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Abstract ‘‘Hot papers’’ (HPs) are papers which received a boost of citations shortly after

publication. Papers with ‘‘delayed recognition’’ (DRs) received scarcely impact over a long

time period, before a considerable citation boost started. DRs have attracted a lot of

attention in scientometrics and beyond. Based on a comprehensive dataset with more than

5,000,000 papers published between 1980 and 1990, we identified HPs and DRs. In

contrast to many other studies on DRs, which are based on raw citation counts, we

calculated dynamically field-normalized impact scores for the search of HPs and DRs. This

study is intended to investigate the differences between HPs (n = 323) and DRs (n = 315).

The investigation of the journals which have published HPs and DRs revealed that some

journals (e.g. Physical Review Letters and PNAS) were able to publish significantly more

HPs than other journals. This pattern did not appear in DRs. Many HPs and DRs have been

published by authors from the USA; however, in contrast to other countries, authors from

the USA have published statistically significantly more HPs than DRs. Whereas ‘‘Bio-

chemistry & Molecular Biology,’’ ‘‘Immunology,’’ and ‘‘Cell Biology’’ have published

significantly more HPs than DRs, the opposite result arrived for ‘‘Surgery’’ and ‘‘Ortho-

pedics.’’ The results of the analysis of certain properties of HPs and DRs (e.g. number of

pages) suggest that the emergence of DRs is an unpredictable process.
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Introduction

In most evaluations of researchers, research groups, and academic institutions, bibliometric

indicators—especially citation impact scores—are used in an informed peer review process

(Bornmann et al. 2014). A frequent problem of the application of citation impact scores in

these processes is that the evaluations focus—as a rule—on the recent performance of the

evaluated units (e.g. the last 3 years). However, the ‘‘true’’ impact of a publication can be

determined only after a longer time period in several disciplines: ‘‘A 3-year time window is

sufficient for the biomedical research fields and multidisciplinary sciences, while a 7-year

time window is required for the humanities and mathematics’’ (Wang 2013, p. 866). Thus,

the strength of bibliometrics entails identifying outstanding publications (or the corre-

sponding outstanding researchers, research groups, and institutions, respectively) in the

long term.

In recent years, several bibliometric studies have dealt with the investigation of a sub-

group of publications showing a specific long term citation impact: papers with delayed

recognition (DRs). Publications are denoted as DRs if they received only a few or no

citations over many years (e.g., 10 years after their appearance) and then experienced a

significant boost in citations. For example, Van Calster (2012) shows that Charles Sanders

Peirce (1884) note in Science on ‘‘The Numerical Measure of the Success of Predictors’’ is

a typical case of a DR. The note received ‘‘less than 1 citation per year in the decades prior

to 2000, 3.5 citations per year in the 2000s, and 10.4 in the 2010s’’ (p. 2342). Marx (2014)

demonstrates that the initial reception of the paper ‘‘Detailed Balance Limit of Efficiency

of P–N Junction Solar Cells’’ by Shockley and Queisser (1961) was hesitant; after several

years, the paper has become a highly cited paper in its field. Gorry and Ragouet (2016)

present a landmark paper in interventional radiology, which can be characterized as a DR.

In ‘‘Literature review’’ section, we explain the different methods which have been

introduced in scientometrics to identify these and other DRs in bibliometric databases.

Based on these methods, Ye and Bornmann (2018) propose the citation angle, which can

be used to distinguish between ‘‘hot papers’’ (HPs) and DRs. In contrast to DRs, HPs

received a boost of citations shortly after publication (and not after several years as DRs).

In this study, we searched for HPs and DRs among all papers published between 1980 and

1990. Since citation counts should be normalized with regard to publication year and

subject category (of the cited publication), we generated dynamically normalized citation

impact scores (DNIC), which are annually field-normalized impact scores based on OECD

minor codes1 for field delineation. We used these scores for the search of HPs and DRs.

The objective of this study is to analyze systematic differences between papers which

became HPs or DRs later on. Factors which have been identified in recent years as cor-

relates of citations (Bornmann & Leydesdorff 2017; Tahamtan, Safipour Afshar, &

Ahamdzadeh, 2016) are used to determine different characteristics of both paper groups.

As factors, this study focuses on the publication year, the number of authors, countries,

references and pages of a publication as well as its inter-disciplinarity (measured by the

number of subject categories).

1 see http://www.oecd.org/science/inno/38235147.pdf.
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Literature review

Early engagement in DRs started with the pioneering works of Garfield

(1970, 1980, 1989a, b, 1990). Furthermore, Stent (1972) discusses ‘‘prematurity’’ in sci-

entific discovery. Large-scale empirical analysis of delayed recognition started with

Glänzel et al. (2003) who analyzed early papers from 1980. They assigned papers the

attribute ‘‘delayed recognition’’ if they received 1 or 2 citations in the first years and at

least 100 citations later on. They identified less than 100 papers with this citation profile.

With a slightly changing definition of ‘‘delayed recognition,’’ which considers the Journal

Impact Factor (JIF), Glänzel and Garfield (2004) found that 1.3 per 10,000 papers were

neglected initially, but are highly cited later on. The JIF is the mean citations within 1 year,

which have been published in the two previous years.

van Raan (2004b) introduced the term ‘‘sleeping beauty’’ for DRs. He suggests the

following criteria for identifying DRs: (1) Depth of sleep (cs): the paper received at most 1

citation per year on average (very deep sleep) or between 1 and 2 citations per year on

average (deep sleep) after its appearance. (2) Length of sleep (s): the length of the sleeping

period. (3) The awakening intensity (cw): the annual citations during the 4 years period

following the sleep. van Raan (2004b) developed the so called Grand Sleeping Beauty

Equation for estimating the number of DRs: N ¼ f s; cs; cwf g � s�2:7c2:5
s c�6:6

w , where N is

the number of DRs.

Costas et al. (2010) defined various types of citation profiles: ‘‘Yr 50%’’ is that year by

when a paper has received at least 50% of its citations in the corresponding subject

categories and publication years. ‘‘P25’’ and ‘‘P75’’ denote the prior 25 and 75% citations

as one-fourth and three-fourth quartile criterions. According to Costas et al. (2010),

‘‘flashes in the pan’’ can be defined ‘‘as those documents that have received 50% of their

citations when the 75% of other documents still have not received 50% of their citations.

Normal documents are all documents that receive the 50% of their citations around the

year of P50 (between P25 and P75). Finally, delayed documents are those papers that have

received 50% of their citations after P75 years in their fields’’ (p. 331).

Li and Ye (2012) introduced the term ‘‘all-elements-sleeping-beauties’’ (ASBs). The

term is intended for publications for which ‘‘spindles, sleeping beauties, and princes’’ co-

exist. In a follow-up paper, Li et al. (2014) introduced additionally the ‘‘heartbeat spectra’’

of DRs. Whereas the ‘‘heartbeat’’ defines the annual citations of DRs in the sleeping

period, the ‘‘heartbeat spectrum’’ describes the vector of the DR’s heartbeat. If ci denotes

the citation counts which the DR received in the ith year of the sleeping period, the DR’s

heartbeat in the ith year is ci. Then, vector H = (c1,…, ci,…, cn) is the heartbeat spectrum,

in which n indicates the duration of the sleeping period. Two further studies (Huang et al.

2015; Li and Shi 2016) in this series of studies which started with Li and Ye (2012) deal

with the awakening of DRs.

Ke et al. (2015) introduced the beauty coefficient B for the identification of DRs. The

coefficient B is defined as follows (for the purpose of simplifying the formula, we use cm
instead of ctm):

B ¼
Xtm

t¼t0

cm�c0

tm
t þ c0 � ct

maxf1; ctg
ð1Þ

where ct is the citation counts received in the tth year after publication and t the age of a

paper. A paper reached the maximum number cm of annual citations at time tm. The
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equation of the straight line (l) which connects two points (0, c0) and (tm, cm) in the annual

citation curve is defined as

l : c ¼ cm � c0

tm
t þ c0: ð2Þ

Cressey (2015) assumes that the coefficient B is an elegant and effective method for

DRs retrievals in big datasets. Ye and Bornmann (2018) reveal its dynamic characteristics

and extend B by a HP component. Furthermore, they introduced the citation angle for

unifying the approaches of identifying instant and delayed recognition. The distinction

between DRs and HPs follows Baumgartner and Leydesdorff (2014) who introduced two

groups of papers: (1) ‘‘Citation classics’’ or ‘‘sticky knowledge claims’’ have a lasting

impact on a specific field. DRs are a sub-group among citation classics, whose lasting

impact is not combined with early citation impact. (2) The other paper group (‘‘transient

knowledge claims’’) has an early boost of citation impact followed by a fast impact

decrease shortly after publication. According to Baumgartner and Leydesdorff (2014) the

papers in this group are contributions at the research front. Comins and Leydesdorff (2016)

investigated the existence of both paper types empirically.

van Raan (2015) demonstrated that many DRs are application-oriented and thus are

potential ‘‘sleeping innovations’’. In a follow-up study, van Raan (2016) analyzed char-

acteristics of DRs which are cited in patents. The results show that patent citations occur

before or after the delayed recognition started. The citation rate during the period of sleep

is not related to the later scientific or technological impact of the DRs. The comparison of

DRs with ‘‘normal’’ papers reveals that DRs are more frequently cited in patents than

‘‘normal’’ papers.

Methods

Definitions of ‘‘hot papers’’ (HP) and papers with ‘‘delayed recognition’’
(DRs)

Following the definitions of HPs and DRs hitherto, the typical DR is defined as a publi-

cation with a late citation peak, and prior annual citations which are much lower than the

peak citations, while a typical HP is defined as a publication with an early citation peak and

later annual citations which are much lower than the early peak. In contrast to the other

studies, which used raw citation counts to identify DRs (see ‘‘Literature review’’ section),

this study is based on (dynamically) field- and time-normalized citation impact scores—the

standard impact measure in bibliometrics (Vinkler, 2010). The dynamically normalized

impact of citations (DNIC) is defined as

DNICij ¼
Cij

Ekj

; k ¼ f ðiÞ ð3Þ

Ekj ¼
1

Nkj

X

i k¼f ðiÞj
Cij ð4Þ

where i = 1,2,… are publications, j = 1,2,… are citing years, and k = 1,2,… are different

fields (here defined by OECD minor codes). Cij denotes received citations by publication

i in year j, and Ekj denotes mean (received) citations of all publications in field k and year
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j (i.e. Ekj is the expected value). Nkj is the number of cited publications in field k and year

j (note: Nkj is a variable which is based on non-zero citations), and k = f(i) means a certain

field of a given publication. The indicator follows the standard approach in bibliometrics

with both field- and time-normalized citations (Waltman 2016). The only difference to the

standard approach is that the calculation is based on annual citations (dynamically), but not

on the citations between publication year and a fixed time point later on. If Cij = 0, then

DNICij = 0.

All points of DNICij = 1 in field k yield the field- and time- normalized line LN (see the

distribution in theory of DNIC in Fig. 1). If DNICij[ 1, the citation impact of the pub-

lications is higher than the average in the corresponding fields and publication years, as

shown with line LA. If DNICij\ 1, the impact is lower than the average, as shown with the

line LU. In practical terms, however, citation counts Cij and expected values Ekj are variable

terms. The DNIC distribution of many papers changes from year to year (see the distri-

bution in practice in Fig. 1). Therefore, by using DNIC for impact normalization of papers

in this study we need rules for identifying HPs and DRs. We oriented these rules towards

the rules of thumbs defined by van Raan (2004a, 2008) for interpreting field-normalized

citation scores. DNICij is a dynamic series of annually normalized impact scores. We

suggest identifying HPs and DRs with the criteria given in Table 1.

In Table 1, DNICpeak_t\th denotes that the peak is located in the early-half time span of

the citation impact distribution (covering ± 2 years); DNICpeak_t[th denotes that the peak

is located in the late-half time span (covering ± 2 years). DNICa_peak_t refers to all DNICij

after the peak (? 2 years), and DNICb_peak_t refers to all DNICij before the peak

(- 2 years). In this study, th = 13. We have data covering 36 citing years (1980–2015) and

needed to compare the years 1980–1990 dynamically. Thus, we selected 16 years as the

time span of citations for each publication, such as 1980–1995 for the papers from 1980

and 1981–1996 for the papers from 1981.

Used datasets

Table 2 shows the number of papers from 1980 to 1990 which have been considered in this

study. The bibliometric data are from an in-house database developed and maintained by

the Max Planck Digital Library (MPDL, Munich). The in-house database is based on the

Web of Science (WoS, Clarivate Analytics, formerly the IP & Science business of

Fig. 1 Distributions in theory and in practice of dynamically normalized citation impact scores (DNIC)
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Thomson Reuters). From the in-house database, we selected only papers with the document

type ‘‘article’’ to have comparable citable units. The DNIC scores for each paper refer to

the period from its publication year until the end of 2015.

Using the methods explained in ‘‘Definitions of ‘hot papers’ (HP) and papers with

‘delayed recognition’ (DRs)’’ section, we found the numbers of HPs and DRs in the dataset

as reported in Table 2. Since HPs and DRs have been identified by using normalized

impact scores within single fields and many papers belong to more than one field, there are

duplicates among HPs and DRs. Thus, 191 duplicates were deleted of the 2636 DRs and

HPs (147 papers were twice and 44 papers three times in the dataset). Figure 2 demon-

strates clear differences in citation profiles of HPs and DRs following the definitions of

both groups in ‘‘Definitions of ‘hot papers’ (HP) and papers with ‘delayed recognition’

(DRs)’’ section.

Both, HPs and DRs are groups of papers with extreme citation profiles (see Fig. 2). In

order to reveal how these extreme groups differ from ‘‘normal’’ papers in certain prop-

erties, we drew a random sample from the in-house database with n = 323 papers (date

December 8, 2016). The random sample has been selected in those WoS subject categories

in which most of the DRs and HPs were published (i.e., the ten subject categories in which

most of the DRs and HPs were published). The population of the random sample

(N = 1,198,843) contains papers from 1980 to 1990 and is restricted to the document type

‘‘article’’. The size of the random sample with n = 323 papers has been determined by a

power analysis. Its results showed that we need 323 papers in each group to detect a very

small effect, f = .1 (Cohen, 1988), as statistically significant at the a = .05 level with a

power of .8 (Acock 2016).

Table 1 Criteria used in this study for identifying HPs and DRs

Citation profile DNICpeak_t\th DNICa_peak_t Peak_t DNICb_peak_t DNICpeak_t[th

HP [ 2 \ .4 \ th

DR [ th \ .4 [1.6

Table 2 Numbers of identified
HPs and DRs from the total
number of articles

Publication year HP DR Total number of articles

1980 177 21 402,417

1981 181 17 423,754

1982 203 36 438,201

1983 203 20 464,131

1984 211 33 479,977

1985 213 41 495,496

1986 191 50 508,608

1987 178 40 524,467

1988 252 42 539,656

1989 254 26 558,316

1990 204 43 536,566

Total 2267 369 5,371,589
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Considering the third group of randomly selected papers (RANs), the dataset (n = 2768)

of this study consists of 2130 HPs (77%), 315 DRs (11%), and 323 RANs (12%). In order

to have three groups of papers with a more or less balanced set of case numbers, we drew a

random sample of 323 papers from the 2130 HPs—following the results of the power

analysis. Thus, the final dataset (n = 961) consists of 323 HPs (33.6%), 315 DRs (32.8%),

and 323 RANs (33.6%).

Statistical methods

This study tests whether the mean values (e.g., the mean number of authors or pages) from

k groups (HP, DR, and RAN) are the same or not. With the analysis of variance (ANOVA)

any overall difference between the k groups can be tested on statistical significance. The

Fig. 2 DNCI of HPs and DRs in our dataset published in 1980
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ANOVA separates the variance components into two parts: those due to mean differences

and those due to random influences (Riffenburgh, 2012). There are three general

assumptions for calculating the ANOVA: (1) The data are independent of each other. (2)

The distribution of the data is normal. (3) The standard deviation of the data is the same for

all groups (HP, DR, and RAN). Although these assumptions are violated here, the ANOVA

is still applied: according to Riffenburgh (2012), the ANOVA ‘‘is fairly robust against

these assumptions’’ (p. 265), especially in those studies in which the sample size is high. In

order to counter-check the results of the ANOVA, the Kruskal–Wallis rank test (KW test)

has been additionally applied as the non-parametric alternative (Acock 2016).

The effect size eta squared (g2) is additionally calculated to the ANOVA which is a

measure of the practical significance of the results (Acock 2016). Eta squared is the sum of

squares for a factor (here: three groups of papers with different citation profiles) divided by

the total sum of squares. The effect size shows how much of the variation in the sample of

papers (e.g. with respect to the number of authors) is explained by the factor. According to

Cohen (1988), a value of g2 = .01 means a small effect, g2 = .06 a medium effect, and

g2 = .14 a large effect. The consideration of the practical significance is especially

important in studies in which the case numbers are high (Kline 2004). There is a risk in

these studies that the results of statistical tests are significant although the effects (e.g.,

mean differences between k groups) are small.

Beyond the ANOVA, the t test is applied in this study to undertake pairwise compar-

isons of group means. Thus, it is not only tested whether the mean differences between all

k groups (where k[ 2) are statistically significant, but also the mean differences between

the specific pairs of groups. The t test is seen as a very robust statistic; for the t test,

however, the same assumptions hold as for the ANOVA (see above). Since the assump-

tions are not fulfilled in each calculation here, the non-parametric alternative referred to as

the Mann–Whitney two-sample rank-sum test is additionally used (Acock 2016). For

multiple pairwise comparisons, the chance of the likelihood of incorrectly rejecting the null

hypothesis increases. Thus, the Bonferroni correction is used which compensates for that

by testing each pairwise comparison at a significance level of .05/3 = .017 (.05 is the alpha

level and 3 is the number of pairwise comparisons). As a measure of effect size in addition

to the t test, Cohen’s d is applied. For Cohen (1988), d = .2 is a small effect, d = .5 a

moderate effect, and d = .8 a large effect.

The Chi Square test of independence is used in this study to determine if there is a

significant association between two nominal (categorical) variables. The frequency of a

specific nominal variable is compared with different values of a second nominal variable.

The required data can be shown in an R*C contingency table, where R is the row and C is

the column.

Factors with an influence on citation counts (FICs)

In recent years, many different factors have been identified which may influence the

number of citations a publication receives. Although these factors turn out to be correlated

with citations and causality cannot be assumed (Bornmann and Leydesdorff 2017), they are

generally considered to be influencing factors. On a given time axis, the citations follow

the appearance of a publication with specific characteristics (e.g., a specific number of

authors or pages). However, one should have in mind for this perspective on the factors

that moderating factors might exist. For example, the JIF might count as FIC; however,

high citation counts for papers published in high-impact journals could be the result of the
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quality of the papers which influence both, the JIF of the publishing journals as well as the

number of citations.

In the last years, several studies have been published investigating the relationship

between number of pages and citations of papers in different disciplines. Stanek (2008)

found that for papers published in astronomy journals their length is associated with the

number of citations they received. The same result is reported by Leimu and Koricheva

(2005) for ecological papers, by Hegarty and Walton (2012) for psychology papers, and by

Gillmor (1975) for the Journal of Atmospheric and Terrestrial Physics. Similar results

have been published also by several other authors for various other disciplines (Beaver

2004; Fok and Franses 2007; Lawani 1986; Tregenza 2002; Vanclay 2013; Wesel et al.

2013). The most important reason for the correlation between both variables might be that

longer papers contain more citable content.

Similar to the number of pages, the number of cited references of a paper seems also be

related to the number of citations this paper receives. Webster et al. (2009) found that

reference counts explain 19% of the variance in citation counts. In psychology, reference

list length predicts citation impact better than the JIF of the publishing journal (Hegarty

and Walton 2012). The JIF is generally seen as the FIC with the most predictive power

(Onodera and Yoshikane 2014). For several disciplines, Wesel et al. (2013) report positive

correlations between the number of cited references and citation counts. Similar results

have been published by Fok and Franses (2007) and Onodera and Yoshikane (2014).

Webster et al. (2009) provide the following reasons for the correlation between both

variables: ‘‘First, review articles (e.g., theoretical reviews, meta-analyses) tend to have

more citations than and are cited more frequently than typical empirical articles. Second,

scientists are humans, and humans crave recognition for their work and often participate in

reciprocal altruism … The more people you cite in your paper, the more people are likely

to cite your paper (the paper they were cited in) in the future. Third, the Matthew effect—

the idea that ‘the rich get richer,’ that publications that are initially highly cited tend to

have the advantage of being cited even more in the future—may also occur’’ (p. 349).

Besides the JIF, the number of authors is seen as another important FIC. Leimu and

Koricheva (2005) found for ecological papers that ‘‘papers with four or more authors

received more citations than did papers with fewer authors’’ (p. 30). Similar results have

been reported by Robson and Mousquès (2016) for environmental modeling papers and by

Wesel et al. (2013) for several other disciplines. According to the case study by Mirnezami

et al. (2016) including researchers in Quebec (Canada), researchers who publish within

larger teams of authors receive also more citation impact. There might be several reasons

for the association between number of authors and number of citations: ‘‘We can think of a

reference by n authors as having n times more proponents than a solo-authored one. This

would include self-citations in other papers (as already observed in the study), citations in

other kinds of scientific literature, and an increased number of research groups being

familiar with the article. Moreover, scientific communication is not limited to journals. The

longer the author list is, the greater the probability of the paper being presented to several

conferences is, especially if the team is multidisciplinary’’ (Valderas 2007).

Iribarren-Maestro et al. (2007) investigated papers published by Carlos III University of

Madrid (Spain) researchers. They found that the number of countries is correlated with the

number of citations the papers received. Furthermore, there are empirical evidences that

interdisciplinary research receives more citation impact than disciplinary research

(Haustein et al. 2014).
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Results

Before we come in ‘‘Factors with an influence on citation counts (FICs)’’ section to the

FICs and their relationship to HPs and DRs, we show in ‘‘Publishing journals and overall

citation impact’’ section possible differences between both groups concerning their pub-

lishing journal and overall citation impact.

Publishing journals and overall citation impact

Table 3 shows the journals in which at least ten HPs and DRs appeared. Whereas only one

journal has published more than 10 DRs (Clinical Orthopaedics and Related Research),

there are five journals in the list of HPs. A closer inspection of the list of journals pub-

lishing at least 25% of the HP and DR papers, respectively, showed that these are 16 for

DRs and only 8 for HPs. Since we found 19 journals which represent 25% of the RAN

papers, the number of journals for the DRs is similar to what can be expected by chance.

How do the three types of citation profiles differ in terms of their overall citation

impact? To answer this question, we used the field-normalized citation impact scores

named as Mean Normalized Citation Score (MNCS) (Waltman et al. 2011a, b). Here, the

citation impact of the focal paper is divided by the mean citation impact in the corre-

sponding field. A variant of the MNCS does not normalize the citation impact on the entire

field, but on the journal, in which the focal papers was published. The relation of a

publication’s MNCS and DNIC is characterized by MNCSj ¼
P

i DNICij. We expected

that HPs and DRs are characterized by high scores in terms of normalized impact, since

both types produced impact either in the short or in the long term.

The results in Table 4 confirm our expectations: Whereas the randomly selected papers

show mean MNCS scores which correspond to an ‘‘average’’ impact in a field or journal,

respectively, both citation profile types, HPs and DRs, have scores which are significantly

above the average. Especially DRs are concerned by very high impact scores. Thus, the

papers of both paper types should be identifiable as high-impact using the standard

advanced bibliometric indicators.

Factors with an influence on citation counts (FICs)

With publication year, number of pages, number of references, number of authors, number

of countries, and number of subject categories, factors are considered here, which have

been (frequently) investigated in former studies. Overviews on studies investigating FICs

Table 3 Journals in which at least ten HPs and DRs appeared

Type Journal Number of papers Percent

HP Journal of Biological Chemistry 14 4.33

Physical Review Letters 13 4.02

PNAS 13 4.02

Journal of Immunology 11 3.41

Genomics 10 3.10

DR Clinical Orthopaedics and Related Research 29 9.21
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can be found in Peters and van Raan (1994), Onodera and Yoshikane (2014), Didegah and

Thelwall (2013), and Bornmann and Daniel (2008). The results of the studies indicate that

publication year, number of pages, number of references, number of authors, number of

countries, and number of subject categories are regarded as possible FICs.

The first FIC which we look at in this study is the publication year of the cited paper

(Ruano-Ravina and Alvarez-Dardet 2012). Besides the journal or field, respectively, in

which a publication appeared the publication year is generally considered in the normal-

ization of citations (Waltman 2016). Since DRs emerge in the long term, we expected an

earlier mean publication year for DRs than for HPs. However, the results in Table 5 show

that the empirical evidence looks differently: With M = 1985.2, HPs have been published

similarly on average as DRs (M = 1985.6). Furthermore, the differences between the three

groups (HP, DR, and RAN) are statistically not significant and the effect sizes are very low.

The negligible differences in Table 5 are certainly the result of the use of normalized

impact scores for the identification of HPs and DRs. Thus, the results in the table confirm

the effectiveness of the normalization procedure used in this study.

Table 6 shows the differences in the number of pages between HPs, DRs, and RANs.

DRs (M = 9.6, MDN = 8) have more pages than HPs (M = 8.2, MDN = 7) and RANs

(M = 7.3, MDN = 6). However, the reported effect sizes in the table are small in general.

Table 4 Mean differences in MNCS (based on the entire field or publishing journal) between DRs, HPs,
and RANs

Citation profile Mean Standard deviation Median Minimum Maximum Number of papers

MNCS (field)

HP 2.6a,b 1.2 2.3 .8 6.9 323

DR 5.5a,c 5.6 4 .9 56 315

RAN 1.0b,c 2.6 .2 0 28.4 323

Total 3.0 4.1 2.2 0 56 961

MNCS (journal)

HP 1.9a,b 1.7 1.4 .2 11.3 323

DR 5.5a,c 7.6 3.4 .3 79 315

RAN 1.1b,c 2.3 .4 0 22 323

Total 2.8 5 1.5 0 79 961

MNCS (field):

F(2, 960) = 125.61, p = .000, g2 = .21 [.16, .25], v2(2) = 518.91, p = .000

Pairwise comparisons:
at(1, 636) = - 9.12, p = .000, d = - .72 [- .88, - .56], z = - 12.09, p = .000
bt(1, 644) = 9.92, p = .000, d = .78 [.62, .94], z = 17.46, p = .000
ct(1, 636) = 12.96, p = .000, d = 1.03 [.86, 1.19], z = 19.07, p = .000

MNCS (journal):

F(2, 960) = 81.59, p = .000, g2 = .15 [.11, .19], v2(2) = 421.25, p = .000

Pairwise comparisons:
at(1, 636) = - 8.38, p = .000, d = - .66 [- .82, - .50], z = - 13.48, p = .000
bt(1, 644) = 4.95, p = .000, d = .39 [.23, .55], z = 12.51, p = .000
ct(1, 636) = 10.00, p = .000, d = .79 [.63, .95], z = 17.80, p = .000
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Table 7 shows mean differences in (linked) cited references between HPs, DRs, and

RANs. The table reports the results of two analyses. The first section in the table refers to

all cited references in the papers. The results in the second section are based on a sub-group

of all cited references: the linked cited references could be matched with publication

records in the WoS in-house database (i.e., with publications from journals covered in

WoS). The results in Table 7 show that HPs have included statistically significantly more

(linked) cited references than DRs and RANs. DRs are based on a similar number of linked

cited references as RANs.

The mean differences in number of authors between HPs, DRs, and RANs are shown in

Table 8. The mean number of authors for HPs (M = 4.8) is high compared to DRs

(M = 2.6) and RANs (M = 2.7). The effect sizes of the results are medium.

Since the affiliation information on the papers contains the country of the authors where

they are working, we can investigate whether certain countries are especially associated

with the publication of HPs and DRs and whether there are mean differences in the number

of countries per paper between HPs, DRs, and RANs. Table 9 shows the ten countries with

the most DRs and HPs. With n = 333 papers, significantly more HPs and DRs have been

published by authors from the USA than from other countries. This result is not surprising

Table 5 Mean differences in publication years between HPs, DRs, and RANs

Citation profile Mean Standard deviation Median Minimum Maximum Number of papers

HP 1985.2a,b 3.2 1985 1980 1990 323

DR 1985.6a,c 3 1986 1980 1990 315

RAN 1985.4b,c 3.1 1986 1980 1990 323

Total 1985.4 3.1 1986 1980 1990 961

F(2, 960) = 1.20, p = .301, g2 = .00 [.00, .01], v2(2) = 2.00, p = .37

Pairwise comparisons:
at(1, 636) = - 1.55, p = .12, d = - .12 [- .28, .03], z = - 1.46, p = .14
bt(1, 644) = - .79, p = .43, d = - .06 [- .22, .09], z = - .70, p = .48
ct(1, 636) = .77, p = .45, d = .06 [- .09, .22], z = .64, p = .52

Table 6 Mean differences in number of pages between DRs, HPs, and RANs

Citation profile Mean Standard deviation Median Minimum Maximum Number of papers

HP 8.2a,b 6.3 7 2 55 320

DR 9.6a,c 9.2 8 2 133 314

RAN 7.3b,c 4.9 6 2 28 316

Total 8.3 7.1 7 2 133 950

F(2, 947) = 8.30, p = .000, g2 = .02 [.003, .04], v2(2) = 30.51, p = .000

Pairwise comparisons:
at(1, 632) = - 2.25, p = .03 (n.s.), d = - .18 [- .33, - .02], z = - 3.42, p = .001
bt(1, 634) = 1.91, p = .06, d = .15 [- .01, .31], z = 2.28, p = .02 (n.s.)
ct(1, 628) = 3.85, p = .000, d = .31 [.15, .46], z = 5.42, p = .000
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Table 7 Mean differences in (linked) cited references between HPs, DRs, and RANs

Citation profile Mean Standard deviation Median Minimum Maximum Number of papers

Cited references

HP 29.8a,b 20.1 26 0 162 323

DR 21.9a,c 23.8 17 0 229 315

RAN 17.3b,c 14.7 15 0 91 323

Total 23.0 20.5 20 0 229 961

Linked cited references

HP 15.4a,b 14.5 13 0 121 323

DR 5.1a,c 8.5 3 0 91 315

RAN 6.8b,c 8.8 3 0 43 323

Total 9.1 11.8 5 0 121 961

Cited references:

F(2, 958) = 32.73, p = .000, g2 = .06 [.04, .10], v2(2) = 106.30, p = .000

Pairwise comparisons:
at(1, 636) = 4.52, p = .000, d = .36 [.20, .51], z = 7.60, p = .000
bt(1, 644) = 9.03, p = .000, d = .71 [.55, .87], z = 9.64, p = .000
ct(1, 636) = 2.96, p = .003, d = .24 [.08, .39], z = 2.94, p = .003

Linked cited references:

F(2, 958) = 80.90, p = .000, g2 = .15 [.11, .18], v2(2) = 171.06, p = .000

Pairwise comparisons:
at(1, 636) = 10.91, p = .000, d = .86 [.70, 1.03], z = 12.50, p = .000
bt(1, 644) = 9.05, p = .000, d = .71 [.55, .87], z = 9.98, p = .000
ct(1, 636) = - 2.56, p = .01, d = - .20 [- .36, - .05], z = - 1.53, p = .13

Table 8 Mean differences in number of authors between HPs, DRs, and RANs (one paper with zero
authors has been excluded)

Citation profile Mean Standard deviation Median Minimum Maximum Number of papers

HP 4.8a,b 5.5 4 1 63 323

DR 2.6a,c 1.6 2 1 12 315

RAN 2.7b,c 1.8 2 1 14 322

Total 3.4 3.6 3 1 63 960

F(2, 957) = 40.15, p = .000, g2 = .08 [.05, .11], v2(2) = 104.85, p = .000

Pairwise comparisons:
at(1, 636) = 6.80, p = .000, d = .54 [.38, .70], z = 9.37, p = .000
bt(1, 643) = 6.38, p = .000, d = .50 [.35, .66], z = 8.61, p = .000
ct(1, 635) = - 1.02, p = .31, d = - .08 [- .24, .07], z = - .64, p = .52
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and in agreement with most other country-specific statistics including all publications

(National Science Board 2016). It follows Great Britain (n = 76), Japan (n = 42), and

Germany (n = 39). The USA is the only country in Table 9 with a statistically significant

difference in the number of HPs and DRs: With n = 194, significantly more HPs have been

published by authors from the USA than DRs (with n = 139).

Table 10 shows mean differences in number of countries between HPs, DRs, and

RANs. We tested the mean difference since there are evidences that the number of

countries is related to the number of citations (see above). However, our results in Table 10

Table 9 Ten countries with the
most HPs and DRs

The table shows absolute and
relative numbers as well as
Pearson v2 values with
Bonferroni-adjusted p values (the
statistically significant result is
printed in bold)

Country HP DR Total v2(1)/p

USA Absolute 194 139 333 16.23

In percent 58.26 41.74 100 .001

Great Britain Absolute 46 30 76 3.38

In percent 60.53 39.47 100 .66

Japan Absolute 23 19 42 .31

In percent 54.76 45.24 100 1.00

Germany Absolute 23 16 39 1.16

In percent 58.97 41.03 100 1.00

France Absolute 20 9 29 4.09

In percent 68.97 31.03 100 .43

Canada Absolute 12 15 27 .43

In percent 44.44 55.56 100 1.00

Italy Absolute 4 14 18 5.98

In percent 22.22 77.78 100 .15

The Netherlands Absolute 12 5 17 2.78

In percent 70.59 29.41 100 .952

Australia Absolute 8 9 17 .09

In percent 47.06 52.94 100 1.00

Switzerland Absolute 10 6 16 .93

In percent 62.5 37.5 100 1.00

Table 10 Mean differences in number of countries between HPs, DRs, and RANs (papers with zero
countries have been excluded)

Citation profile Mean Standard deviation Median Minimum Maximum Number of papers

HP 1.2a,b .5 1 1 4 323

DR 1.1a,c .3 1 1 3 311

RAN 1.1b,c .3 1 1 3 312

Total 1.1 .4 1 1 4 946

F(2, 943) = 4.24, p = .02, g2 = .01 [.000, .02], v2(2) = 1.63, p = .44

Pairwise comparisons:
at(1, 632) = 1.85, p = .06, d = .15 [- .01, .30], z = 1.49, p = .14
bt(1, 633) = 2.69, p = .01, d = .21 [.06, .37], z = 2.35, p = .02 (n.s.)
ct(1, 621) = .18, p = .35, d = .08 [- .08, .23], z = .87, p = .38
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reveal that the number of countries does not discriminate between the three groups. The

practical significances are small.

As a last FIC in this study, we investigated the number of subject categories. The

number of subject categories for a paper can be used as an indicator of inter-disciplinarity.

We used the WoS subject categories which have been assigned by Clarivate Analytics to

the papers on the base of the publishing journals. Table 11 shows the mean differences in

number of subject categories between HPs, DRs, and RANs. As the results reveal, the

differences are of no practical relevance.

Table 12 reports the ten WoS subject categories with the most HPs and DRs: ‘‘Bio-

chemistry & Molecular Biology’’ (n = 68) and ‘‘Physics, Multidisciplinary’’ (n = 42) are

those categories where most of the papers from both groups belong to. Also, the

table reports the results of statistical significance tests for subject category differences

between HPs and DRs. There are five statistically significant results. ‘‘Biochemistry &

Molecular Biology’’ (HP = 59, DR = 9), ‘‘Immunology’’ (HP = 34, DR = 6), and ‘‘Cell

Biology’’ (HP = 22, DR = 4) published more HPs than DRs. In contrast, the subject cat-

egories ‘‘Surgery’’ (HP = 3, DR = 37) and ‘‘Orthopedics’’ (HP = 0, DR = 33) are stronger

related to DRs than to HPs.

Discussion and conclusions

The existence of DRs has attracted a lot of attention in scientometrics and beyond. The

people are fascinated by the fact that researchers publish results which are in advance of

one’s time. Studies on DRs dealt either with specific cases of DRs (e.g., Marx 2014) or

with methods of detecting DRs (e.g., Ke et al. 2015). Also, citation profiles showing other

typical distributions than HPs have been proposed. For example, Ye and Bornmann (2018)

define the citation angle distinguishing between HPs and DRs. HPs are highly-cited ini-

tially, but the impact decreases quickly. Based on a comprehensive dataset of papers

published between 1980 and 1990, we searched for HPs and DRs for further analyses in

this study. In contrast to many other studies on DRs, we calculated DNIC values and used

these scores for the search of HPs and DRs instead of raw citation counts. In this study, we

were interested in identifying systematic differences between HPs and DRs.

Table 11 Mean differences in number of subject categories (as a measure of inter-disciplinarity) between
HPs, DRs, and RANs

Citation profile Mean Standard deviation Median Minimum Maximum Number of papers

HP 1.5a,b .7 1 1 4 323

DR 1.7a,c .8 1 1 5 315

RAN 1.5b,c .8 1 1 5 323

Total 1.5 .8 1 1 5 961

F(2, 958) = 4.88, p = .01, g2 = .01 [.001, .03], v2(2) = 7.05, p = .03 (n.s.)

Pairwise comparisons:
at(1, 636) = - 3.10, p = .002, d = - .25 [- .40, - .09], z = - 2.78, p = .006
bt(1, 644) = - .93, p = .35, d = - .07 [- .23, .08], z = - .29, p = .78
ct(1, 636) = 2.04, p = .04 (n.s.), d = .16 [.01, .32], z = 2.40, p = .0165
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The investigation of several variables brought about some interesting results. Since this

is the first study investigating differences between HPs and DRs, the results cannot be

compared with those of other studies. The investigation of the journals which have pub-

lished HPs and DRs revealed that some journals (e.g. Physical Review Letters and PNAS)

were able to publish significantly more HPs than other journals. This pattern did not appear

in DRs in this study. Here, the distribution of papers across journals is similar to that in a

random sample.

However, this result does not agree to the results of van Raan (2015). He found specific

patterns also for DRs. He identified institutions (e.g. MIT) that have more DRs than can be

expected based on their relative contribution to the field (in his case: physics). The same

was found for journals, particularly Physical Review B and Nuclear Physics B. Based on

the results, van Raan (2015) stated that ‘‘a new and interesting question arises whether this

type of observations could say something about institutions which are more prone than

other institutions to accepting (and publishing) out-of-the-box work’’.

In terms of the MNCS (based on single journals or fields), HPs and DRs received impact

scores which are significantly above average. However, the citation impact of the DRs is

significantly higher than that of the HPs. Many HPs and DRs have been published by

authors from the USA; however, in contrast to other countries, authors from the USA have

published statistically significantly more HPs than DRs. For other countries, the differences

between HPs and DRs are statistically not significant. The WoS subject categories in which

Table 12 Ten WoS subject categories with the most HPs and DRs

WoS subject category HP DR Total v2(1)/p

Biochemistry & Molecular Biology Absolut 59 9 68 39.77

In percent 86.76 13.24 100 .000

Physics, multidisciplinary Absolut 22 20 42 .06

In percent 52.38 47.62 100 1.00

Immunology Absolut 34 6 40 20.17

In percent 85 15 100 .000

Surgery Absolut 3 37 40 31.76

In percent 7.5 92.5 100 .000

Engineering, electrical and Electronic Absolut 15 20 35 .89

In percent 42.86 57.14 100 1.00

Orthopedics Absolut 0 33 33 35.68

In percent 0 100 100 .00

Physics, applied Absolut 19 8 27 4.40

In percent 70.37 29.63 100 .36

Cell biology Absolut 22 4 26 12.53

In percent 84.62 15.38 100 .004

Medicine, general and internal Absolut 14 6 20 3.1

In percent 70 30 100 .78

Chemistry, physical Absolut 9 11 20 .26

In percent 45 55 100 1.00

The table shows absolute and relative numbers as well as Pearson v2 values with Bonferroni-adjusted
p values (statistically significant results are printed in bold)
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the most HPs and DRs have been published are ‘‘Biochemistry & Molecular Biology’’ and

‘‘Physics, Multidisciplinary.’’ Whereas ‘‘Biochemistry & Molecular Biology,’’ ‘‘Im-

munology,’’ and ‘‘Cell Biology’’ have published significantly more HPs than DRs, the

opposite result arrived for ‘‘Surgery’’ and ‘‘Orthopedics.’’ The investigation of HPs and

DRs with regard to FICs (e.g., the number of authors) show that HPs have significantly

more authors and more (linked) references than DRs/RANs.

The results of this study indicate that especially HPs are differently with respect to

certain properties from RANs (e.g. the number of authors), but not necessarily DRs. Our

results suggest therefore that the emergence of DRs is an unpredictable process which

cannot be fixed by certain properties of the papers. With HPs, this prediction might be

possible to a certain extent (Yu et al. 2014). However, this study was a first initial step of

analyzing HPs and DRs in comparison. It would be interesting, if future studies address the

topic of differences between both groups by using data from other bibliometric databases

(especially subject specific databases, as the chemistry-related CA database or the eco-

nomics RePEc database). These studies could investigate similar variables as those in this

study in order to test whether the results of this study can be confirmed. The inclusion of

additional variables could reveal further insights in both phenomena: HPs and DRs. Of

special interest are variables which cannot be gathered in WoS. So, it could be tested

whether the publication of HPs and DRs are related to certain characteristics of authors

(e.g. their gender or nationality) or their institutions. Are there certain groups of authors

which have published more DRs in the past than can be expected?

In this study, we used field-normalized scores to identify HPs and DRs. Many papers in

the WoS database do not only belong to one but so several fields. Thus, it would be

interesting to identify those papers in future studies, which are ‘‘normal’’ in one field, but

DRs or HPs, respectively, in another.
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