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Abstract: Research has shown that dyslexia and attention deficit (hyperactivity) disorder (AD(H)D)
are characterized by specific neuroanatomical and neurofunctional differences in the auditory cortex.
These neurofunctional characteristics in children with ADHD, ADD and dyslexia are linked to
distinct differences in music perception. Group-specific differences in the musical performance of
patients with ADHD, ADD and dyslexia have not been investigated in detail so far. We investigated
the musical performance and neurophysiological correlates of 21 adolescents with dyslexia, 19
with ADHD, 28 with ADD and 28 age-matched, unaffected controls using a music performance
assessment scale and magnetoencephalography (MEG). Musical experts independently assessed
pitch and rhythmic accuracy, intonation, improvisation skills and musical expression. Compared
to dyslexic adolescents, controls as well as adolescents with ADHD and ADD performed better in
rhythmic reproduction, rhythmic improvisation and musical expression. Controls were significantly
better in rhythmic reproduction than adolescents with ADD and scored higher in rhythmic and pitch
improvisation than adolescents with ADHD. Adolescents with ADD and controls scored better in
pitch reproduction than dyslexic adolescents. In pitch improvisation, the ADD group performed
better than the ADHD group, and controls scored better than dyslexic adolescents. Discriminant
analysis revealed that rhythmic improvisation and musical expression discriminate the dyslexic
group from controls and adolescents with ADHD and ADD. A second discriminant analysis based on
MEG variables showed that absolute P1 latency asynchrony |R-L| distinguishes the control group
from the disorder groups best, while P1 and N1 latencies averaged across hemispheres separate the
control, ADD and ADHD groups from the dyslexic group. Furthermore, rhythmic improvisation was
negatively correlated with auditory-evoked P1 and N1 latencies, pointing in the following direction:
the earlier the P1 and N1 latencies (mean), the better the rhythmic improvisation. These findings
provide novel insight into the differences between music processing and performance in adolescents
with and without neurodevelopmental disorders. A better understanding of these differences may
help to develop tailored preventions or therapeutic interventions.

Keywords: musical performance; rhythm; pitch; neurodevelopment disorders; auditory cortex;
auditory-evoked fields; magnetencephalography
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1. Introduction

Musical performance is a very complex human capability and requires a broad variety
of skills, including precise instrument/vocal control and technique with accuracy of notes,
rhythm and phrasing as well as interpretational skills such as appropriate tempo and
dynamic, suitable sense of style and involvement in the music [1].

For the assessment of musical ability, several well-designed musical perceptual mea-
surements such as the Seashore test [2], the Intermediate Measures of Musical Audiation [3],
the Advanced Measures of Musical Audiation [4], the Montreal Battery of Evaluation of
Amusia [5] and the more recently developed Profile of Music Perception Skills [6] are avail-
able. In addition, there are self-report questionnaire inventories such as the Goldsmiths
Musical Sophistication Index (Gold-MSI), which measures musical sophistication and con-
sists of five factors: active engagement, perceptual abilities, musical training, singing ability
and emotions [7]. However, to date, there are only few musical performance measures
which focus either on the reproduction of rhythmical and melodic sequences [8] or on
performing familiar or unfamiliar songs [9,10].

Until now, research mainly concentrated on perceptual musical ability tests. Music
perception measures mainly use objective measures with correct or incorrect assessment
options. As an acoustic analysis of music performance relies on accuracy, it has the advan-
tage that findings are reproducible [11,12]. However, computerized methods can reach
their limits. For instance, when individuals play musical pieces or perform songs techni-
cally perfect but in an inaccurate pitch, they could be evaluated poorly, even though the
performance may be quite good [10,13]. In contrast, music performance assessments are
often based on very time-consuming approaches [14] with rating scales based on certain
criteria chosen by experts in the field [15–19]. These rating scales may be used in flexible
ways and can therefore be adapted according to specific rating criteria [11], which has also
the advantage that longer sequences can be assessed [14]. Even though rating scales are
subjective, research found a high correlation between acoustic and subjective measures
of musical performance [11]. The increased reliability of measures based on rating scales
can be achieved by using more than one rater—an approach we decided to use in this
investigation and which has been applied previously [9,17,18,20]. As our cohort included
individuals with dyslexia, ADD and ADHD, we decided to use rating scales, since piloting
has shown that individuals with diagnoses more frequently sang parts of the musical pieces
out of tune.

So far, there are contradictory findings regarding the link between music perception
and performance [21,22]. Some researchers noted a relationship between music perception
and production [23,24], while others could not detect a relationship between both [25]. This
dissociation between the perception and production of musical stimuli gained increasing
interest in impairment studies. These studies assume that if one capacity is impaired, the
other could possibly be spared. In this respect, alternative explanations for deficits were put
forward. For instance, while it is generally accepted that amusics’ poor singing ability stems
from poor pitch perception deficits, recent research found evidence that amusics’ poor
singing ability can be explained by the inability to control sensorimotor translations [26,27].
Conduction aphasia, which leads to spontaneous speech production impairment, is un-
derstood as a deficit in sensory–motor integration [28], and stuttering improves alongside
gaining sensory–motor control of the vocal motor apparatus [29]. Sensorimotor synchro-
nization is a crucial aspect of referential behavior and describes the rhythmic coordination
of perception and action, which is also a fundamental aspect required in musical activ-
ities [30]. Sensorimotor synchronization is a crucial aspect of referential behavior and
describes the rhythmic coordination of perception and action, which is also a fundamental
aspect required in musical activities [30]. So far, sensorimotor skills have mainly been
assessed by the finger tapping paradigm, which measures the synchrony between the
tapping of the index finger and the pacing stimuli [31]. More recently developed test batter-
ies, such as the Assessment of Auditory Sensorimotor and Timing Abilities (BAASTA) [31] and
the Harvard Beat Assessment Test (H-BAT) [32], provide information about perceptual and
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sensorimotor timing ability. There is evidence that musical training enhances sensorimotor
synchronization [32], and musicians show more elaborate synchronization skills, lower
tapping variability and greater perceptual sensitivity compared to controls [33].

As musical performance requires the integration of multimodal sensory and motor
information, professional musicians not only demonstrate enlargements in the motor
cortex but also neuroplastic changes at a cellular level [34]. The auditory cortex is widely
linked to various brain regions, including prefrontal and parietal regions, and is involved
in complex auditory and non-auditory functions, such as spectral and holistic listening
modes [35], absolute and relative pitch [36,37], sensorimotor [38–40], cognitive [41] and
language-related [42–44] functions.

Neurophysiological research suggests that the neural processing of language and
music may be shared since acoustic signals of speech show similarities to music in temporal
and spectral complexity [45,46]. This may be one fundamental reason why individuals
with diagnosed neurodevelopmental disorders show deficits in both music and language
processing [47,48]. Models such as the “OPERA” hypothesis postulate that benefits in
speech processing induced by musical training are based on five conditions: overlap,
precision, emotion, repetition and attention [49]. The OPERA hypothesis mainly focusses
on perceptual parameters. Other models such as the Precise Auditory Timing Hypothesis
(PATH) suggest that auditory–motor entrainment and phonological awareness both depend
on the same mechanisms: neural timing and its integration into motor and cognitive
networks [50]. Therefore, it can be postulated that musical training with emphasis on
entrainment also trains phonological skills [50]. The Processing Rhythm in Speech and Music
(PRISM) framework defines precise auditory timing, the synchronization/entrainment of
neural oscillations to external rhythmic stimuli and sensorimotor coupling as the three
common mechanisms which underly music and speech rhythm processing [47]. The PRISM
model has not only been introduced to show overlaps between music and speech perception
and production but also provides a framework for developmental speech disorders. This
framework unites auditory processing, crucial for the detection of timing deviations, the
synchronization and entrainment of neural oscillations and sensorimotor coupling, which
links perception to production [47].

There is a growing body of evidence that the anatomy and function of the auditory
cortex is altered in neurodevelopmental disorders such as dyslexia, attention deficit hyperac-
tivity disorder (ADHD) and attention deficit disorder without hyperactivity (ADD) [51–55].
Dyslexia and AD(H)D belong to the most common neurodevelopmental disorders in chil-
dren and adolescents, with a worldwide prevalence of about 5–10% [56,57], and show a
high level of comorbidity [58–60]. Dyslexia is a specific learning disability characterized
by difficulties with accurate and/or fluent word recognition and by poor spelling and
decoding abilities. A poor discrimination of basic sound features and sequential acoustic
patterns may lead to suboptimal speech representation, constraining the development of
phonological representations [61] and reading and spelling skills [62]. Individuals with
dyslexia not only have timing difficulties in language and music perception, performance
and lack motor control [63–66] but also a large variety of auditory deficits, ranging from
basic to more complex auditory processing deficits [51,62,65,67–69]. In addition, they have
impairments in higher-order cognitive processing (e.g., executive functions) and cognitive
skills (e.g., cognitive flexibility) [70–72]. Children with developmental disorders have been
found to exhibit underlying timing deficits which were not only seen as predictors for the
disorders [70,72] but also as triggers [67].

AD(H)D is characterized by the key symptoms of hyperactivity, impulsivity and/or
inattention. According to the International Statistical Classification of Diseases German
Modification [73], two subtypes (namely ADHD and ADD) are distinguished. Patients
affected by AD(H)D show broad deficits including motor deficits, sensorimotor integration
impairments, perceptual timing deficits, temporal foresight and rhythm-related deficits
such as the poor differentiation of temporal auditory parameters and the desynchronization
of temporal patterns [74–82]. Moreover, difficulties in hearing and understanding oral
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instructions [83] and a lack of the ability to move to a beat and detect deviations from a
beat [84] can be found.

There is scarce literature dealing with characterizing features of musical ability in
AD(H)D subtypes/ presentations. Noreika and colleagues demonstrated that perceptual
timing and temporal foresight is less impaired in ADD than in ADHD [77]. Children with
ADHD show higher-order auditory processing deficits, including impairments in percep-
tion of rhythm and melody, and children with ADD demonstrate no auditory impairment
at all [51].

In previous studies, we observed auditory neurofunctional anomalies in children with
dyslexia, ADHD and ADD. While group-averaged P1 source waveform responses were
well-balanced in controls, the disorder groups showed a pronounced P1-asynchrony [51,53].
While dyslexics showed impairments in elementary (e.g., frequency, tone onset and dura-
tion) and complex auditory sound discrimination (meter, rhythm, melody, harmonic sound
perception and phoneme discrimination), children with ADHD only performed worse in
sequential auditory pattern recognition. In contrast, there were no auditory deficits in
children with ADD. Musical training in children with dyslexia, ADHD and ADD lead to a
markedly diminished asynchrony of the primary auditory answers [51].

To our best knowledge, to date, there is no research focusing on musical performance
in neurodevelopmental disorders such as ADHD, ADD and dyslexia. Therefore, we wanted
to close this research gap.

Hence, the goal of this study was to (a) evaluate the group-specific characteristics of
musical performance in adolescents with dyslexia, ADHD and ADD, and (b) to investigate
whether the potentially found differences in performance can be correlated to the response
pattern of the auditory cortex as measured using magnetoencephalography (MEG).

Due to the abovementioned auditory impairments, we hypothesized that the disorder
group would perform worse in the musical performance assessment scale than the control
group. Within the disorder group, we assumed that adolescents with ADD would perform
better in the musical performance than adolescents with ADHD or dyslexia, since the
latter both showed auditory impairments in previous research. Additionally, we wanted to
uncover whether our groups could also be differentiated based on the response pattern
latencies of the auditory cortex as measured using magnetoencephalography (MEG). Based
on the statistical analysis, we wanted to analyze whether the musical performance and
MEG variables which discriminate our groups best are also correlated with each other.

2. Materials and Methods
2.1. Participants

A total of 96 adolescents participated in this study. The subjects were 19 adolescents
with ADHD (2 females; 17 males; M = 14.05, SD = 1.43), 28 with ADD (8 females; 20 males;
M = 14.32, SD = 1.78), 21 with dyslexia (10 females; 11 males; M = 13.64, SD = 1.17) and
28 unaffected controls (14 females; 14 males; M = 14.48, SD = 1.12) (see Table 1).

All adolescents in this investigation were part of the larger combined cross-sectional
and longitudinal research project “AMseL” (Audio- and Neuroplasticity of Musical Learn-
ing) addressing the effects of musical practice on the brain and cognition from the primary
school age to young adulthood. The AMseL project was supported by the German Federal
Ministry of Education and Research (BMBF) and the Germany research foundation (DFG),
conducted at the University of Heidelberg (2009–2020), and partially accompanied by
the cultural education program “An Instrument for Every Child (JeKi)”. For this study,
participants with dyslexia, ADHD and ADD with musical expertise were recruited from all
over Germany and Switzerland.
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Table 1. Description of participants.

Parameters Categories Controls ADHD ADD Dyslexic

Number of
subjects 28 19 28 21

Age in years mean ± SD 14.48 ± 1.12 14.05 ± 1.43 14.32 ± 1.78 13.64 ± 1.17
Musical Status * mean 9.73 ± 6.03 5.94 ± 6.55 7.11 ± 9.02 5.74 ± 7.18

Sex
female 14 2 8 10
male 14 17 20 11

Handedness
right 24 16 22 16
left 4 3 6 5

* Musical status = product of the number of years of formal music education and the number of hours per week
spent practicing an instrument or singing. To give an example, a musical status of 6 could be defined by 6 years of
formal music education and 1 h spent practicing.

Affected participants were diagnosed by a child psychiatrist, and a written diagnosis
was obtained. Subjects who received the classifications F90.0/F90.1 (ADHD) or F98.80
(ADD) according to the International Statistical Classification of Diseases and Related
Health Problems German Modification, 10th Revision (ICD-10-GM) were included in the
study. Dyslexics were diagnosed according to the Pediatric Neurology standards of the
University Hospital Heidelberg, using ELFE [85] for reading comprehension, HSP1–10 [86]
to assess spelling skills and H-LAD to assess phoneme discrimination [87]. All participants
had normal hearing (defined as ≤20 dB HL pure-tone thresholds from 250 to 8000 Hz) and
no known comorbidities or history of neurological disorders. As is known from previous
studies, the proportion of males was higher in the ADHD and ADD group [51,88,89]. The
musical performance and neurophysiological correlates were measured by means of the
Music Performance Assessment Scale (MuPAS) and MEG in a cross-sectional design.

This study was approved by the responsible ethical committee. Parents provided
informed consent, and adolescents provided informed assent.

2.2. Musical Background

As published in previous studies, in order to assess the musical practice of participants,
a cumulative musical practice index (musical status) was calculated by combining partici-
pants’ statements regarding the number of years of formal music education received and
the amount of time spent practicing [51,53]. A one-way ANOVA test confirmed that there
was no significant main effect of the cumulative musical practice index and the disorder
groups, F(3, 94) = 1.61, p = 0.192,ω = 0.18. Additionally, the number of musical instruments
played (including singing) were reported. Overall, 8 subjects played four instruments,
8 played three instruments, 30 played two instruments, 38 played one instrument and
12 used to play at least one instrument but did not practice any instrument at the moment
of measurement. Additionally, 45 participants played or sang in an ensemble (e.g., choir,
orchestra or brass ensemble).

2.3. Musical Performance Measurement: Music Performance Assessment Scale (MuPAS)

Musical performance has been defined by a number of diverse musical capacities.
These include sight-reading (performing unfamiliar music from notation), performing well-
prepared pieces from memory or from notation, improvising, playing by ear (performing
music from aural presentation) and singing familiar and unfamiliar melodies [1,9,10,90–92].
Musical performance depends on accurate timing ability [93], metrical structure and on
the organization of a piece of music [94,95]. The accuracy of pitch and intonation is of
major importance to maintain the harmonicity and the aesthetic quality of a musical
performance [96]. Although most musical measurements used in the scientific context
differ as to the underlying concept of musicality [97], rhythm and pitch are two of the
main overarching dimensions of music [98]. In this context and based on previously used
musical production tasks [99], we developed a musical performance measurement, the
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Music Performance Assessment Scale (MuPAS), which focuses on two dimensions: pitch
accuracy and rhythmic ability.

The MuPAS measures the ability and competence to perform music by singing or
playing a musical instrument in relation to the musical experience. It consists of 2 modules—
rhythm and pitch—with 4 tasks for each module. All instructions were provided by a
recorded female voice. For the rhythmic tasks (RTs), the participants were instructed to:

• Listen to a rhythmic phrase twice (2/4, 6 bars including on the beat rhythmic accents
and slight changes in dynamics) and repeat it by clapping as precisely as possible
without any time limit after the second listen (RT1);

• Listen to 3 short rhythmic phrases twice (2/4, 2 bars each including simple and com-
pound division) with a metronome clicking in the background, and then rhythmically
improvise to each phrase by handclapping during the second listen while keeping the
meter (RT2);

• Sight read a rhythmic phrase by handclapping, which was presented on a single line
staff including quarters, semi-quarters and dotted notes (RT3);

• Memorize 3 subsequent rhythmic phrases with free chosen titles (valley—pattern
characterized by flat voicing, mountain—pattern characterized by partly ascending
voicing and cliff—pattern characterized by partly descending voicing) and rename
two randomly played phrases (RT4).

Melodic tasks (MTs) were similar to the RTs in their main structures and provided the
following instructions:

• Memorize 3 music phrases with free chosen titles (forest—pattern characterized by
chord progression, river—–pattern characterized by the same progression as for forest
outlined in eighth notes and Fire—pattern characterized by progression outlined in
sixteenth notes) and rename two randomly played phrases (MT1);

• Sight reading of a melody phrase in G-major by singing based on scale-related ascend-
ing and descending structures (MT2);

• Improvisation task with the melody in G Major, mostly based on a main triad structure
(4 bars, 2/4, piano recording) in which the subject was asked to continue by singing
without length restrictions (MT3);

• Play or sing their favorite music piece, which they were instructed to rehearse before-
hand (MT4).

All RTs and MTs were recorded as audio tracks and saved without the participant’s
names, but in a coded study ID. To assess the accuracy and quality of the music performance,
the recorded tasks were independently assessed by three raters, who were all music experts.
The raters listened to the performances using high-quality headphones at a fixed volume
and were blind to the subject. They were introduced to the checklist assessment, which
they used to evaluate the participants’ performances.

In total, 30 specific criteria (see Figure 1) were set out for all 8 tasks, including the
evaluator’s general impression of the task performance (RT1, RT2, RT3, MT2, MT3 and
MT4), the frequency of inaccuracies (RT1, MT2 and MT4), the stability of tempo (RT1, RT2,
RT3, MT2 and MT3), adjustment to the changes in articulation (RT1), variations in loudness
(RT1), rhythmic or melodic adjustment (RT2 and MT2), temporal coordination (RT2, RT3
and MT3), improvisation skills (RT2 and MT3), memorization (RT4 and MT1) and decision-
making time (RT4 and MT1), intonation (MT4), musical structure (MT4), value of expression
and sophistication (MT4). All the involved music experts evaluated recordings separately
using a bipolar scaling method (Likert scale). The rating scale ranged from 0 “min” to
10 “max” for each single task (the maximum possible value was 30 points from all 3 raters;
for descriptions, see Table 2). Principal component analysis was applied to assess the
internal relationships between the variables and to reduce the variables of the MuPAS to
meaningful dimensions. The internal consistency of the musical performance measures
was tested in a larger sample to meet statistical requirements for performing a PCA, which
demands 5 to 10 participants per variable [100]. Based on the findings, we devised unit-
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weighted composite scores for six factors: musical expression, rhythmic reproduction,
rhythmic improvisation, pitch reproduction, pitch improvisation and rhythmic and pitch
memorization. A detailed description of the principal component analysis, the participants
and findings are included in the Supplementary Materials for further illustration (see
Figure S1 and Table S1). To assess interrater reliability, we ran a correlational analysis based
on previous investigations [10,14]. The results indicated high interrater reliability. The
findings are shown in the Supplementary Materials (see Tables S2–S7).

Figure 1. Specific criteria and measurements of the Musical Performance Assessment Scale (MuPAS).

Table 2. Descriptive statistics of the six variables of the Musical Performance Assessment Scale.

Variables Mean (M) Standard Error (SE)

Rhythmic Reproduction (corr/30) 20.67 0.45
Rhythmic Improvisation (corr/30) 20.93 0.47

Musical Expression (corr/30) 20.66 0.44
Pitch Reproduction (corr/30) 18.03 0.52
Pitch Improvisation (corr/30) 20.71 0.53

Rhythmic and Pitch Memorization (corr/30) 25.51 0.32
Level of performance: excellent/very good (30–24); good/almost good (23–18); satisfactory/almost satisfactory
(17–12); unsatisfactory (11–3).

2.4. Neurophysiological Measurement: Magnetencephalography (MEG)
2.4.1. Stimuli

Auditory-evoked fields (AEFs) were recorded using a Neuromag-122 whole-head
MEG system in response to seven different sampled instrumental sounds tones (piano,
guitar, flute, bass clarinet, trumpet, violin and drums) and four artificial harmonic complex
tones, as performed in previous studies [35,37,51,53]. This set of stimuli is known to evoke
the primary auditory P1 response occurring about 50–100 ms after tone onset. It is followed
by the N1 complex that peaks around 110–180 ms after tone onset.

2.4.2. Procedure

The AEFs were recorded with a bandpass filter of 0.00 (DC)–330 Hz and a sampling
rate of 1000 Hz. The head position inside the Dewar was determined, and the loudness of
the stimulation was adjusted to 70 dB SPL, as determined by a Brüel and Kjaer artificial
ear (type 4152). Stimuli were presented binaurally without any tasks. Subjects were
instructed to listen to the sounds in a relaxed state while watching a silent movie to control
their vigilance. In order to obtain a larger signal-to-noise ratio, the sound material was
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presented for 20 min in a continuous sequence (total of N = 1200 acoustic stimuli; tone
length 500 ms each and interstimulus interval randomized between 400–500 ms), resulting
in a minimalized influence of superimposed oscillation patterns and enabling robust source
modeling as a basis for the additional analysis of the time course, latencies and amplitudes
of the auditory-evoked fields. Data analysis was conducted with the BESA Research 6.0
software (MEGIS Software GmbH, Graefelfing, Germany).

2.4.3. Pre-Processing

Prior to averaging, data were inspected to automatically exclude external artifacts
using the BESA Research event-related fields (ERF) module. By applying the automatic
artifact Scan tool across all participants, on average, 3–7 noisy (bad) channels were excluded,
and around 10% of all epochs exceeding a gradient of 600 fT/cm s and amplitudes either
exceeding 3000 fT/cm, or falling below 100 fT/cm, were rejected from further analysis.
Thereby, a major portion of endogenous artifacts, such as eye blinks, eye movements,
cardiac activity, face movements and muscle tensions could be accounted for. A baseline
amplitude calculated over the 100 ms interval before the onset of the tones was subtracted
from the signals. The responses of each subject were first collapsed into a grand average
(about 1000 artifact-free epochs after the rejection of 10% of artifacts afflicted or noisy
epochs) in a 100 ms prestimulus to 400 ms poststimulus time window. Based on a spherical
head model [101,102], spatio-temporal source modeling was performed to separate the
primary response complex from the later secondary responses using a two-dipole model,
with one equivalent dipole in each hemisphere [35,37,53,103,104].

2.4.4. Variables

The P1 wave is a composite response complex comprising separate peaks of the earlier
primary and later secondary auditory activity and shows large inter-individual differences
with respect to shape, the number of subpeaks and the timing of peak latencies. Therefore,
the fitting intervals were adjusted from peak onset time either toward the saddle point in
the case of a two-peak complex or toward the main peak latency in the case of a merged
single P1 peak. Due to developmental maturation, the P1 response complex occurs around
30–70 ms after tone onset in adults [35] but after around 40–90 ms in adolescents and after
around 60–110 ms in primary school children [51,53,105,106]. Independent of age, the
primary P1 response could clearly be separated from the following later secondary N1
response, which typically starts to develop at the age of 8–10 years [53]. In the first step,
the primary source activity was modeled based on one regional source in each hemisphere
using predefined fitting intervals around the individual response peaks including their
half-side lobes. In the second step, the localization of the fitted regional sources was kept
fixed, and the dipole orientation was then fitted to the direction with the highest global
field power, keeping its main orientation toward the vertex. The high temporal accuracy of
the peak latencies is a general advantage of MEG measurements, widely independent of the
exact source location in the auditory cortex [37]. Following previous studies, the right and
left P1 and N1 peak latencies were calculated [51,53]. We devised a composite score for the
left and right P1 and N1 latencies, namely P1 latency right and left (mean), and N1 latency
right and left (mean). Here, “mean” means the average across hemispheres. In addition, an
indirect measure of functional lateralization, the absolute P1 latency asynchrony |R-L|
[P1(Peak)(|right − left|)] and absolute N1 latency asynchrony |R-L| [N1(Peak)(|right −
left|)] were considered. In the second step, we correlated the four MEG variables with the
musical performance measurement.

2.5. Statistical Analysis

The statistical analysis was divided into three main parts. In the first step, we per-
formed a MANOVA to clarify if there was a significant effect of the diagnoses on the
musical performance assessment. For this, we used the six unit-weighted composite scores
of the musical performances, musical expression, rhythmic reproduction, rhythmic impro-
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visation, pitch reproduction, pitch improvisation and rhythmic and pitch memorization as
dependent variables and the diagnoses (ADD, ADHD, dyslexia and control groups) as the
grouping variable. In general, a significant MANOVA could be followed by using discrimi-
nant analysis or by separate univariate ANOVAs. Discriminant analysis has the benefit that
no corrections for multiple comparisons have to be applied, which is why this approach
should be preferred. For completeness, statisticians recommend running both ANOVAs
and discriminant analyses as follow-ups for significant MANOVAs [107,108]. Therefore, we
ran both discriminant and separate univariate ANOVAs. Discriminant analysis was used
in order to illustrate which musical performance variables divided our diagnosis groups
best, and separate univariate ANOVAs were used to present mean differences for each
of the six main musical performances. As there were unequal group sizes, we run Welch-
ANOVAs followed by Games–Howell post hoc analyses for pairwise group comparisons,
which is a very robust method [107]. Since we interpreted the results of the MANOVA
and discriminant, we did not apply a Bonferroni correction for multi comparisons on the
separate univariate ANOVAs but included them for transparency reasons.

In the second step, we used the same procedure for the MEG variables, where we
performed a MANOVA, followed by separate univariate ANOVAs and discriminant anal-
ysis. The dependent variables were the four composite scores, P1 latency right and left
(mean), N1 latency right and left (mean), the absolute P1 latency asynchrony |R-L| and
the absolute N1 latency asynchrony |R-L| and the diagnoses (ADD, ADHD, dyslexia and
control groups) as the grouping variable.

This approach aimed to select the music performance and MEG variables which
discriminated our groups best. In addition, we wanted to uncover whether the music and
MEG variables that discriminated our groups best were correlated with each other.

In the third step, we took the music performance and the MEG variables which
differentiated our groups best based on both the music performance and MEG discriminant
analyses and correlated the remaining few variables. This aimed to determine whether
there was an association between the music performance and MEG variables. Afterwards,
the correlations were corrected for multiple testing by applying a Benjamini–Hochberg
correction.

3. Results
3.1. Descriptives Statistics of the Musical Performance Variables

Table 2 illustrates the means and standard errors of the musical performance variables
of all participants. The means of the individual groups (controls, ADHD, ADD and
dyslexics) for the variables under consideration are provided in Section 3 (Table S8) in the
Supplementary Materials.

3.2. Group Differences in Musical Performance
3.2.1. MANOVA: Mean Differences of Musical Performance

First, we performed a MANOVA to assess whether our six dependent variables,
musical expression, rhythmic improvisation, rhythmic reproduction, pitch reproduction,
pitch improvisation and rhythmic and pitch memorization, differed in their mean values
based on the diagnoses as the grouping variable. Using Pillai’s trace, there was a signifi-
cant effect of musical performance assessment and diagnosis V = 0.646, F(18, 267) = 4.07,
p < 0.001. Since the MANOVA was significant, we performed separate ANOVAs for the six
main criteria of the Musical Performance Assessment.

3.2.2. ANOVAs and Post Hoc Comparison of Musical Performance

In order to test for differences in musical performance between diagnostic groups,
we also ran separate one-way ANOVAs followed by post hoc analyses for pairwise group
comparisons. As there were unequal group sizes, we ran Welch-ANOVAs followed by
Games–Howell post hoc analyses for pairwise group comparisons. All ANOVAs were
significant except for the dependent variable rhythmic memorization, as shown in Table 3.
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Table 3. ANOVA results of the six different variables of the Musical Performance Assessment Scale.

Variables F p ω

Rhythmic Reproduction (3, 94) = 8.95 <0.001 0.45
Rhythmic Improvisation (3, 94) = 12.77 <0.001 0.52

Musical Expression (3, 94) = 13.09 <0.001 0.53
Pitch Reproduction (3, 94) = 6.02 <0.001 0.38
Pitch Improvisation (3, 94) = 4.93 =0.003 0.35

Rhythmic and Pitch Memorization (3, 94) = 0.25 =0.862 –

The tables and precise values of the post hoc comparisons of the variables of musical
performance are contained in the Supplementary Materials (see Table S8) and are summa-
rized in Figure 2 below. The findings illustrate the mean value differences of the six music
performance measures between the diagnoses groups with ADHD, ADD and dyslexia and
the control groups. The results revealed that the control group, the ADHD group and the
ADD group performed better than the dyslexic group in the rhythmic reproduction, rhyth-
mic improvisation and musical expression tasks. In rhythmic reproduction, the controls
scored higher than the ADD group, and in rhythmic and pitch improvisation, the controls
performed significantly better than the ADHD group. Adolescents with ADD and controls
scored higher in pitch reproduction than the dyslexic group. Only in pitch improvisation
did the ADD group outperform the ADHD group, while only the controls scored higher in
pitch improvisation than the dyslexic group.

Figure 2. Means and post hoc comparisons of the Musical Performance Assessment Scale by diag-
noses. Asterisks indicate the significance (* p < 0.05, ** p < 0.01, *** p < 0.001).

3.2.3. Discriminant Function of Musical Performance

The MANOVA was followed by a discriminant analysis for the variables of the Musical
Performance Assessment Scale, which revealed three discriminant functions (see Table S9).
The first explained 79.6% of the variance, canonical R2 = 0.45, whereas the second explained
13.4%, canonical R2 = 0.12 and the third 7%, canonical R2 = 0.07. In combination, these
discriminant functions significantly discriminated the groups, Λ = 0.45, χ2(18) = 72.73,
p < 0.001, but removing the first function indicated that the second function did not
significantly differentiate the four groups Λ = 0.82, χ2(10) = 18.2, p = 0.052, and the third
function also did not significantly differentiate the four groups Λ = 0.93, χ2(4) = 6.4,
p = 0.17. The correlations between the outcomes and the discriminant functions revealed
loads onto the first function for the rhythmic improvisation (r = 0.72) and musical expression
(r = 0.67). The correlations between the outcomes and the discriminate functions showed
loads onto the second non-significant function for pitch improvisation (r = 0.83). The
correlations between the outcomes and the discriminate functions showed loads onto the
third non-significant function for rhythmic reproduction (r = −0.73).

Therefore, if an arbitrary cut-off of 0.50 is used to decide which of the standardized
discriminant coefficients are large, rhythmic improvisation and musical expression discrim-
inate the groups best. The discriminant plot revealed that the first function separated the
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dyslexic group from the other three groups quite well (see Figure 3). Table S9 in the Supple-
mentary Materials shows all the correlations between the outcomes and the discriminant
functions in more detail. In consideration of the results, the discriminant analysis revealed
that the rhythmic improvisation and musical expression task variables discriminate the
groups best, which is why we discuss them in more detail in this paper.

Figure 3. Discriminant function of the Musical Performance Assessment Scale. Function 1 discrimi-
nates the dyslexic group from the control, ADD and ADHD groups. The correlations between the
outcomes and the discriminant functions revealed that the loads onto the first function are high for
the rhythmic improvisation (r = 0.72) and musical expression (r = 0.67).

3.3. Descriptives Statistics of the Auditory-Evoked Field Variables

Table 4 illustrates the means and standard errors of the MEG variables of all par-
ticipants. The means of the individual groups (controls, ADHD, ADD and dyslexics)
for the MEG variables under consideration are provided in Section 3 (Table S10) in the
Supplementary Materials.

Table 4. Descriptive statistics of the four MEG variables.

Variables Mean (M) Standard Error (SE)

P1 latency right and left (mean) 77.26 1.08
absolute P1 latency asynchrony |R-L| 8.19 0.91

N1 latency right and left (mean) 147.99 3.84
absolute N1 latency asynchrony |R-L| 24.89 2.62

3.4. Group Differences in Auditory-Evoked Fields
3.4.1. MANOVA: Mean Differences of Auditory-Evoked Fields

First, we performed a MANOVA to assess whether our four dependent MEG variables,
P1 latency right and left, absolute P1 latency asynchrony |R-L|, N1 latency right and
left and absolute P1 latency differ in their mean values based on the diagnoses as the
grouping variable. Using Pillai’s trace, there was a significant effect of musical performance
assessment and diagnosis V = 0.420, F(12, 267) = 3.62, p < 0.001. Since the MANOVA was
significant, we performed separate ANOVAs for the four MEG variables.

3.4.2. ANOVAs and Post Hoc Comparisons of Auditory-Evoked Fields

In order to test for differences in the auditory-evoked fields between the disorder
groups, we also ran separate one-way ANOVAs followed by post hoc analyses for pairwise
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group comparisons. As there were unequal group sizes, we run Welch-ANOVAs followed
by Games–Howell post hoc analyses for pairwise group comparisons. All ANOVAs were
significant except for the dependent variable absolute N1 latency asynchrony |R-L|, as
shown in Table 5.

Table 5. ANOVA results of the four MEG variables.

Variables F p ω

P1 latency right and left (mean) (3, 90) = 5.06 =0.003 0.34
absolute P1 latency asynchrony |R-L| (3, 90) = 11.55 <0.001 0.50

N1 latency right and left (mean) (3, 90) = 3.64 =0.016 0.28
absolute N1 latency asynchrony |R-L| (3, 90) = 0.39 =0.764 –

The tables and precise values of the post hoc comparisons of the MEG variables are
shown in the Supplementary Materials (see Table S10). The findings illustrate the mean
value differences of the four MEG measures between the disorder groups ADHD, ADD
and dyslexia and the controls. The results revealed that the dyslexic group had significantly
later P1 latencies right and left (mean) than the control and the ADHD group. Additionally,
the control group showed significantly lower absolute P1 latency asynchrony |R-L| than
all disorder groups. The control group and the ADHD also demonstrated earlier N1 latency
right and left (mean) than the dyslexic group. In addition, the control group showed earlier
N1 latency right and left (mean) than the ADD group.

3.4.3. Discriminant Function of Auditory-Evoked Fields

The MANOVA was followed by a discriminant analysis for the MEG variables, which
revealed three discriminant functions (see Table S11). The first explained 71.8% of the
variance, canonical R2 = 0.28, whereas the second explained 26.8%, canonical R2= 0.13
and the third 1.4%, canonical R2 = 0.007. In combination, these discriminant functions
significantly discriminated the groups, Λ = 0.61, χ2(12) = 42.62, p < 0.001. Removing the
first function indicated that the second function also significantly differentiated the four
groups Λ = 0.86, χ2(10) = 12.94 p = 0.044, while the third function did not significantly
differentiate the four groups Λ = 0.99, χ2(4) = 0.4, p = 0.72.

The correlations between the outcomes and the discriminant functions revealed loads
onto the first function for the absolute P1 latency asynchrony |R-L| (r = 0.97). The
correlations between the outcomes and the discriminate functions showed loads onto the
second function for P1 latency right and left (mean) (r = 0.82) and for N1 latency right and
left (mean) (r = 0.68). The correlations between the outcomes and the discriminate functions
showed loads onto the third non-significant function for absolute N1 latency asynchrony
|R-L|(r = −0.28).

The absolute P1 latency asynchrony |R-L|, P1 latency right and left (mean) and the
N1 latency right and left (mean) are above the recommended arbitrary cut off of 0.50. The
discriminant plot revealed that the first function clearly separated the control group from
the three disorder groups (see Figure 4), whereas the second function separated the control,
ADHD and ADD groups from the dyslexic group.
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Figure 4. Discriminant function of the MEG variables. Function 1 discriminates the controls from the
dyslexic, ADD and ADHD groups, while the second function discriminates the dyslexic group from
the control, ADD and ADHD groups. The correlations between the outcomes and the discriminant
functions revealed that the loads onto the first function are high for the absolute P1 latency asynchrony
|R-L| (r = 0.97), while the correlations between the outcomes and the discriminant functions revealed
that the loads onto the second function are high for P1 latency right and left (mean) (r = 0.82) and for
N1 latency right and left (mean) (r = 0.68).

3.5. Correlations of Musical Performance and MEG

After group comparisons, we performed correlational analyses in order to provide
information about the relationship between the musical performance measures and the
neurophysiological variables. We therefore used the two music performance variables
which discriminated our groups best. These were the rhythmic improvisation and musical
expression, which were correlated with the MEG variables (for descriptions, see Table 4).
While we could not detect a relationship between P1 and N1 responses and musical expres-
sion, rhythmic improvisation correlated with two of the MEG variables under consideration
(see Table 6 and Figure 5).

Figure 5. Correlation plots of rhythmic improvisation with P1 latency right and left (mean) and
N1 latency right and left (mean). Better rhythmic improvisation is associated with early P1 and
N1 latencies (mean). Both correlations remain significant after Benjamini–Hochberg correction for
multiple testing (p < 0.05).
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Table 6. Correlations of MEG variables under consideration with the musical performance variables
rhythmic improvisation and musical expression.

P1 Latency Right and
Left (mean)

Absolute P1 Latency
Asynchrony |R-L|

N1 Latency Right and
Left (mean)

Absolute N1 Latency
Asynchrony |R-L|

Rhythmic
Improvisation −0.290 ** −0.184 −0.298 ** −0.189

Musical Expression −0.137 −0.133 −0.135 −0.147

** p < 0.001 (uncorrected, two-tailed).

4. Discussion

The considerable worldwide prevalence of ADHD, ADD and dyslexia (5–10%) and the
known benefits of musical training on neuronal processing and behavior [51,53] highlight
the importance of gaining a better insight into and understanding of auditory processing in
order to optimize musical education and to develop new pedagogic interventions for chil-
dren/adolescents with developmental and learning disorders. Therefore, this study aimed
to evaluate possible characteristic differences in music performance and auditory-evoked
field variables in adolescents with dyslexia, ADHD and ADD. In addition, we sought to
uncover potential correlations between musical performance and MEG response patterns.
Since our previous study focused on music perception and linked atypical neurofunctional
patterns to individual differences in music perception [51], we now aimed to go beyond mu-
sic perception and address musical capacities from the perspective of musical performance
and used musical performance assessment measurements based on already established
test designs [99] and analysis procedures of previous research [14]. Through this, we could
show that, compared to controls, dyslexic children/adolescents score lower in basic music-
hearing tasks (frequency and onset ramp discrimination) and complex sound-processing
tasks (meter, rhythm, and melody differentiation), and that children/adolescents with
ADHD score lower in complex rhythmic and melodic perception tasks [51]. In contrast,
children/adolescents with ADD did not show any auditory impairments at all [51].

In our current study, musical performance differed significantly across groups. In
general, the control, ADD and ADHD groups scored higher than the dyslexic participants
in almost all measures of musical performance, except for the rhythmic and pitch memo-
rization task, in which all groups scored similarly. Since rhythmic and pitch memorization
are based on memorizing melodic and rhythmic phrases, it could be assumed that these
measures reflect not only musical performance mechanisms but also require short-term
memory ability. The reason why we could not detect mean differences could be attributed
to the fact that tasks were not long enough in order to uncover individual differences.

For the interpretation of our results, we mainly relied on discriminant analysis, which
provided information about which of our variables separate our participants. The discrimi-
nant analysis of the musical performance measures revealed that rhythmic improvisation
and musical expression discriminated the groups best. In the following, we discuss these
variables and the underlying concepts in more detail. We assumed that compared to
the control and ADD groups, the dyslexic participants would perform worse in rhyth-
mic improvisation and musical expression. However, we did not expect that the ADHD
group would perform better than the dyslexic group, since in previous studies, we noted
music perception deficits in both the ADHD and the dyslexic participants. Even though
rhythm-related and musical perception deficits have been reported in individuals with
ADHD [51,81,84], in our current study, adolescents with ADHD and ADD scored similarly
to controls in rhythmic improvisation and musical expression. Subsequently, as results in
music performance may differ from results in music perception, research findings in music
performance should not be transferred to music perception and vice versa.

In former investigations, we noted that individuals with dyslexia suffer from severe
auditory deficits compared to children/adolescents with ADHD, ADD and controls [51]. In
our current study, individuals with dyslexia performed worse in rhythmic improvisation
than adolescents with ADHD and ADD and the controls. The ability to encode incoming
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temporal information is not only crucial for musical but also for phonological processing.
Goswami [67] postulates that auditory rhythmic entrainment is impaired if individuals
have specific difficulties with Theta and Delta oscillators. This auditory entrainment not
only affects attentional but also auditory integration. The phonological impairments of
individuals with dyslexia can therefore be understood as auditory sensory impairments.
This supports assumptions of language disorder frameworks such as the temporal sam-
pling framework (TSF) [67] and the PRISM [47], which suggest that timing difficulties of
individuals with dyslexia may be caused by auditory sensory integration impairment of
incoming acoustic signals. Since the PRISM is based on shared mechanisms of language and
speech, it is also applicable to musical performance. In the light of the present findings, it is
plausible to assume that the rhythmic impairment of individuals diagnosed with dyslexia
affects the musical and language domain in a similar way.

An indirect aspect, namely creativity, could be a further reason why subjects with
ADHD and ADD perform better than adolescents with dyslexia. Musical improvisation
and expression are defined by the ability to perform music in a creative and sponta-
neous way [109]. As ADHD symptoms are associated with more flexible association
networks [110] and better creative performance [111–114], one could postulate that both
aspects combined could serve as an explanation as to why adolescents with ADHD and
ADD score higher in rhythmic improvisation and musical expression than dyslexics.

In contrast, dyslexics have not been found to be more creative or show greater vari-
ability in creativity than peers without dyslexia [115]. It is known that due to a variety
of basic auditory deficits [68,69,116], dyslexics show impaired development of language
abilities such as the acquisition of phonological representations, literacy skills [53,62,117]
and the perception of metrical structure in music [65]. Additionally, dyslexics are impaired
in controlling brief temporal components of acoustic spectra in their motor output [118,119]
and in anticipating and maintaining the beat in rhythmic entrainment tasks [120,121].
These temporal impairments may lead to the abovementioned difficulties in musical and
rhythmical perception and production. The discriminant analysis of auditory-evoked fields
revealed that the first function distinguished the control group from the disorder groups
based on P1 latency asynchrony |R-L|, which is in line with previous research [51,53]. The
second function of P1 and N1 latencies (mean) distinguished the control, ADD and ADHD
groups from the dyslexic group. We then, correlated the music performance variables
rhythmic improvisation and musical expression, which discriminated the dyslexic group
from all other groups, with all MEG variables. Correlational analyses on musical perfor-
mance and auditory-evoked fields revealed a relationship between rhythmic improvisation
and P1 and N1 latencies (mean). The primary P1 component is thought to be a marker
for musical talent [53,104] and can already be measured in early childhood [122]. The N1
response usually emerges later, at about 8–10 years of age [106,122]. The N1 component,
which reflects sensory stimuli processing, is linked to attention-specific processes [123]
and shows a strong context dependency and learning-induced plasticity [37]. The later N1
latency (mean) and the weaker rhythmic improvisation performance of adolescents with
dyslexia not only could be understood as a perceptual impairment, but also as a deficit in
sensorimotor motor translations, which makes individuals insensitive to accurately repro-
ducing musical input. Hence, it is crucial to consider that sensory processing influences
efficiency in motor output [82].

As a sign of natural development and maturity, the latencies of the primary P1 and sec-
ondary N1 response component accelerate up to the age of 15 years [105,122,124]. ADHD,
ADD and dyslexia are characterized by specific neuroanatomical and neurofunctional
differences in the auditory cortex. The MEG source waveforms of children/adolescents
with ADD are known to be shifted in latency but balanced in shape, while the response
patterns of children/adolescents with ADHD were temporally expanded in the left and
diminished in the right hemisphere, and in the dyslexic group, the P1 peak was enlarged.
Further, all disorder groups showed a higher P1 latency asynchrony |R-L| [51,53]. The
P1 latency asynchrony |R-L|, which indicates a shift in latency, differentiated the control
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group from all disorder groups best in this investigation. This asynchrony corresponds to a
reduced integration of left hemispheric fine-grained and right hemispheric supra-segmental
signal representations, which lead to difficulties in discriminating onsets of syllables and
perceiving rhythmic structures in speech and music. These difficulties are characteristic
for children with dyslexia [116,125] and are frequently associated with AD(H)D [126].
There is evidence that children and adolescences with AD(H)D demonstrate an atypical
development of the N1 component with growing latency over time, whereas non-affected
individuals are characterized by a declining latency [127]. It seems possible that by means
of attentional training, adults with AD(H)D develop compensatory mechanisms as a part
of maturity and cognitive enhancement [128,129]. Compared with normal average readers,
dyslexic children exhibit prolonged latencies of auditory-evoked potentials, possibly re-
flecting disturbances in written language acquisition [130,131]. The negative correlation
between the rhythmic improvisation and P1 and N1 latencies in our study implies that the
earlier the P1 and N1 latencies (mean), the better the rhythmic improvisation.

Neurophysiological studies in musicians have shown brain plasticity induced by
musical training, such as enhanced activation in the auditory cortex [132–134], more pro-
nounced structural and functional connectivity [34,135–138] and intracerebral synchro-
nization [139,140]. Musical training is known to positively affect the accuracy of auditory
perception [53,141–145], language development [146–153] and motor functions [38,154,155].
There are strong links between rhythmic and linguistic abilities [156–163]. Additionally,
making music is associated with beneficial influences in general cognitive and executive
functions such as planning, self-control, working memory [164–166] and the conscious con-
trol of attention [167,168]. In particular, frequent musical performance rehearsals optimize
and strengthen neuronal interconnection by changing the timing and synchronization as
well as the number and strength of stimulating and inhibiting synaptic connections and
postsynaptic potentials [34,169–179].

Patients with ADHD and ADD benefit from music therapy using improvisational
musical input, as it has been shown to improve emotional lability, psychosomatic symptoms
and attention [180–182]. The additional advantages of music-based training programs are
their motivating, playful approach, the possibility of speech-free interaction and the use
of resources such as the joy of movement, creativity and openness [183,184] that often
characterize children with ADHD [185]. Dyslexic children could benefit from music and
especially rhythmic training, leading to improved brain circuitry for music and language
processes. In addition, the temporal and rhythmical features of music could positively
affect temporal processing deficits [64,186,187].

Further studies should be based on larger numbers of participants and focus on
the role of the P1 and N1 latencies in ADHD, ADD and dyslexia and how they can be
influenced by specific musical training. Research outlined that the synchronization and
balancing of right and left auditory responses increases musical practice in controls and
adolescents with dyslexia, ADHD and ADD [51,53]. As balanced and reduced latencies
are correlated with more efficient and enhanced auditory processing and attention and
literacy skills, it can be assumed that the shorter the latency, the faster and more precise
the auditory processing [51,53]. In this investigation, we could also detect that P1 and N1
latencies showed a negative correlation to rhythmic improvisation in music performance,
which suggests that enhanced auditory processing can probably also predict individual
differences in sensorimotor timing ability. In addition, future studies should shed light
on how P1 and N1 latencies can be reduced by instructional musical input, which would
enrich therapeutic methods for individuals with ADHD, ADD and dyslexia.

In conclusion, our data provide novel insight into differences of music processing and
performance in adolescents with and without neurodevelopmental disorders. A better
understanding of these distinct differences in musical performance and underlying neuro-
biological factors may help to develop tailored preventions or interventions for individuals
with ADHD, ADD and dyslexia. These should include sensory–motor training and the
training of fine-grained auditory skills such as pitch, timing and timbre perception tasks.
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