. For a case control study, under the assumptions of
Hardy-Weinberg and the null hypothesis, the variance of the log odds ratio may be expressed
as

n, + n, 1
nyn,  f(1—f)

where 1y and n; are the numbers of cases and controls and fis the minor allele frequency in
controls.

Given the standard error of a log OR for the TDT study, &, and a minor allele frequency, we
estimated M = 6~ f(1—f) for all ImmunoChip SNPs which did not show deviation from the null
hypothesis (p > 0.5). The distribution of log(M) is shown in S3 Fig. By equating the median of
M with %, and assuming that each TDT family contributed the equivalent information to

one control in a case-control study, ie 1y = 2943, we estimated an equivalent number of cases
as 4126. This seemed reasonable, given that there are a total of 5505 (dependent) cases across
those families.

SNPs were excluded on the basis of QC summaries calculated on 12,888 common controls:
call rate less than 99%, minor allele frequency less than 0.02, or deviation from Hardy-
Weinberg equilibrium (|Z| > 5). Given the strong association of immune mediated diseases
with the MHC and the extended LD in the region, we were concerned that MHC SNPs might
cause inaccurate estimation of pleiotropy. We therefore excluded SNPs in a wide band around
the MHC region on chromosome 6 (co-ordinates 24500000: 34800000, build NCBI36). After
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quality control, genotype data was available for at least one phenotype at a total of 110677
SNPs.

Genomic control

P values were corrected for genomic inflation using a genomic control algorithm [32]. A set of
SNPs known to be unassociated with autoimmune disease was obtained from the Wellcome
Trust Case Control Consortium (WTCCC) study on reading and mathematics ability. These
SNPs were pruned so that none were in LD with 7* > 0.2, and any SNPs within 500 kb of
known autoimmune-associated regions were removed. The average degree of inflation was
computed for each disease at the remaining 1761 SNPs, and all effect sizes and p values were
adjusted accordingly.

Procedures for uFDR and cFDR

We assume that the p-values for a phenotype i across all SNPs are instances of a random vari-
able P;. If p; is an instance of this random variable corresponding to a SNP of interest, the un-
conditional false discovery rate uFDR(p;) is defined as

”FDR(pi) = Pr(H(()i)|Pi < pi)
Pr(P, < P1|H<<)i))
Pr(P, < p,)
pi
Pr(P, < p,)

= Pr(Hy)

= Pr(H)")

where H!" is the null hypothesis that the SNP of interest is not associated with phenotype i.
Given a set of observed p values {p}, p? ... pN} for a phenotype i at N different SNPs, and an
observed p value p; for a SNP of interest, we estimate this quantity as

P

FDR(p,) =
uFDR(p,) #(p values p¥ with pk < p,)/N

(1)

Expected quantile of p, under H,’
Observed quantile of p,

Because we make the approximation Pr(H;) = 1, the estimate uFDR is a an upwards-biased es-
timate of uFDR; that is, its expected value is greater than the true uFDR, making it a conserva-
tive estimator.

We compute the quantity (1) for each SNP at each phenotype, declaring any SNP for which

uFDR (p;) < aas non-null for phenotype i. Defining V as the number of SNPs falsely declared
non-null, R as the total number of SNPs declared non-null, and Q = V/R, a theorem of Benja-
mini and Hochberg [31] shows the expected false discovery rate E(Q) among SNPs with

uFDR < o is less than a.

The cFDR constitutes a natural extension of this idea. We assume that the p-values for two
phenotypes i and j across all SNPs are instances of a pair of random variables P;, P;. If p; and p;
are instances of these variables corresponding to a SNP of interest then the conditional false
discovery rate cFDR is defined for the set of SNPs with p values for each phenotype less than or
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equal to those at this SNP (as per Andreasson et al [3]) as
CFDR(P:‘|P]‘) = PT(H((Ji)|Pi < Piij < Pj)

Pr(P, < p|P, < p;, Hy")

)p <«
Pr(Hy'[P; < p) Pr(P, < p,|P, < p))

The estimation of this quantity proceeds in a similar way to uFDR. Given a set of observed p
value pairs {(p;, p; ), (¢}, p}) - - (p}', p}’) } for two phenotypes i and j at N different SNPs, and
an observed p value pair (p;, p;) for a SNP of interest, we define N; as the number of p value
pairs with P; < p;, and estimate the cFDR as

Pr(P, < p|P, < p,, Hy")

FORPIR) = paies (k. ) € (P, P,) with pF < p, and pf < p)/N,

Expected quantile of p, under H\ amongst p* with k satisfying Pi <p,

Observed quantile of p; amongst p} with k satisfying p; < p,

Again, this estimate is conservative, due to the approximation Pr(H," | P <p)=1
We compute the quantity (2) for each SNP at each pair of phenotypes, declaring any SNP
for which ¢FDR (p: | p;) < & as non-null for phenotype i. However, as noted earlier, this does

not guarantee that the expected false discovery rate amongst such SNPs is less than . We
show that the FDR is controlled at a higher level dependent on the region of the unit square de-

fined by rectangles for which cFDR(x | y) < o.
Our method here diverges from the original method proposed by Andreasson et al, in the

use of the expected quantile Pr(P; < p, | P, < p;, H{") in place of the p-value p;. If studies share
no controls, it can be reasonably assumed that, for a SNP which is null for phenotype i, the p
values (p;,p;) are independent, so p; = Pr(P, < p, | P, < p, H{") = p.. This is the approach
taken by Andreasson et al [3]. We propose a method for computing p; when controls are
shared between studies, and the independence assumption above is not valid.

Our approach is to compute the related quantity Pr(P, < p, | P, < p, H, HY), where 7 is
the (unobserved) effect size we would observe for a given SNP for phenotype j if the observed
MAFs agreed exactly with the population MAFs for that SNP, and HY is the hypothesis that

Z; ~ N(n,1) for that SNP. This quantity can be thought of as the ‘expected quantile’ of p;; that
is, the proportion of p values we expect to be less than p;.

Computation of expected quantile
From the first part of (2), we have:

Pr(H(()i)|1)j < pj)Pr(Pi < Pile <p; Ht(Ji>)
Pr(P; < p,|P; < p))

cFDR(p,|p;) = (3)

As per Andreasson et al [3], the quantity Pr(H," | P, < p;) is set conservatively at 1, and the
quantity Pr(P; < p;|P; < p;) is estimated empirically as the proportion of pairs of observed p
values (p';, p;) with p’; < p, which also satisty p', < p,.

For a given SNP, let 7 denote the standardised mean allele frequency (MAF) difference; that

is, the Z value we would compute if the observed MAFs agreed exactly with the population
MAFs. We consider 7 for a random SNP as being an instance of a random variable H, and that
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the observed z value for that SNP Z|H = 7 is distributed as
Z|H =n ~N(n,1) (4)

We further assume that H follows a mixture distribution taking the value 0 with probability 7"/

and a normal pdf with probability 1 — 7!:

0 ()
H ~ ) p TEU . (5)
N(0,0*), p=1-mn

This implies

_ 0
7~ {N(O,l), p=nl ”

N(0,1+02), p=1—nV

Thus, given the observed distribution of Z;, the parameters 7Y and 0; may be estimated by an
expectation - maximisation algorithm (https://gist.github.com/chrlswallace/11421212).

We assume as per Zaykin [18] that the distribution of pairs of observed z values (Z;, Z;) for a
single given SNP is bivariate normal. Denote by HY the event that, for a given SNP, the values
Z; are distributed as N(7, 1), with n depending on the SNP.

Under our assumption of the null hypothesis Héi) for the principal phenotype and a popula-
tion MAF difference corresponding to 7 for the conditional phenotype, we have

o)) o

The correlation p arises from the shared controls between groups [18, 19] and is asymptoti-
cally equal to

p= ! (8)

YRk ) (i)

where N; and N; are the numbers of cases, No; and Ny, are the numbers of non-shared controls,

and Nj is the number of shared controls for the original GWAS for the principal and condi-
tional phenotypes respectively. There is good agreement with the asymptotic correlation when
group sizes are greater than 100 [18].

Given equations (5)—(8), the joint distribution of Z; and Z; can be computed under only the

assumption H\. The value of the partial PDF of (Z,, Z | H) at (x, y) can be derived in a simi-

(L)

(Zi7 Zj|Hl(]i)) ~ (9)

0 L p .
0 p 1+0°

lar way to (6):
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We now compute the final probability in equation (3). Define

P,(X) = Pr(X|H, H}) (10)

as the probability of observing events X for a particular SNP with true effect size 7 (which may
be 0, corresponding to the general null). Then,

Pr(P, < p, P, < pH)')

pr(P, < pH)")

Pr(p, < plB < ppHY) =

nPy(P, < py By < p) + (1= 7)) [ P (P < i Py < p)f ()il

. N (11)
rPy(P, < p) + (1= ') [ P, (P, < p)f (n)eln

If the distribution of H is estimable by other means, quantity (11) can be calculated numeri-
cally without the assumption that the non-null component of H be normally distributed, at the
cost of higher computation time. Under our assumptions, equations (6) and (9) enable the fast

computation of quantity (11) by normal CDFs; writing

A(p,az)(zﬂzj) :/ N 0 1 p (‘x’y)dxdy
x>zl y1> 1] < > ( )
0

p 140’

o (Zj) = N(0,1+a2)()’)d)’

>l

we have

Tcg)A(p,U) (2, Zj) + (1 - n(()j)>A(p.o‘2)(zHZj)

ng))“l)(zj) + (1 - ng)>;“a2 (Zj)

Pr(Pi < P1|Pj < pjﬂHéi)) =

Point expected quantile
Because the formula for Pr(P, < p, | P, < p;, H{) is differentiable on the unit square, an ex-
pression for the expected quantile of p; given an exact value for p; can be computed by taking
the partial derivative with respect to p;:

_A+B

, P} ,
Pr(P, < p P, = p HY') = 5 Pr(P, < p|P, < p, HY')
J J ap] J J C
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where

A= n[({jN(o‘l)(zj)/ N<pzj‘1,pz)(x)dx

x]>z;

B = (1= mNyp(@) | N gy 1o (9
x|>z;
<1+0'2’ 1+ p? )

C= n[(Jj)N(O,l)(Zj) + (1 - ng))N(0,1+62)(zj)

where N, ,2(x) denotes the value of the normal pdf with mean u and variance o’ at x.

Significance thresholds

Because 1FDR values are monotonically related to p values, the widely accepted GWAS p value
cutoff of 5 x 107® corresponds naturally to a cutoff for uFDR. For each phenotype 7, we set a
significance threshold A for uFDR (p,) as the lowest possible value of y for which

uFDR(p,) <7< p, <5 x 1075,

We then applied an analagous approach to cFDR. For each pair of phenotypes (i, j), we set a
significance threshold ocj’ﬁ as the lowest possible value of ¢ for which
cFDR(p, | p;) <7 & p, <5 x 107", Given the distribution of P, it is possible that this could
lead to declaring SNPs with p; > 5 x 10~%,p; = 1 as significant. To avoid this, if o; was larger
(less stringent) than B, we set oc}‘ =p.

For each ordered pair of phenotypes (i, j), we declared all SNPs with cFDR(p, | p) <oas
non-null for phenotype i. This included all SNPs with uFDR (p,) < B'. We then used a tech-
nique described in S1 Text (section B) to compute upper bounds c]@ on the false discovery rate
amongst SNPs for which cFDR(p,, p;) < . For each phenotype, this gave nine upper bounds,
corresponding to each of the nine conditional phenotypes.

Network and heatmap representation of pleiotropy

We compared the degree of pleiotropy between diseases by considering how much the p-value
threshold for significance for the principal phenotype changed when conditioning on a small
p-value threshold for the conditional phenotype. We used the cFDR algorithm to compute the
number p!" such that P(H.” | P, < [i*,pj <5x10°% =PHY | P, < 5 x 10°%); that is,
cFDR(p}" | 5 x 107°) = uFDR(5 x 10™*). We then considered the ratio p} /5 x 107%; that is,
the fold increase in significance cutoff after conditioning.

We note that because of the fixed value of p; = 5 x 1075, the expected false discovery rate
amongst the set of SNPs which satisfy P(H\" | P, < pf*,pj <5x10% <PH|P, <
5 x 107®) is bounded above by P(H\" | P, < 5 x 10™®), by the Benjamini-Hochberg result.
Thus the expected false discovery rate amongst SNPs with P, < p/" and P; < 5 x 10~® is bound-
ed by the same value as the expected false discovery rate amongst SNPs with P; < 5 x 10~°.

We visualised the ratio p} /5 x 10~® as a heatmap (S2 Fig.). We also produced a network
(Fig. 6), with an edge from vertex i to vertex j if and only if, by conditioning on P; < 5 x 107,
the cutoff for significance for P; could be increased from 5 x 10~ to 4 x 10~”. This cutoff was
chosen as the smallest value such that the network was weakly connected; that is, each vertex
had an arrow either to it or from it.
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Discovery of novel SNP associations

Cutoffs 5’ were chosen such that «FDR (p,) < B < p, <5 x 10", SNPs were deemed signifi-
cant for a principal phenotype i if cFDR (p; | p;) < o for any conditional phenotype j and
< .

The expected false discovery rate amongst SNPs for which uFDR(p,) < f8' is less than 8’ due
to a theorem of Benjamini and Hochberg. However, as discussed above and in S1 Text (section
B), the expected false discovery rate amongst SNPs for which cFDR(p; | p;) < o is not neces-
sarily lower than on’ﬁ. For each ordered pair of phenotypes (4, j), an upper bound c}’ﬁ was computed

for the expected false discovery rates amongst SNPs with cFDR (p, | p;) < . The list of SNPs
declared non-null for phenotype i was pruned to allow for linkage disequilibrium (LD) by list-
ing all SNPs in increasing order of minj(cF/D\R (p:lp;) and stepping through the list from left to

right, at each stage removing all SNPs in LD with 7 > 0.1 to the right of the current SNP. This
ideally leads to the inclusion of at most one SNP from each LD block.

Multiple testing

A multiple testing problem arises from considering p values for one disease conditioned sepa-
rately on nine others. Specifically, if the criterion for declaring a SNP non-null for phenotype i
is that cFDR (p, | p;) < o for at least one of the nine possible values of j, then the FDR for all
SNPs declared non-null will be greater than the FDR among the smaller set of SNPs for which
cFDR(p, | p;) < o for only one value of j, due to multiple testing.

However, this excess FDR is not enough to warrant a Bonferroni (Sidak) correction; the
cFDR (p: | p;) values for a phenotype i are highly correlated, as all are in turn highly correlated
with p;. A Bonferroni correction tends to remove any advantage in SNP detection gained from
cFDR, though an advantage may still be seen when only considering one conditional pheno-
type j.

We opted to use a method proposed by Nyholt [36] to correct for multiple testing in SNPs
with high LD. We estimated a correlation matrix Q for potentially non-null cFDR values using

Spearman’s rank correlation. The variance of the eigenvalues of Q, Var(4,,,), was computed
and used to estimate the effective number of variables M,gaccording to the equation

Meﬁ:1+9(1—w> (14)

Note that Var(2,) is between 9 (completely correlated variables, effectively one test) and 0
(completely uncorrelated variables, essentially a Bonferroni correction).

Denoting by #; the number of SNPs with cFDR(p, | p;) < &, corresponding to an upper
bound on the FDR of ¢}, an upper bound for the FDR among all SNPs declared significant for
phenotype i was then computed as

i
; Zj:L,m#iCj”j
=M, <"1
R S
i=1.10ji"%

intuitively, multiplying the expected average number of false discoveries across conditional
phenotypes (cj’ﬁn}’ﬁ) by the effective number of tests. Values of M yand ¢j are shown in S1 Table.

(15)
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Supporting Information
S1 Text. Mathematical basis for estimation of cFDR and establishment of upper bound on

expected FDR when using cFDR method.
(PDF)

S1 Table. Calculation of false discovery rates for SNPs reaching cFDR significance levels.
M. gives the ‘effective number of tests’, relating to the multiple testing adjustment for the mul-
tiple phenotypes conditioned upon (see Methods section). Max p is the maximum principal

p value at which a SNP was able to be declared significant using cFDR. Eq FDR shows the false-
discovery rate we would be forced to control at in order to detect all these SNPs the principal

p value alone. The FDR bound (bold) is the false discovery rate at which the set of SNPs discov-

ered by the cFDR method is controlled.
(CsV)

S2 Table. S2-S11 Tables show associated SNPs for each phenotype, ordered by best cFDR.
P values shown are after adjustment for genomic inflation. Chromosome positions are from
the NCBI36 assembly. The conditional phenotype shown is the phenotype for which the cFDR
was most below the relevant cutoff. Column CP is the conditional phenotype for which cor-
rected cFDR was lowest. SNPs with p value greater than 5 x 10~ for the principal phenotype
are asterisked, and SNP-disease associations not previously known are suffixed with a’+".

S2 Table shows SNPs associated with T1D (type 1 diabetes).

(CSV)

$3 Table. SNPs associated with ATD (autoimmune thyroid disease). See legend for S2 Table.
(CSV)

S4 Table. SNPs associated with CEL (celiac disease). See legend for S2 Table.
(CSV)

S5 Table. SNPs associated with MS (multiple sclerosis). See legend for S2 Table.
(CSV)

S6 Table. SNPs associated with NAR (narcolepsy). See legend for S2 Table.
(CSV)

S7 Table. SNPs associated with PBC (primary biliary cirrhosis). See legend for S2 Table.
(CSV)

S8 Table. SNPs associated with PSO (psoriasis). See legend for S2 Table.
(CSV)

S9 Table. SNPs associated with RA (rheumatoid arthritis). See legend for S2 Table.
(CSV)

$10 Table. SNPs associated with UC (ulcerative colitis). See legend for S2 Table.
(CSV)

S11 Table. SNPs associated with CRO (Crohn’s disease). See legend for S2 Table.
(CSV)

S1 Fig. Effect of adjusting cFDR for shared controls. Plots A and B show the ratio between

the true cFDR (computed using our method) to the’naive’ cFDR (computed by naively applying
the existing split-control approach to shared-control data without adjustment) for a range of p
values for the principal phenotype. The p values forming the x-coordinates were obtained from
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the shared-control design. The left-hand plot shows ratios of true to’naive’ cFDR for p values
greater than 1 x 10”'°, demonstrating 2-3 fold underestimation. The right-hand plot shows
log-ratios of trueto’naive’ cFDR for smaller p values, demonstrating hundred- or thousand-
fold underestimation.

(PDF)

S2 Fig. Summary of pleiotropy between phenotypes. The colour for phenotype i (horizontal)
and phenotype j (vertical) corresponds to the p-value cutoff for significance for phenotype i,
given that a p-value cutoff for phenotype j is less than 5 x 107°.

(PDF)

S$3 Fig. Distribution of log(M) amongst null SNPs. M is proportional to the variance of the
log odds ratio from TDT data, defined as 6> f{1-f)), where fis the minor allele frequency
amongst null SNPs, and ¢ is the standard error. Equating the median of M with a known ex-
pression for variance of the log odds ratio in a case-control study enables back-calculation of
the effective number of cases and controls. This technique was used for computing the number
of cases and controls in the T1D study, for which p values were obtained from a meta-analysis
of case-control and TDT data.

(PDF)

$4 Fig. S4-S13 Figs. are Q-Q plots labeled “i|j”, where i is the principal phenotype and j the
conditional phenotype. Y axes show log,,(p}); X axes show log quantile (rank) of p values in
various sets of SNPs. Each colour corresponds to the Q-Q plot for p; amongst only SNPs such
that p; is less than a certain cutoff, with the black line corresponding to the Q-Q plot for all
SNPs. P values for the principal phenotype are adjusted for the effect of shared controls be-
tween studies. A leftward shift with decreasing p; cutoff indicates enrichment of SNP sets from
conditioning on degrees of association with a conditional phenotype, probably due to pleiotro-
pic effects between phenotypes. Because the studies used the ImmunoChip, which covers only
potential autoimmune-associated regions, the black line also shows considerable enrichment
compared to quantiles. S4 Fig. shows Q-Q plots with T1D (type 1 diabetes) as the

principal phenotype

(PDF)

S5 Fig. Q-Q plots with ATD (autoimmune thyroid disease) as the principal phenotype. See
legend for S4 Fig.
(PDF)

S6 Fig. Q-Q plots with CEL (celiac disease) as the principal phenotype. See legend for 54 Fig.
(PDF)

$7 Fig. Q-Q plots with MS (multiple sclerosis) as the principal phenotype. See legend for
S4 Fig.
(PDF)

S8 Fig. Q-Q plots with NAR (narcolepsy) as the principal phenotype. See legend for S4 Fig.
(PDF)

S9 Fig. Q-Q plots with PBC (primary biliary cirrhosis) as the principal phenotype. See leg-
end for 54 Fig.
(PDF)

S10 Fig. Q-Q plots with PSO (psoriasis) as the principal phenotype. See legend for 54 Fig.
(PDF)
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S11 Fig. Q-Q plots with RA (rheumatoid arthritis) as the principal phenotype. See legend
for S4 Fig.
(PDF)

S12 Fig. Q-Q plots with UC (ulcerative colitis) as the principal phenotype. See legend for
S4 Fig.
(PDF)

$13 Fig. Q-Q plots with CRO (Crohn’s disease) as the principal phenotype. See legend for
S4 Fig.
(PDF)
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