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Abstract: The jam flow condition is one of the main traffic states in traffic flow theory and the
most difficult state for sectional traffic information acquisition. Since traffic information acquisition
is the basis for the application of an intelligent transportation system, research on traffic vehicle
counting methods for the jam flow conditions has been worthwhile. A low-cost and energy-efficient
type of multi-function wireless traffic magnetic sensor was designed and developed. Several
advantages of the traffic magnetic sensor are that it is suitable for large-scale deployment and
time-sustainable detection for traffic information acquisition. Based on the traffic magnetic sensor,
a basic vehicle detection algorithm (DWVDA) with less computational complexity was introduced
for vehicle counting in low traffic volume conditions. To improve the detection performance in jam
flow conditions with a “tailgating effect” between front vehicles and rear vehicles, an improved
vehicle detection algorithm (SA-DWVDA) was proposed and applied in field traffic environments.
By deploying traffic magnetic sensor nodes in field traffic scenarios, two field experiments were
conducted to test and verify the DWVDA and the SA-DWVDA algorithms. The experimental results
have shown that both DWVDA and the SA-DWVDA algorithms yield a satisfactory performance
in low traffic volume conditions (scenario I) and both of their mean absolute percent errors are less
than 1% in this scenario. However, for jam flow conditions with heavy traffic volumes (scenario II),
the SA-DWVDA was proven to achieve better results, and the mean absolute percent error of the
SA-DWVDA is 2.54% with corresponding results of the DWVDA 7.07%. The results conclude that the
proposed SA-DWVDA can implement efficient and accurate vehicle detection in jam flow conditions
and can be employed in field traffic environments.

Keywords: traffic engineering; vehicle counting; jam flow; vehicle detection algorithm; wireless
magnetic sensor

1. Introduction

Information about a traffic state is an important precondition for traffic management, and
control and traffic information service and guidance [1]. It is also the basis for making traffic safety
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strategies and detecting traffic accidents. Therefore, traffic information acquisition is a significant
backbone problem for intelligent transportation systems (ITSs). Due to the application of ITSs in
urban traffic systems [1–3], the demand for large-scale, all-weather, and all-day traffic information
is critical. A prior solution of traffic information acquisition is the use of traffic sensors to realize
vehicle counting. Traffic vehicle counting from fixed sensors determines the number of vehicles
at specific locations and times in road networks. Accurate traffic vehicle counting is essential for
the acquisition of other traffic information, such as traffic volumes, speed evaluation, and vehicle
classification. Fixed traffic sensors have inherent advantages (all-weather, all-day, and fixed location)
and are used for traffic information acquisition in many countries. In recent decades, many fixed
devices have been proposed to obtain traffic information in the field of sensor technology, such as
inductive loop detectors [4,5], infrared instruments [6], ultrasonic arrays [7], microwave radars [8],
magnetic sensors [9–13], and video image processing systems [14,15]. The majority of these sensors
are weather-dependent or pavement-unfriendly.

For the outstanding advantages and increasing usage scale of magnetic sensors, the ability
to count traffic vehicles by magnetic sensors has gained considerable interest. Many studies
explore magnetic sensor applications in vehicle counting and other types of traffic information
acquisition. Magnetic sensors have several excellent advantages; they are low-cost, energy-efficient,
small, wireless, and weather-independent sensors. Traffic surveillance by magnetic technology and
corresponding wireless sensor networks have been proposed and implemented in related research
areas, especially vehicle detection and counting [9–13,16–20], speed estimation [10–12], and vehicle
classification [10,11,13,19,21–24].

Early in 1978, Marshall [9] proposed a magnetic-based vehicle detection method and analyzed
some characteristics between magnetic fields and vehicles. Marshall noted that magnetic sensors
may not be able to satisfy all requirements but should not be overlooked as a possible option for
counting or sensing the presence of a vehicle. In 2007, Cheung and Varaiya [10] investigated a type of
wireless sensor network with magnetic sensors as network nodes to implement traffic surveillance.
They proposed an adaptive threshold detection algorithm (ATDA) to detect vehicles. This algorithm is
suitable for addressing the drift problem that is caused by temperature or light. Their experimental
results are satisfactory due to a detection accuracy of 99% for a dataset of 330 vehicles. Haoui et al. [11]
introduced the vehicle detection system by Sensys Networks Inc. (Berkeley, CA, USA) and they
deployed this system in arterials and freeways in several cities and states. In [11], a vehicle detection
system is employed for vehicle counting and to collect vehicle occupancy and speed data. The accuracy
of their system for vehicle counting and vehicle speed and occupancy data acquisition is comparable
to the accuracy of well-tuned loops in different traffic congestion conditions. Sifuentes et al. [16]
presented a vehicle detector with a magnetic and optical sensor that was intended as a sensor node for
use with a wireless sensor network (WSN). The optical sensor is used to wake up a magnetic sensor.
These two sensors, combined with energy-efficient event-based software, yielded a simple, compact,
reliable, and low-energy sensor node for vehicle detection. Daubaras and Zilys [17] introduced a
vehicle detection system with magnetic field sensors and showed that the method can detect stationary
vehicles in a parking lot. Liepins and Severdaks [18] proposed a method for vehicle counting, which
achieved a detection rate with an accuracy of 94.8%. The distinguishing feature of their method is
the use of a type of noninvasive wireless magnetic sensor network to eliminate the need for inserting
sensors into the road structure. Wang et al. [20] employed a type of wireless magnetic sensor network
to detect vehicles in an urban environment. The magnetic sensors are deployed on the sides of roads.
In this paper, the wavelets methods are employed to filter noise and improve the accuracies of the
magnetic signals. To design two types of vehicle detection algorithms in their field experiments, the
corresponding accuracy of each algorithm is 90.9% and 84.1%. However, one of the drawbacks noted
in this paper is the small size of the vehicle sample.

However, minimal attention has been given to vehicle detection in jam traffic conditions, especially
for stop-and-go movements, which are common in cities during peak hours. When vehicles drive at low
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speeds in jam flow conditions, magnetic waveforms will produce a “tailgating effect” because vehicles
are located close to each other. A continuous vehicle signal will be mutually interfered by front and
rear vehicles, which complicates the design of a high-performance vehicle detection algorithm. Thus,
traffic vehicle counting in jam flow conditions will be a significant and practical topic. For low-speed
congested traffic in large cities, Yang and Lei [19] proposed a fixed-threshold-state machine algorithm
that is based on signal variance to detect vehicles within a single lane. The lack of vehicle samplings in
their experiment is very effective for verifying their algorithm. Although the ATDA proposed in [10]
solved the drift problem, it does not consider jam flow conditions, especially the “tailgating effect” that
is caused by congested traffic, and no field experiments have been conducted in jam flow conditions
based on the ATDA. The traffic state in jam flow conditions is the most complicated state, which
hinders the design of an efficient and accurate vehicle detection algorithm that is based on magnetic
sensors. Robust vehicle detection in jam flow conditions is challenging, especially for urban traffic.

This paper introduces a multi-function wireless traffic magnetic sensor (TrafficMS) and proposes
an alternative, efficient, and accurate vehicle detection method to address the drift problem caused
by weather environments and the “tailgating effect” caused by traffic flow environments. To achieve
a low-cost, energy-efficient and easy installment, TrafficMS is suitable for large-area deployment and
all-weather, all-day, traffic surveillance.

2. Design and Function of Low-Cost, Energy-Efficient and Wireless Magnetic Sensor

2.1. Principle of Magnetic Technology

The magneto-resistance effect is a phenomenon in which the electrical resistance of a conductor or
semiconductor changes in different magnetic fields. The normal magneto-resistance effect is derived
from the interaction of the magnetic field and the Lorentz force of electrons. The magnetic field
will cause the deflection or spiral of the movement of current carriers, which causes an increasing
collision probability of electrons and enlarges the electrical resistance of a conductor or semiconductor.
Several types of magneto-resistance effects, such as ordinary magneto-resistance (OMR), giant
magneto-resistance (GMR) and anisotropic magneto-resistance (AMR), have been observed, while
AMR has been extensively applied. Iron, cobalt, nickel and their alloys, which are strong magnetic
metals, are ferromagnetic metals. When the external magnetic field is parallel to the magnetization
direction, the electrical resistance will not change with the external magnetic field. However, when
the external magnetic field deviates from the magnetization direction, the electrical resistance will
decrease. This phenomenon is the AMR effect of strong magnetic metals [25]. Since AMR sensors have
the advantages of low energy, high sensitivity, small size, low noise, high reliability, and acceptable
resistance to poor environments, they are increasingly employed in several application fields.

The Honeywell HMC1001 and HMC1002 magnetic sensors are one-axis and two-axis surface
mount sensors, respectively, which are designed for low-field magnetic sensing, which comprise a type
of AMR sensor [26]. They are extremely sensitive, low-field, solid-state magnetic sensors that are
designed to measure the direction and magnitude of Earth’s magnetic fields. The pins of HMC1001
and HMC1002 sensors are shown in Figure 1. HMC1001 is a single inline package (SIP) one-axis
magnetic sensor whose sensing direction of a magnetic field is parallel to the pins; HMC1002 is a small
outline-integrated circuit package (SOIC) two-axis magnetic sensor whose sensing directions are
parallel and vertical to the pins. The change in the external magnetic fields will cause a change of
voltage between OUT+ and OUT−, which reflects the strength of the external magnetic fields [26].
The on-chip current straps are included in HMC1001/HMC1002, and external coils are not needed,
which renders them easy to use.
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Figure 1. Pins of AMR sensors. (a) HMC1001 sensor; and (b) HMC1002 sensor.

2.2. Magnetic Technology-Based Traffic Sensor

The multi-function traffic wireless magnetic sensor (TrafficMS) was designed and developed
by employing HMC1001/HMC1002 sensors. The TrafficMS can achieve the acquisition of several
parameters of traffic flow, such as traffic volume, speed, headway and vehicle classification [12,27].
The sensing modules of the TrafficMS are HMC1001 and HMC1002 sensors, which can detect a
miniscule change in magnetic field. Since vehicles contain ferromagnetic metal, the magnetic field
around the TrafficMS will be disturbed when a vehicle passes a TrafficMS, as shown in Figure 2.
This type of disturbance can be detected by HMC1001 and HMC1002 sensors and processed by an
integrated circuit on TrafficMS. Then, the waveform data of the vehicle, which corresponds to the
disturbance, will be recorded and outputted by TrafficMS.

Sensors 2016, 16, 1868 4 of 16 

 

  
(a) (b) 

Figure 1. Pins of AMR sensors. (a) HMC1001 sensor; and (b) HMC1002 sensor. 

2.2. Magnetic Technology-Based Traffic Sensor 

The multi-function traffic wireless magnetic sensor (TrafficMS) was designed and developed by 

employing HMC1001/HMC1002 sensors. The TrafficMS can achieve the acquisition of several 

parameters of traffic flow, such as traffic volume, speed, headway and vehicle classification [12,27]. 

The sensing modules of the TrafficMS are HMC1001 and HMC1002 sensors, which can detect a 

miniscule change in magnetic field. Since vehicles contain ferromagnetic metal, the magnetic field 

around the TrafficMS will be disturbed when a vehicle passes a TrafficMS, as shown in Figure 2. This 

type of disturbance can be detected by HMC1001 and HMC1002 sensors and processed by an 

integrated circuit on TrafficMS. Then, the waveform data of the vehicle, which corresponds to the 

disturbance, will be recorded and outputted by TrafficMS. 

TrafficMS

Earth’s magnetic flux lines around a TrafficMS 

Road 

Surface

 

Figure 2. Disturbance of Earth’s magnetic flux lines by a vehicle. 

By detecting the strength of a magnetic field in real-time, TrafficMS transfers the magnetic field 

signal to the voltage signal on an mV level and obtains the voltage signal on a V level using an 

amplifier. By reducing the noise signal with a filter, the TrafficMS outputs the corresponding digital 

value by an analog-to-digital converter (ADC). The digital value corresponds to the disturbance 

quantity of a magnetic field. When no vehicle exists around the TrafficMS, it will output a given 

digital value, which is referred to as the baseline yb (no consideration of environmental noise). When 

a vehicle passes the TrafficMS, it will output waveform data with the baseline yb and the disturbance 

value δ that is caused by the vehicle. The waveform data can be defined as the origin vehicle waveform 

data, which comprises the basis for achieving vehicle counting or other traffic information acquisition. 

According to the detection and data demands, both single-module and dual-module TrafficMS 

units were designed and developed. Figure 3 shows the sensing axes of the TrafficMS. A single-

module TrafficMS has a HMC1001 sensor and a HMC1002 sensor. The two sensors can sense the 

strength of the magnetic fields of three vertical axes (X/Y/Z-axis). A dual-module TrafficMS has two 

HMC1001 sensors and a HMC1002 sensor. The two HMC1001 sensors are located by a given spacing. 

A dual-module TrafficMS can sense the strength of the magnetic fields of three vertical axes (X/Y/Z1-axis) 

and one parallel axis (Z2-axis). In Figure 3, the X-axis points to the negative direction of running 

vehicles and reflects the disturbance of the magnetic field along the vehicle lane. The Y-axis points to 
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By detecting the strength of a magnetic field in real-time, TrafficMS transfers the magnetic field
signal to the voltage signal on an mV level and obtains the voltage signal on a V level using an amplifier.
By reducing the noise signal with a filter, the TrafficMS outputs the corresponding digital value by
an analog-to-digital converter (ADC). The digital value corresponds to the disturbance quantity of
a magnetic field. When no vehicle exists around the TrafficMS, it will output a given digital value,
which is referred to as the baseline yb (no consideration of environmental noise). When a vehicle
passes the TrafficMS, it will output waveform data with the baseline yb and the disturbance value δ

that is caused by the vehicle. The waveform data can be defined as the origin vehicle waveform data,
which comprises the basis for achieving vehicle counting or other traffic information acquisition.

According to the detection and data demands, both single-module and dual-module TrafficMS
units were designed and developed. Figure 3 shows the sensing axes of the TrafficMS. A single-module
TrafficMS has a HMC1001 sensor and a HMC1002 sensor. The two sensors can sense the strength of the
magnetic fields of three vertical axes (X/Y/Z-axis). A dual-module TrafficMS has two HMC1001
sensors and a HMC1002 sensor. The two HMC1001 sensors are located by a given spacing.
A dual-module TrafficMS can sense the strength of the magnetic fields of three vertical axes
(X/Y/Z1-axis) and one parallel axis (Z2-axis). In Figure 3, the X-axis points to the negative direction of
running vehicles and reflects the disturbance of the magnetic field along the vehicle lane. The Y-axis



Sensors 2016, 16, 1868 5 of 16

points to the vertical direction of running vehicles and reflects the lateral disturbance. The Z-axis
(Z1/Z2) points to the negative direction of gravity and records the presence and passing process of
vehicles. The degree of sensitivity of each axis can be adjusted to adapt the valid sensing range for
different applications.
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Our previous study in [12] presented the dual-module TrafficMS, whose shape is a cylinder with
an encircled diameter of 100 mm and a height of 65 mm. The shell material of TrafficMS is water-,
dust-, and pressure-proof rigid plastic. TrafficMS adopts a series of chips (such as CC2430/CC2530)
designed by Texas Instruments to achieve energy-efficient, low-rate, low-cost, and short-range wireless
communication. In practice, several wireless communication protocols (such as SimpliciTI and Zigbee)
can serve as an alternative embedded in the TrafficMS to construct WSNs. These WSNs can obtain
traffic flow information in a regional road network.

The installation of the TrafficMS is quick and convenient due to its circular shape and technical
design. Figure 4 shows the process of a four-step quick installment of TrafficMS. The installation of
TrafficMS requires approximately 10 min, which efficiently reduces the closing time of the vehicle lanes
and the disturbance for normal traffic flow.
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Figure 4. Quick installment of the TrafficMS. (a) Selecting a position; (b) drilling a hole; (c) improving
the hole; and (d) deploying the TrafficMS and pasting the hole.

An outstanding feature of TrafficMS is the no-vehicle environment self-learning mechanism.
After the TrafficMS is activated, the no-vehicle environment self-learning mechanism will measure and
record the original strength of magnetic field when no vehicle appears around the TrafficMS. When a
vehicle passes, the TrafficMS outputs the difference value of the current and the original strength of
the magnetic field. This mechanism can ensure that the outputs of the TrafficMS will be less influenced
by weather and geographical location factors. The frequency of no-vehicle environment self-learning
can be determined by setting a self-learning period in the software (1 h, 30 min, and 10 min).

2.3. Advantages of TrafficMS

Low-cost

As the reduction of chips and the development of integrated circuit, the low-cost, energy-efficient
and high accuracy HMC1001/HMC1002 sensors and CC2430/CC2530 communication chips are used
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in the integrated design of TrafficMS. The shape of the TrafficMS is designed as a cylinder with
an external diameter of only 100 mm and a water-, dust-, and press-proof rigid plastics.

Environment self-learning mechanism

Through a no-vehicle environment self-learning mechanism, the TrafficMS can reduce the
output errors caused by temperature drift and geographical position. Through a second traffic
environment self-learning mechanism, the proposed vehicle detection algorithm can restrain the
influence caused by the “tailgating effect”, especially under jam flow conditions. For sectional traffic
vehicle counting, the case under jam flow conditions is the most difficult to counting vehicles accurately.
These mechanisms makes it possible to obtain required detection results.

Multi-functional detection

Using diversified detection modules and deploy strategies, the TrafficMS and the WSNs with
TrafficMS nodes as network sensing nodes can achieve multi-parameter traffic information acquisition
for the applications of traffic information service and control. A single TrafficMS node can detect
or evaluate several kinds of traffic information such as traffic volume of a lane, individual vehicle
speed, time headway, and vehicle classification. One or more WSN can acquire comprehensive
traffic information, such as sectional traffic volume, average speed, density, occupancy, and vehicle
classification proportion.

Wireless communication and networking

Each TrafficMS has the function of wireless communication and is able to send its detection data
to the roadside devices. For adopting a kind of energy-efficient, low-rate, and short-range wireless
communication protocol (such as Simplici TI and Zigbee), the TrafficMS is able to have long-term,
all-day detection. By networking technology with several TrafficMS nodes and roadside devices, WSNs
to meet multiple traffic information detection demands can be built.

Quick installment and replacement

Due to the low price and wireless communication feature, it is easy to install and replace
a TrafficMS unit. It usually takes no more than 10 min to install a TrafficMS unit. When the power of
the TrafficMS is used up, a new TrafficMS can be deployed near the original TrafficMS, and the only
thing is to update the sensor ID of the new TrafficMS in the database.

3. Methods and Algorithms

The first step of traffic volume acquisition is single-lane vehicle detection. As a non-contact
detection technology, magnetic technology has internal superiority in sectional traffic volume detection.
However, the performance of a vehicle detection algorithm is related to the counting accuracy of the
traffic volume, the complexity of computation, and the lifetime of a sensor node.

3.1. Basic Vehicle Detection Algorithm

A basic vehicle detection algorithm is applicable to conditions with a long distance between
a front vehicle and a rear vehicle or a small “tailgating effect”, such as free-flow or synchronized flow
conditions. Free-flow conditions always occur on a freeway, urban expressway, or urban roads with
no influence by signalization. The speeds and headways are large in free-flow conditions, which
have no “tailgating effect”. The traffic flow density of synchronized flow is larger and the speeds
and headways are smaller than free-flow conditions. However, the “tailgating effect” can also be
disregarded in synchronized flow conditions. In Figure 5, Li et al. [12] presented a vehicle waveform
that is derived from the TrafficMS in free-flow conditions. Since the data of the Z-axis can reflect the
presence and movement of a vehicle, only the data of the Z-axis will be the input of the vehicle detection
algorithms in this paper, which may reduce their complexity. To eliminate the “tailgating effect”,
the front and rear part of the vehicle waveform are almost coincident with the baseline yb. To adopt
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a no-vehicle environment self-learning mechanism to reduce or eliminate the effect of temperature or
geographical position on the baseline, the baseline yb is stable. According to the characteristics of the
vehicle waveform in free-flow or synchronized flow conditions, the double window vehicle detection
algorithm (DWVDA) (Algorithm 1) that is proposed in [12] is shown as follows:

Algorithm 1. Basic vehicle detection algorithm—DWVDA:

1: Initialization of the base line yb, the sampling frequency of the TrafficMS f s, the
vehicle-approaching sensing window w1 (h1 × t1), and the vehicle-departing sensing window w2
(h2 × t2);

2: Start the vehicle-approaching sensing window w1;
3: Input the waveform data (the input data of sampling points are the width of w1 each time);

if all sampling points are within w1, go to step 4 and denote the vehicle-approaching point as p1;
otherwise, go to step 2;

4: Start the vehicle departing sensing window w2;
5: Input the waveform data (the input data of sampling points are the width of w2 each time);

if all sampling points are within w2, denote the vehicle departing point as p2 and perform vehicle
counting by adding 1. The waveform data between p1 and p2 is referred to as the vehicle waveform;
detect the next vehicle. Otherwise, go to step 4.
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Figure 5. A vehicle waveform that is detected by the TrafficMS in free- or synchronized flow conditions.

The DWVDA can obtain the complete waveform of each vehicle and denote the approaching
point and the departing point of each vehicle, which facilitates the acquisition of other traffic
flow information, such as traffic volume, average speed, vehicle length, headway, and vehicle
classification. The data from the Z-axis reflects the spatial disturbance of ferromagnetic material
and records the presence and passing process of vehicles. In order to reduce data size and computation
complexity, the DWVDA employs the data from the Z axis as the algorithm input. The algorithm
has few parameters and a high computational efficiency. Therefore, it will be easily implemented
in TrafficMS nodes with limited energy and computing capability to realize real-time and long-time
vehicle detection.

3.2. Improved Vehicle Detection Algorithm for Jam Flow Conditions

The jam flow primarily exists on road segments and areas of congested freeways, ramps, toll
facilities, urban expressways and signalized intersections. Especially during the peak hours of urban
roads, the jam flow conditions are more common. In jam flow conditions, the density of traffic flow is
large, the distance between a front vehicle and rear vehicle is small and the speed of traffic flow is low.
Sometimes, vehicles will perform stop-and-go movements or even stop and queue. Figure 6 shows
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the vehicle waveforms of continuous traffic flows in jam flow conditions and the “tailgating effect”
between two adjacent vehicles. When the TrafficMS detects a vehicle, the front vehicle may influence
the magnetic field around the TrafficMS, which causes a weak performance of the DWVDA.
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Figure 6. Waveforms of continuous traffic flow in jam flow conditions due to the tailgating effect.

In traffic engineering, a common problem is low accuracy for vehicle counting by passive invasive
traffic sensors (different from active non-invasive devices, such as RFID) in jam flow conditions.
Martin et al. [28] investigated the performance of different sensor technologies that are influenced by
some environmental and traffic state factors. According to the results of [28], the high volume state
may be easier for influencing the performance of some sensor technologies than the low volume state.

Although the TrafficMS has a no-vehicle environment self-learning mechanism, in jam flow
conditions the distance between a front vehicle and a rear vehicle is too small to be influenced by
adjacent vehicles when a vehicle passes the TrafficMS. Then, the baseline yb of the DWVDA will
deviate from the origin value, which will yield a low accuracy. Due to changes of yb, the DWVDA
with pre-set parameters will obtain only one vehicle when two or more vehicles pass the TrafficMS
with a small spacing. A simple method is to minimize the width of w2. In this manner, the probability
that two or more vehicles are identified as one vehicle will be reduced; however, the probability that
one vehicle is identified as two or more vehicles will increase, especially for stop-and-go vehicles and
large vehicles. Based on the DWVDA, a second adaptive DWVDA (SA-DWVDA) (Algorithm 2) was
proposed to resolve this issue. Similar to the ATDA that is proposed in [10], the SA-DWVDA realized
the second self-learning for traffic environment via an updated mechanism of the base line yb. The first
self-learning mechanism causes TrafficMS to adapt a no-vehicle environment, whereas the second
self-learning mechanism enables TrafficMS to adapt a traffic environment. The SA-DWVDA and its
traffic environment update mechanism are shown as follows:

Algorithm 2. Improved vehicle detection algorithm for jam flow conditions—SA-DWVDA:

1: Initialization of yb, the sampling frequency of the TrafficMS f s, w1 (h1 × t1), w2 (h2 × t2), and the
adjacent vehicle baseline yb-veh = 0, the last baseline yb-old = yb, the latest baseline yb-new = yb, the second
adaptive window w3 (h3 × t3), and the forgetting factor α.

2: Start the vehicle approaching sensing window w1 based on yb-new;
3: Input the waveform data (the input data of sampling points are the width of w1 each time); if all

sampling points are within w1, go to step 4 and denote the vehicle approaching point as p1; otherwise, go to
step 2;

4: Start the vehicle departing sensing window w2 based on yb-new;
5: Input the waveform data (the input data of sampling points are the width of w2 each time); if all

sampling points are within w2, denote the vehicle departing point as p2 and perform vehicle counting is added
by 1. If the waveform data between p1 and p2 is referred to as the vehicle waveform, go to step 6. Otherwise,
go to step 4;

6: If all sampling points after point p2 are within w3, denote yb-veh as the mean of all sampling points
within w3 and go to step 7. Otherwise, go to step 2 to detect the next vehicle;

7: If |yb-veh-yb-old| < dshort and |yb-veh-yb| < dlong, the update mechanism will begin; let yb-old = yb-new
and yb-new = (1 − α) yb-old + α × yb-veh and go to step 2; Otherwise, go to step 2 with no update operation.
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Figure 7 shows the parameters and their relationships of the SA-DWVDA. w3 is the second
adaptive window, which represents the minimal “tailgating” distance between the front vehicles and
rear vehicles. If the waveform data do not satisfy the criteria of w3, the subsequent waveform data
represents the same vehicle with previous waveform data. The parameter α is the forgetting factor.
The larger is the value of α, the greater is the amount that the algorithm forgets and the lower is the
weight of the old base line when calculating the new baseline. dshort is the short-term drift measure of
yb of the TrafficMS, which is the difference between the adjacent vehicle baseline and the last baseline.
dlong is the long-term drift measure of yb, that is, the difference between the adjacent vehicle baseline
and the baseline. When both values of dshort and dlong are within an established range, the update
mechanism of the algorithm will be activated, which can improve the stability and robustness of the
SA-DWVDA. The parameters of the SA-DWVDA can be calibrated based on field waveform data.
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4. Experiment and Discussion

4.1. Field Experiments

To verify the detection performance of TrafficMS and the effectiveness of the proposed vehicle
detection algorithms, the TrafficMS nodes were deployed in field traffic environments. These traffic
scenarios include different traffic states of free-flow, synchronized flow, and jam flow conditions.
The video cameras were used to record the actual traffic flow state, and the actual traffic volume data
were obtained by manual statistics based on the video data that will be employed for comparison
and analysis. Figure 8 shows the experimental process, which verifies the performance of different
algorithms for the three traffic flow states.
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For parameter setting and optimization, there are two main strategies. Strategy 1 is an empirical
approach. Engineers give an initial value for each parameter and compare the results from TrafficMS
and camera for a period time. Then, the engineers decide if it is necessary to adjust the parameter values
according to detection results. For several-time adjustments, the TrafficMS may have a satisfactory or
suboptimal result. Since each location of TrafficMS has a special traffic environment, strategy 1 is easy
to implement, but sounds to be troublesome. Strategy 2 is a dynamic optimization approach. Engineers
set a reasonable range for each variable parameter (excluding some constant parameters, such as yb,
f s, and so on). TrafficMS collects the field traffic flow data for a period. The TrafficMS adjusts each
parameter within its given range and outputs the detection result for each alternative combination.
The alternative with the highest detection accuracy is selected as the final parameter setting. This paper
adopts strategy 2 to implement dynamic parameter optimization. The final parameter values of the
DWVDA and the SA-DWVDA are shown in Table 1.

Table 1. Final parameter values of DWVDA and SA-DWVDA.

DWVDA

yb f s w1 w2
980 100 40 × 10 30 × 35

SA-DWVDA

yb f s w1 w2 yb-veh yb-old yb-new w3 dshort dlong α

980 100 40 × 10 30 × 35 0 980 980 40 × 100 20 30 0.1

(1) Scenario I: Including synchronized flow and jam flow conditions

In this scenario, TrafficMS was deployed in the center of a lane that belongs to a sub-arterial road
in Beijing. TrafficMS can detect the real-time traffic state of this lane. This road is a two-lane road,
which has no disturbances, such as lane changing among the vehicles on the road. The average speed
of the vehicles on this road is a medium speed. The approximate distance between TrafficMS and the
pedestrian signal is 30 m. When the signal is green, the synchronized flow will be the dominating
mode; when the signal is red, the vehicles will queue and the dominating mode of traffic flow will
transfer to jam flow. Several datasets with different time periods were obtained; both the DWVDA and
the SA-DWVDA were tested based on these datasets. Table 2 shows the results of experiment scenario
I for traffic vehicle counting. In Table 2, each dataset was named according to the starting time to be
recorded, whose format is year-month-day-hour-minute.

Table 2. Results of experiment scenario I for traffic vehicle counting.

Data Sets Dominant Mode Counting from
Camera (Vehs)

Output of
DWVDA

(Vehs)

Output of
SA-DWVDA

(Vehs)

APE of
DWVDA

(%)

APE of
SA-DWVDA

(%)

200905211118 Synchronized flow 45 45 45 0.00 0.00
200905211336 Synchronized flow 206 207 206 0.49 0.49
200906301726 Jam flow 104 104 104 0.00 0.00
200907291708 Synchronized flow 59 58 59 1.69 0.00
200907291714 Jam flow 24 24 24 0.00 0.00
200908081012 Synchronized flow 32 32 32 0.00 0.00
200908091114 Synchronized flow 37 37 37 0.00 0.00
200910191706 Jam flow 67 68 68 1.49 1.49
200910221600 Synchronized flow 55 54 55 1.82 0.00
200911120918 Synchronized flow 32 33 32 3.13 0.00
200911191000 Synchronized flow 57 58 58 1.75 1.75
200911191006 Synchronized flow 67 67 67 0.00 0.00

Total/MAPE 785 787 786 0.86 0.31

As shown in Table 2, the performance of both the DWVDA and the SA-DWVDA is acceptable
for vehicle counting in scenario I and the mean absolute percent error (MAPE) of their accuracies
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exceeds 99%. In the red signal interval, especially during the evening peak hour (such as the date
set 200907291708), the mode of traffic flow will convert to the jam flow mode and the car-following
distance between a front vehicle and a rear vehicle is very small (approximately 2 m). To reduce
the disturbance of the “tailgating effect” between front and rear vehicles in jam flow conditions, the
SA-DWVDA yields a better performance. For other conditions, the DWVDA and the SA-DWVDA
can achieve satisfactory results. Although these datasets contain different climate and temperature
conditions (summer and winter), different time periods (nonpeak hours and peak hours), different
traffic signal conditions (smooth traffic during green signal intervals and queuing traffic during red
signal intervals), the results are not significantly different under these conditions, which indicates that
the algorithms of the DWVDA and the SA-DWVDA are robust.

In order to analyze the detailed counting-errors for individual vehicle, three possible errors are
proposed and analyzed, which are “tailgating effect error” (TE), “big vehicle effect error” (BE), and
“lane-changing error” (LE). In the algorithms of the DWVDA and the SA-DWVDA, the TE will reduce
the counting number for detecting two or more adjacent vehicles as one vehicle; the BE will increase
the counting number for detecting one large vehicle (such as bus, truck) as two or more vehicles; and
the LE will lead to the manual statistical error using camera data which may increase or decrease the
counting number for different visual angle of videos and different personal criterions. Table 3 shows
the detailed counting-errors for individual vehicles of scenario I. For the road has no lane-changing
disturbances, the value of the LE for each dataset is always 0. For scenario I, the performances of the
DWVDA and the SA-DWVDA are similar, but the SA-DWVDA has a little advantage in dealing with
the TE and the BE.

Table 3. Detailed counting-errors for individual vehicles of scenario I.

Data Sets Counting from
Camera (Vehs)

Detailed Counting-Errors
of DWVDA (Vehs)

Detailed Counting-Errors
of SA-DWVDA Vehs

200905211118 45 TE(0), BE(0), LE(0) TE(0), BE(0), LE(0)
200905211336 206 TE(0), BE(+1), LE(0) TE(0), BE(0), LE(0)
200906301726 104 TE(−1), BE(+1), LE(0) TE(0), BE(0), LE(0)
200907291708 59 TE(−1), BE(0), LE(0) TE(0), BE(0), LE(0)
200907291714 24 TE(0), BE(0), LE(0) TE(0), BE(0), LE(0)
200908081012 32 TE(0), BE(0), LE(0) TE(0), BE(0), LE(0)
200908091114 37 TE(0), BE(0), LE(0) TE(0), BE(0), LE(0)
200910191706 67 TE(−1), BE(0), LE(0) TE(−1), BE(0), LE(0)
200910221600 55 TE(−1), BE(0), LE(0) TE(0), BE(0), LE(0)
200911120918 32 TE(0), BE(+1), LE(0) TE(0), BE(0), LE(0)
200911191000 57 TE(−1), BE(+2), LE(0) TE(0), BE(+1), LE(0)
200911191006 67 TE(0), BE(0), LE(0) TE(0), BE(0), LE(0)

(2) Scenario II: Including free-flow, synchronized flow, and jam flow conditions

This scenario is located at a signalized intersection of an arterial in Xi’an, China. TrafficMS was
deployed in the center of an outer straight lane near the signalized intersection. The traffic flow in the
lane will be influenced by the traffic signal, which will cause a long vehicle queue. The vehicles in the
traffic flow will exhibit car-following behaviors and stop-and-go movements due to the influence of
heavy traffic. The algorithms of the DWVDA and the SA-DWVDA were tested based on the continuous
vehicle waveform data that are derived from TrafficMS between 3 a.m. on 24 November 2012 and
3 a.m. on 25 November 2012. Figure 9 shows the traffic state within this 24-h period. Prior to dawn,
the traffic volume was small and the free-flow mode was the dominating mode. Early in the morning
as the traffic volume increased, the synchronized flow mode became the dominating mode. However,
during the morning or evening peak hours, the traffic volume was high and the traffic congestion
increased. Then, the phenomena of stop-and-go movements frequently occurred and the jam flow
mode was the main mode.
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Figure 9. Field traffic flow states of experiment scenario II.

Table 4 shows the results of experiment scenario II. Similar to scenario I, each dataset in Table 4 is
named by the recording time from TrafficMS, which is year-month-day-hour-minute. Each dataset
included an hour of continuous traffic flow data. The real hourly traffic volume on the lane located
by TrafficMS was obtained by manual statistics based on continuous video data (the video data from
18:00 to 19:00 and 02:00 to 03:00 was incomplete; thus, the corresponding datasets were missing).

Table 4. Results of experiment scenario II.

Data Sets Dominant Mode Counting from
Camera (Vehs)

Output of
DWVDA

(Vehs)

Output of
SA-DWVDA

(Vehs)

APE of
DWVDA

(%)

APE of
SA-DWVDA

(%)

201211240300 Free flow 88 89 85 1.14 3.41
201211240400 Free flow 98 96 97 2.04 1.02
201211240500 Free flow 109 114 112 4.59 2.75
201211240600 Synchronized flow 215 236 233 9.77 8.37
201211240700 Synchronized flow 541 599 583 10.72 7.76
201211240800 Jam flow 663 658 653 0.75 1.51
201211240900 Jam flow 772 723 755 6.35 2.20
201211241000 Jam flow 726 711 727 2.07 0.14
201211241100 Jam flow 743 677 727 8.88 2.15
201211241200 Jam flow 739 651 720 11.91 2.57
201211241300 Jam flow 784 665 773 15.18 1.40
201211241400 Jam flow 713 562 720 21.18 0.98
201211241500 Jam flow 721 632 720 12.34 0.14
201211241600 Jam flow 721 629 735 12.76 1.94
201211241700 Jam flow 642 594 689 7.48 7.32
201211241900 Jam flow 700 625 691 10.71 1.29
201211242000 Synchronized flow 616 632 619 2.60 0.49
201211242100 Synchronized flow 547 563 553 2.93 1.10
201211242200 Synchronized flow 433 463 456 6.93 5.31
201211242300 Synchronized flow 345 357 350 3.48 1.45
201211250000 Free flow 248 245 243 1.21 2.02
201211250100 Free flow 189 188 188 0.53 0.53

Total/MAPE 11,467 10,838 11,557 7.07 2.54

As shown in Table 4, the MAPE of the DWVDA for vehicle counting in a continuous 24-h period
is 7.07%. By adopting the second adaptive mechanism, the SA-DWVDA reduces the MAPE to 2.54%;
for any hour period, the accuracy of vehicle counting exceeds 90%. Generally, in free-flow conditions
(such as datasets 201211240300, 201211240400, and 201211250100), the DWVDA and the SA-DWVDA
have high accuracy, which is approximately 97%. However, in synchronized flow conditions (such
as datasets 201211242100 and 201211242200), the accuracies of the DWVDA and the SA-DWVDA
decrease; however, the results of the SA-DWVDA will improve. For jam flow, the traffic volume of
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a single lane with traffic signal control was more than 600, thus, the traffic flow speed was low and
the car-following distance between front vehicles and rear vehicles was small. These phenomena
triggered the “tailgating effect” (Figure 6) in the vehicle waveform data derived from the TrafficMS.
In this case, the DWVDA could not eliminate the “tailgating effect” and the accuracy of the DWVDA
decreased. The APEs of the DWVDA increased from 15% to 20% (refer to datasets 201211241300 and
201211241400). However, the SA-DWVDA was capable of solving this type of problem and reduce the
counting errors. As shown in Table 4, in jam flow conditions, the hourly APEs of the SA-DWVDA were
approximately 2%, which satisfied the vehicle counting demands for congested traffic. The experiment
results indicate that the proposed vehicle counting methods compensate for the shortage of invasive
sensors for vehicle counting.

Similarly, Table 5 shows the detailed counting-errors for individual vehicles of scenario II.
As shown in Table 5, Scenario II has two lanes for each traffic direction. In addition, there are some
lane-changing behaviors, especially during peak-hour periods. Except for LE, the TE and the BE are
two main factors influencing algorithm performance. Compared with the DWVDA, the SA-DWVDA
can reduce both the TEs and the BEs, especially in jam flow conditions and some synchronized flow
conditions (from 201211240700 to 201211242000).

Table 5. Detailed counting-errors for individual vehicles of scenario II.

Data Sets Counting from
Camera (Vehs)

Detailed Counting-Errors of
DWVDA (Vehs)

Detailed Counting-Errors of
SA-DWVDA Vehs

201211240300 88 TE(−2), BE(+4), LE(−1) TE(−2), BE(0), LE(−1)
201211240400 98 TE(−3), BE(+1), LE(0) TE(−1), BE(0), LE(0)
201211240500 109 TE(−1), BE(+4), LE(+2) TE(0), BE(+1), LE(+2)
201211240600 215 TE(−4), BE(+16), LE(+9) TE(−2), BE(+11), LE(+9)
201211240700 541 TE(−16), BE(+60), LE(+14) TE(−2), BE(+30), LE(+14)
201211240800 663 TE(−10), BE(+8), LE(−3) TE(−8), BE(+1), LE(−3)
201211240900 772 TE(−45), BE(+1), LE(−5) TE(−12), BE(0), LE(−5)
201211241000 726 TE(−18), BE(+3), LE(0) TE(−1), BE(+2), LE(0)
201211241100 743 TE(−66), BE(+6), LE(−6) TE(−10), BE(0), LE(−6)
201211241200 739 TE(−94), BE(+4), LE(+2) TE(−22), BE(+1), LE(+2)
201211241300 784 TE(−117), BE(+2), LE(−4) TE(−8), BE(+1), LE(−4)
201211241400 713 TE(−157), BE(+4), LE(+2) TE(−1), BE(+6), LE(+2)
201211241500 721 TE(−89), BE(+2), LE(−2) TE(0), BE(+1), LE(−2)
201211241600 721 TE(−111), BE(+11), LE(+7) TE(−1), BE(+7), LE(+7)
201211241700 642 TE(−99), BE(+35), LE(+16) TE(−2), BE(+41), LE(+16)
201211241900 700 TE(−72), BE(+1), LE(−4) TE(−6), BE(+1), LE(−4)
201211242000 616 TE(−12), BE(+26), LE(+2) TE(−1), BE(+2), LE(+2)
201211242100 547 TE(−2), BE(+16), LE(+2) TE(−2), BE(+6), LE(+2)
201211242200 433 TE(−5), BE(+32), LE(+3) TE(−1), BE(+21), LE(+3)
201211242300 345 TE(−5), BE(+17), LE(0) TE(−2), BE(+7), LE(0)
201211250000 248 TE(−4), BE(+3), LE(−2) TE(−3), BE(0), LE(−2)
201211250100 189 TE(−3), BE(+2), LE(0) TE(−1), BE(0), LE(0)

4.2. Analysis and Discussion

Based on the DWVDA that was proposed in [12], the SA-DWVDA proposed in this paper has
achieved the continuous vehicle counting problem in jam flow conditions. Regarding the results of
scenarios I and II, the detection results of scenario I are always better than the detection results of
scenario II. One reason may be the time issue. If the time periods (predominantly 5–10 min) for the
datasets in scenario I are shorter than the time periods for the datasets in scenario II, then the real
traffic volumes in each dataset by the manual statistics will be more accurate. For an hourly period
of each dataset, the statistic errors of real traffic volumes will be large. Another reason may be the
traffic environment. A single lane in each direction is available in scenario I and the disturbance of lane
changing will be weaker than scenario II. In scenario II, some vehicles change lanes near TrafficMS,
which enlarges the errors in the vehicle waveform data and video data. In scenario II, the errors under
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synchronized flow conditions for some hours will be larger than the errors in jam flow conditions.
The reasons may be related to the lane changing issue. The video demonstrates that the condition
of lane changing is ideal in jam flow conditions and few behaviors of lane changing are observed.
However, in synchronized flow conditions, the distance between a front vehicle and a rear vehicle will
be large, which will increase the probability of lane changing and cause a large detection error.

In terms of algorithmic complexity, because the SA-DWVDA requires evaluation, the update
criteria of the second adaptive traffic environment are dynamically evaluated, which may increase the
complexity of the algorithm and the calculation of TrafficMS. For powering by dry batteries, to extend
the lifetime of TrafficMS, an alternative scheme is to adopt a dual-algorithm in TrafficMS. In non-jam
flow conditions, the DWVDA will be employed. In jam flow conditions, the SA-DWVDA will be
activated. In engineering, a simple strategy is the use of the SA-DWVDA from 07:00 to 19:00 and the
use of the DWVDA in other periods.

Traffic vehicle counting is the basis of traffic information acquisition. Jam flow conditions are
key and difficult points for traffic vehicle counting. To achieve accurate vehicle counting in jam flow
conditions, a key step is to achieve entire space-time and networked traffic information acquisition.
The accurate detection of time and state information when vehicles pass TrafficMS, facilitates the
acquisition of other information (such as sectional traffic volumes, hourly traffic volumes, individual
vehicle speed, headway, time or space occupancy) in many practical applications of ITS. The outputs
of the DWVDA and the SA-DWVDA that are proposed in this paper not only show the traffic volume
of any period but also provide the approaching time and departing time when a vehicle passes the
TrafficMS, which facilitates the implementation of multi-parameter sensing of traffic flow. Figure 10
shows some vehicle waveforms for dataset 201211240800 and the outputs of the SA-DWVDA from
8:00 to 8:05 (a continuous traffic flow with eight vehicles). In Figure 10, a diamond represents the
approaching time when a vehicle passes TrafficMS and a square represents the departing time. From
left to the right, the time interval of two adjacent diamonds is the headway between two vehicles.
Similarly, the time interval between two adjacent squares is the tail time of the vehicles; the time
interval between an adjacent diamond and square is the gap time between the vehicles; and the time
interval between an adjacent square and diamond is the passing time between two vehicles.
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5. Conclusions and Application Prospects

By considering the actual demands of large-scale and networked traffic information acquisition
and the difficult points of vehicle counting in jam flow conditions, the paper proposed a vehicle
detection and counting method based on magnetic technology. A low-cost, energy-efficient, and
small-sized wireless traffic magnetic sensor was designed and developed. By investigating the
car-following behaviors and “tailgating effect” in jam flow conditions, based on the DWVDA,
an improved algorithm—SA-DWVDA—was proposed to solve the accuracy problem for vehicle
counting in jam flow conditions. The SA-DWVDA adopted a second adaptive traffic environment
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mechanism and was tested and verified in two real traffic scenarios that contained free-flow,
synchronized flow, and jam flow conditions. Compared with the DWVDA, the SA-DWVDA can
achieve a high accuracy of vehicle counting not only in free-flow and synchronized flow conditions,
but also in jam flow conditions. The experimental results also verified the advantages of magnetic
technology for vehicle detection in terms of installment and maintenance costs, weather environment,
wireless communication, and all-day operation. The feasibility of TrafficMS was also proven for the
acquisition of several types of traffic information.

For the limitation of experiment sites and project investments, the traffic volume of a single lane
was tested in experimental scenarios based on TrafficMS. The following study can be divided into
three directions.

(1) Traffic vehicle detection experiments are performed for multi-lane and multi-section scenarios.
Sectional traffic volume is the basis for traffic flow state evaluation and prediction. Therefore,
the verification of the proposed method in multi-lane and multi-section scenarios will be more
practical and meaningful.

(2) Traffic vehicle detection experiments for several scenarios. By deploying TrafficMS nodes for
freeways, ramps, or urban expressways and obtain long-time, continuous traffic flow data to
test the accuracy of TrafficMS in different traffic flow states (free-flow, synchronized flow and
jam flow), data and scenario support for large-scale and networked applications of TrafficMS
are necessary.

(3) WSN-based traffic vehicle detection experiments. The WSNs can be constructed by deploying
several TrafficMS nodes and other communication devices in a detection area. Based on the
WSNs and the algorithms proposed in this paper, an investigation of the detection and evaluation
methods for several traffic flow parameters will be useful for some practical applications of traffic
information services and traffic route guidance.
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