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ABSTRACT
The genus Zaprionus consists of approximately 60 species of drosophilids that are native to the
Afrotropical region. The phylogenetic position of Zaprionus within the Drosophilidae family is still
unresolved. In the present study, ultrastructural features of spermatozoa of 6 species of Zaprionus as
well as the species Drosophila willistoni and Scaptodrosophila latifasciaeformis were analyzed. The
ultrastructure revealed that the species have the same flagellar ultrastructure. Two mitochondrial
derivatives, one larger than the other, close to the axoneme were present, primarily in D. willistoni
(subgenus Sophophora). Except for Z. davidi and Z. tuberculatus, the analyzed species had
paracrystalline material in both mitochondrial derivatives. Moreover, the testes showed 64
spermatozoa per bundle in all of the species. In the cluster analysis, 6 Zaprionus species were grouped
closely, but there were some incongruent positions in the cladogram. The results indicated that
sperm ultrastructure is an important tool for elucidating the phylogeny and taxonomy of insects.
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Introduction

Approximately 150,000 species of flies are described in
the world and more than 24,000 species are described
in the Neotropics.1 The genus Zaprionus (Diptera,
Drosophilidae) consists of approximately 60 species of
which about 10 are grouped in the subgenus Anaprio-
nus and 50 in the subgenus Zaprionus.2,3 Phylogenetic
relationships within groups and subgroups of droso-
philids as well as the phylogenetic position of Zaprio-
nus within the Drosophilidae family are still
uncertain.3-8 Although most phylogenetic analyses
associate the genus Zaprionus to the subgenus Dro-
sophila, new comparative analyses are needed to test
the robustness of this association.3,7,9

Ultrastructural sperm analyses are important tools
for study of the taxonomy and phylogeny of insects.10-
16 Mojica et al. characterized the primary evolutionary
radiation that occurred in the Drosophila tripunctata
group based on the ultrastructure of the mitochondrial

derivatives and the number of sperm per cysts. The
authors highlighted the need for new ultrastructural
studies of the gametes of these insects to provide addi-
tional clarification of their evolutionary relationships.17

Ultrastructural analyses of sperm in Zaprionus are
restricted to the species Zaprionus indianus and Zap-
rionus sepsoides.18 The authors described important
characteristics of these drosophilid gametes, such as
the presence of granules in the peritoneal sheath, the
presence of 2 mitochondrial derivatives of different
sizes, the presence or absence of paracrystalline mate-
rial in the derivatives, the arrangement of the axo-
neme, and the number of sperm per cyst.

This study aimed to characterize the ultrastructure
of sperm of 6 other species of Zaprionus (Z. africanus,
Z. camerounensis, Z. davidi, Z. gabonicus, Z. mega-
lorchis and Z. tuberculatus) and the species Drosophila
willistoni (subgenus Sophophora). Scaptodrosophila
latifasciaeformis (subgenus Scaptodrosophila) was
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used as an outgroup (Table 1). In addition, data from
the literature for other species of Zaprionus and Dro-
sophila were used to help understand the relationships
between Zaprionus and Drosophila.

Results and discussion

In this paper, intraspecific variation in spermatogenesis
was not observed. All species showed globular granules
in the cytoplasm of the coating layer of the testicular
envelope, called the peritoneal sheath (Fig. 1A, Supple-
mentary Figs. 1–6), except for Z. davidi (Fig. 1B, Sup-
plementary Fig. 7) and D. willistoni (Supplementary
Fig. 8). These pigmented granules are responsible for
the color of the peritoneal coating sheath of the testes
and for the formation of a physical barrier that can pro-
tect the testes and store nutrients.19 Rego et al. detected
the presence of glycogen in the composition of these
granules. Cruz-Landim has also observed glycogen in
the testicles of bees.18,20

The color of the peritoneal sheath of the testes is crit-
ically important for taxonomy. In the genus Drosoph-
ila, the color is diagnostic to the species level.21 The
peritoneal sheaths of the Zaprionus species analyzed in
this study and those of D. willistoni and S. latifasciae-
formis showed yellowing. Yellowing has also been

observed in the sheaths of Z. indianus, Z. sepsoides and
Z. spinipilus that were analyzed previously.18,22,23 How-
ever, Z. vittiger was polymorphic for sheath color,
which may be yellow or brownish purple.23

The sperm of Pterygota (a primitive group of
Insecta) has 2 mitochondrial derivatives that flank the
axial filament.24 In drosophilids, the mitochondrial
derivatives are of different sizes (Table 2).10,17,25-28

Mojica et al. used the size of these mitochondrial
derivatives as an evolutionary tool to understand the
radiation of the genus Drosophila.17 They observed
that the 2 derivatives differed in size and that this size
difference was greater in Sophophora than in Drosoph-
ila. In the present study, although measurements were
not taken, the simple observation of prints showed
that our results are consistent with those of Mojica
et al.: the difference in the size of these mitochondrial
derivatives was greater in D. willistoni (which belongs
to the Sophophora subgenus) (Fig. 2B) than in the
other species analyzed (Figs. 2A and 3A-C). The
exception was Z. davidi, which was similar to D. willi-
stoni. Mojica et al. suggested that the relative size of
the mitochondrial derivatives may have changed as
Drosophila species have evolved.

Except for Z. davidi and Z. tuberculatus (Figs. 2C
and 3B), the analyzed species have paracrystalline

Table 1. Studied species and their geographical origin.

Subgenus Group Complex Species Geographic location of the collection

Zaprionus vittiger indianus Zaprionus africanus Kibale (Uganda)
Zaprionus vittiger indianus Zaprionus gabonicus Makokou (Gab~ao)
Zaprionus vittiger indianus Zaprionus megalorchis Congo
Zaprionus vittiger vittiger Zaprionus camerounensis Amani (Tanzânea)
Zaprionus vittiger davidi Zaprionus davidi S~ao Tom�e (S~ao Tom�e)
Zaprionus tuberculatus tuberculatus Zaprionus tuberculatus Ithala (South Africa)
Sophophora — willistoni Drosophila willistoni Mat~ao/SP (Brazil)
Scaptodrosophila — — Scaptodrosophila latifasciaeformis S~ao Jos�e do Rio Preto/SP (Brazil)

Figure 1. TEM micrographs of Zaprionus testes. A. Z. africanus; B. Z. davidi. Note peritoneal sheath (ps) filled with granules (gr) of differ-
ent sizes and electron densities in Z. africanus and their absence in Z. davidi. Scale: Figure A: 11000 x; Figure B: 10000 x.
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material on both mitochondrial derivatives (Figs. 2A,
3A and C). This same characteristic has been observed
in Z. indianus, Z. sepsoides and D. hydei.17,18 However,
in most species of the genus Drosophila (Table 2), the

paracrystalline material is present only in the larger
mitochondrial derivative.17,29-32

The structure of the sperm axoneme is of great
importance for phylogenetic studies in insects.10,14,27

Table 2. Ultrastructural parameters of sperm used for comparisons of species.

Mitochondrial derivatives Paracrystalline material Axoneme 64 sperm
Species Granules Same size Different size Largest derivative Smallest derivative 9 C 9 C 2 per cyst

Zaprionus africanus C – C C C C C
Zaprionus camerounensis C – C C C C C
Zaprionus davidi – – C – – C C
Zaprionus gabonicus C – C C C C C
Zaprionus megalorchis C – C C C C C
Zaprionus tuberculatus C – C – – C C
Zaprionus indianus�1 C – C C C C C
Zaprionus sepsoides�1 C – C C C C C
Drosophila willistoni – – C C C C C
Drosophila melanogaster�2,3 na – C C – C C
Drosophila simulans�4 na – C C – C C
Drosophila cardini�2 na – C C – C –
Drosophila dunni�2 na – C C – C –
Drosophila hydei�2,5 na – C C C C –
Drosophila subobscura�6,7 na – C – – C –
Scaptodrosophila latifasciaeformis C – C C C C C

Note.
�1Rego et al. (2013),

�2Mojica et al. (2000),
�3Noguchi and Miller (2003),

�4Pasini et al. (1996),
�5 Henning (1992),

�6Ramamurthy et al. (1980),
�7Hauschteck-Jun-

guen and Maurer (1976), na: not analyzed.

Figure 2. Ultrastructure of transverse sections of the spermatozoal tail of Z. gabonicus (A) showing the paracrystalline material (p) on
both mitochondrial derivatives; the axonemes in D. willistoni (B) and Z. davidi (C) have the arrangement of 9 C 9 C 2 microtubules; the
cysts containing 64 spermatozoa in Z. camerounensis (D) and Z. tuberculatus (E). Scale: Figures A, B, C: 84000 x; Figures D, E: 10000 x.
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Most species of insects present the ‘9C 9C 2’ arrange-
ment, consisting of one pair of central microtubules
and 9 double peripheral microtubules, surrounded by 9
additional accessory microtubules,10,27 although some
species have a peculiar number, such as 9 C 9 C 3 in
Neuroptera,33 9C 9C 1 in Culicidae (Diptera),34 9C 7
in Tricoptera,25 and 9 C 0 in Ephemeroptera.25 More-
over, as the majority of species of the suborder Bra-
chyocera,27 all drosophilids species analyzed had an
axoneme structure of the 9 C 9 C 2 configuration,
which is the typical arrangement of 9 C 2 internal

microtubules surrounded by 9 additional accessories
microtubules (Figs. 2A–C and 3A–C) (Table 2).

Spermiogenesis in all analyzed species occurs
within cysts where the sperm are organized and exist
at the same developmental stage (Fig. 2D). This phe-
nomenon is referred to as cystic spermatogenesis and
is characterized by synchronized cell division within a
given cyst.35 So far, studies have indicated that all
insects have cystic spermatogenesis.36 In Triatominae,
the cysts develop independently; that is, a cyst does
not influence the developmental stage of neighboring

Figure 3. Ultrastructure of transverse section of the spermatozoal tail of S. latifasciaeformis (A), Z. tuberculatus (B) and Z. megalorchis (C)
Note the presence of the axoneme (Ax) and 2 mitochondrial derivatives of different sizes: larger mitocondrial derivative (LM), smaller
mitochondrial derivative (SM); the accumulation of paracrystalline material (p) is visible in S. latifasciaeformis and Z megalorchis. Scale:
Figures A, B, C: 84000 x.

Figure 4. Cladogram obtained from cluster analysis using a presence-absence matrix for the characteristics analyzed in the present
study and taken from literature.
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cysts.37 In drosophilids, as described for Plalycentro-
pus (Trichoptera: Limnephilidae),25 we suggest that
neighboring cysts are also synchronized for cystic
spermatogenesis (Fig. 2D and E).

For all of the species analyzed, we observed the
presence of 64 cells inside a cyst (Fig. 2D and E)
(Table 2). The number of cyst cells varies in some spe-
cies of Drosophila. In D. dunni, this number varies
from 44 to 56 sperm per cyst; in D. cardini, it varies
from 36 to 40 sperm per cyst; in D. melanogaster, this
fixed number is 64; and in D. subobscura, this number
can reach up to 128 sperm per cyst.17,26,28,29

In the cluster analysis, on the basis of the analyzed
characteristics, 5 species of Zaprionus as well as 6 spe-
cies of Drosophila were grouped, suggesting their relat-
edness within each genus (Fig. 4). Although an increase
in the number of characteristics and species is necessary
to validate these results, they are already indicative that
the ultrastructure of sperm is a promising tool for phy-
logenetic and taxonomic studies of insect groups.

Materials and methods

The species and strains of Zaprionus and other species
used in this study and their geographic location are
shown in Table 1. The testes of 24 3-day-old adults of
each species were processed according to the methods
of Cotta-Pereira et al. with modifications.38 Ultrathin
sections of 70 nm, contrasted with uranyl acetate and
lead citrate, were examined with a transmission elec-
tron microscope.

The five ultrastructural parameters of sperm used
by Rego et al. were used in this study for comparison
between species (Table 2).18

A cluster analysis was conducted using the Euclid-
ean distance and joining method (Statistica; Statsoft
Inc.) with the data from Table 2 from which a pres-
ence-absence matrix of the characteristics was
generated.39
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