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Abstract

Background: Diabetic nephropathy (DN) is a complex and chronic metabolic disease that evolves into a progressive fibrosing
renal disorder. Effective transcriptomic profiling of slowly evolving disease processes such as DN can be problematic. The
changes that occur are often subtle and can escape detection by conventional oligonucleotide DNA array analyses.

Methodology/Principal Findings: We examined microdissected human renal tissue with or without DN using Affymetrix
oligonucleotide microarrays (HG-U133A) by standard Robust Multi-array Analysis (RMA). Subsequent gene ontology analysis
by Database for Annotation, Visualization and Integrated Discovery (DAVID) showed limited detection of biological
processes previously identified as central mechanisms in the development of DN (e.g. inflammation and angiogenesis). This
apparent lack of sensitivity may be associated with the gene-oriented averaging of oligonucleotide probe signals, as this
includes signals from cross-hybridizing probes and gene annotation that is based on out of date genomic data. We then
examined the same CEL file data using a different methodology to determine how well it could correlate transcriptomic
data with observed biology. ChipInspector (CI) is based on single probe analysis and de novo gene annotation that bypasses
probe set definitions. Both methods, RMA and CI, used at default settings yielded comparable numbers of differentially
regulated genes. However, when verified by RT-PCR, the single probe based analysis demonstrated reduced background
noise with enhanced sensitivity and fewer false positives.

Conclusions/Significance: Using a single probe based analysis approach with de novo gene annotation allowed an
improved representation of the biological processes linked to the development and progression of DN. The improved
analysis was exemplified by the detection of Wnt signaling pathway activation in DN, a process not previously reported to
be involved in this disease.
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Introduction

DN is a complex metabolic disease that evolves into a

progressive fibrosing kidney disease. It represents the leading

cause of end-stage renal failure in the industrialized world. A series

of pathogenic mechanisms have been shown to contribute to this

chronic progressive disease including: hyperglycemia with ad-

vanced glycosylation end products, hemodynamic and vascular

alterations with albuminuria, and the intrarenal production of

growth factors and matrix components [1]. In recent years it also

became evident that inflammatory mechanisms contribute signif-

icantly to the development and progression of DN. These include

the infiltration of renal compartments by lymphocytes and

monocytes/macrophages as well as local production of cytokines

and chemokines in the kidney (recently summarized in [2,3]).

Specific inflammatory and angiogenic molecular pathways have

been recently linked to progressive DN by the analysis of human

renal gene expression profiles [4,5].

While morphometric analysis of renal biopsy samples can

demonstrate an inflammatory infiltrate in most advanced DN

samples, it has been difficult to reliably characterize inflammatory

features at the transcriptomic level suggesting insufficient resolu-
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tion or sensitivity of oligonucleotide microarrays or of the data

analysis.

This uncertainty in reliable detection of gene expression is thought

to be associated with several issues connected to oligonulceotide

microarrays such as Affymetrix DNA chips. First, the current

annotation associated with a considerable number of probe sets may

not be in line with current knowledge of the genome [6,7]. Second,

the current approach of averaging oligonucleotide signals in a gene-

oriented way impairs the resolution of splice isoforms or alternative

transcripts. Signals from cross-hybridizing probes are averaged into

the probe set calculation leading to increased ‘‘noise’’ in the analysis.

Researchers have attempted to address these problems by re-

defining probe sets accordingly [6]. However, the pace of continued

discovery of additional alternative mRNA transcripts and the

constant refinement of gene annotation has demonstrated that such

improvements were temporary, and can propagate the basic

problems of probe set annotation. These issues are directly relevant

for accurate analysis of array experiments independent of any

particular statistical methods used.

We choose to apply two existing program packages in order to

elucidate how well each of these methods correlates the same

transcriptomic data with the observed biology. One, Robust

Multi-array Analysis (RMA) is based on Affymetrix probe sets,

while the other, ChipInspector (CI), is based on single probe

analysis, bypassing probe set definitions entirely. In theory, the CI

approach should provide a reduced level of experimental

‘‘background noise’’ with potentially enhanced sensitivity.

To test this hypothesis, samples taken from human renal tissue

with or without DN were compared and contrasted using

conventional and single probe analysis. A common data set of

CEL files (Affymetrix HG-U133A) was analyzed using standard

techniques (RMA) followed by significance analysis of microarrays

(SAM) [8]. In parallel single probe analysis was performed using

default settings (CI also using SAM) and yielded comparable

numbers of regulated genes. However, gene ontology analysis by

Database for Annotation, Visualization and Integrated Discovery

(DAVID) [9] of both data sets showed a clearly improved

representation of biological processes linked to the development

and progression of DN for the single probe-based approach. The

single probe methodology allowed the unique detection of Wnt-

pathway activation in DN.

Results

Comparison of prior microarray studies with biological
phenomena indicates the need for increased sensitivity
in array analysis

Inflammatory processes may underlie important events in the

pathogenesis of DN [10]. We previously demonstrated activation

of the inflammatory transcriptional regulators nuclear factor-

kappa B (NFkB) and interferon regulatory factor (IRF) linked to

the progression of DN [4]. This observation prompted us to look

more closely for evidence of inflammatory events in DN. Biopsy

samples from patients presenting with advanced DN were

examined by immunohistochemistry for specific inflammatory cell

types. Staining for T cells (markers CD3, CD8), B cells (CD45RA)

and monocytes/macrophages (CD68) showed a prominent

infiltration in the renal tubulo-interstitium of patients with

advanced DN (Fig. 1 and supplemental data, Table S1).

Although histological characterization clearly demonstrated in-

flammatory processes at work in samples of advanced DN, RMA

based array and gene ontology (GO) analysis could identify only

limited regulation of GO categories associated with inflammation

suggesting a more sensitive approach was needed [4].

Parallel array analysis by probe set- and single probe-
based approaches

Affymetrix DNA array data were analyzed in parallel using

single probe-based analysis (CI) and conventional probe set-based

algorithms (RMA). Expression profiles (CEL files) from microdis-

sected tubulo-interstitial regions from patients with advanced DN

(n = 6) and kidneys without functional alterations from living

donors (LD, n = 3) were used in the subsequent analysis (see Fig. 2
for schematic overview).

The microarray HG-U133A used in this study contains 195,294

single oligonucleotide probes with different sequences (control

mismatch probes not included). These probes are used to generate

22,283 probe sets annotated by the manufacturer to 12,742 genes

(Affymetrix, version 22).

The probe set-based analysis using RMA normalization

identified 10,698 probe sets (48%) expressed above background.

Figure 1. Tubulo-interstitial CD68+ cell infiltrate in DN. (a) In DN
a prominent infiltration of CD68+ cells (monocytes/macrophages,
stained in red) is observed in the tubulo-interstitium. A glomerulus
showing nodular glomerulosclerosis (Kimmelstiel-Wilson), a classical
histological sign for DN, has no prominent infiltrate. In control tissue (b)
only few cells are CD68+. Together with the staining for CD3 and CD8
(shown in Table S1) this demonstrates the significant inflammatory
reaction in DN.
doi:10.1371/journal.pone.0002937.g001
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Significance analysis using SAM detected differential regulation of

2,350 unique genes, corresponding to 3,078 probe sets (q-

value,5%, multiple comparison analysis of DN and controls as

determined in previous studies, see methods).

After elimination of probes that could cross-hybridize to other

transcripts, CI using the identical CEL files identified 39,933

significantly regulated individual probes using the default settings

(see methods for details). With default settings of a minimum of 3

probes matching to a de novo annotated transcript, 6,533 transcripts

were found to be significantly regulated, corresponding to 2,626

genes.

The initial analysis summarized in Fig. 2 identified 1,466 genes

found in common by both approaches. CI uniquely identified

1,160 genes and 884 genes were unique to the RMA analysis.

While this shows a solid common core of regulated genes, gene lists

per se are not suitable for evaluation of the biologically meaningful

differences between the resulting lists. As our goal was to identify

biological processes involved in DN, we mapped the genes from

Figure 2. Schematic overview. The strategy of analysis and verification is depicted. Links to the data for each step are provided on the right. All
genes where expression changes were predicted and verified by RT-PCR bear a green check mark; if not confirmed by RT-PCR, a red cross-mark is
shown. In Step 5 only genes are shown that were both found significantly upregulated (white = both approaches, black CI only) and known Wnt
pathway target genes.
doi:10.1371/journal.pone.0002937.g002
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each approach onto GO. A relative ranking of the association of

the various GO-categories with respect to the gene lists was carried

out employing DAVID. The DAVID tool was developed for GO-

ranking, and is independent of methodological differences between

the microarray analyses tools used in this study. DAVID assigns a

p-value to each biological process associated with the gene lists. As

both methods (RMA, CI) yielded comparable numbers of genes

under the conditions used, results from the DAVID analysis could

be used to directly compare the methods.

Single probe-based analysis identifies more specific
functional categories than the probe set-based analysis

DAVID analysis of all regulated genes and transcripts found by

the two analysis techniques yielded 174 common GO-categories

(supplemental data, Table S2; cut-off p-value 0.05) again

demonstrating the significant common core of both data sets.

The CI-based associations showed overall lower p-values in these

common 174 GO-categories (lower p-value in 137 of 174

categories). For the sake of comparison only significant (p,0.05)

categories were used in subsequent analyses. DAVID found an

additional 104 significant GO-categories uniquely associated with

the CI-derived gene list, while the RMA-derived list matched

uniquely to 63 additional significant GO-categories (supplemen-
tal data, Table S3).

As the study was initiated by a search for inflammatory gene

signatures involved in DN, we compared functional categories

covering inflammatory mechanisms. Both methods identified seven

common inflammation-associated GO-categories (GO:0019883,

GO:0019885, GO:0006956, GO:0006958, GO:0002455,

GO:0006959, GO:0045087; Table S2). Importantly, CI analysis

listed 13 additional GO-categories not found by the RMA analysis

(GO:0019730, 0006952, 0045321, 0006955, 0006954, 0046649,

0050778, 0051251, 0050870, 0051249, 0050863, 0009605, and

0042110; see Table S3). No inflammation-associated GO-classifi-

cation was found uniquely by the probe set-based approach.

In a recent report we described the regulation of angiogenesis-

associated genes in DN, including the down-regulation of the

vascular endothelial growth factor A (VEGF-A) [5]. Comparing

angiogenesis-associated GO-categories showed that the gene list

generated by CI included significant counts for ‘‘angiogenesis’’

(GO:0001525), ‘‘blood vessel development’’ (GO:0001568), ‘‘blood vessel

morphogenesis’’ (GO:0048514), and ‘‘vasculature development’’

(GO:0001944). In contrast, no significant angiogenesis-associated

categories were identified by RMA analysis (Table S3).

Functional categories uniquely found by each approach
and confirmatory studies

Each of the approaches uniquely identified GO-categories,

although individual genes belonging to these categories were

identified by each method. To analyze the results in more detail,

we then selected genes from potentially relevant functional

categories not been previously reported in DN. In this regard,

neurogenesis identified by RMA-based analysis, and the Wnt

signaling pathway found by the CI approach were chosen for

further analysis.

‘‘Neurogenesis’’ was represented by six GO-categories in the

RMA-based gene lists (GO:0048813, GO:0048812, GO:0022008,

GO:0048666, GO:0030182, and GO:0048667) but absent as GO

category in the single probe analysis. The unique lists contained 1,

6, 9, 7, 8, and 6 genes for RMA in above GO categories and 0, 5,

5, 5, 5, and 5 genes for CI, respectively (see Table S3 and

supplemental data, Table S4). RT-PCR analysis of the

original cDNA used for hybridization was used to verify expression

of the two genes showing the highest fold-change in the lists of

neurogenesis-associated genes uniquely found by probe set- and

single probe-based approaches. SOCS2 and SPON2 were selected

from the RMA-list of genes, for the CI-generated list the genes

APOE and NRCAM were tested (Table S3 and supplemental
data, Table S5a). Expression was confirmed for transcripts of

APOE (predicted by CI), NRCAM (CI), and SPON2 (RMA),

while SOCS2 (RMA) could not be verified by RT-PCR (Fig. 3
and Table S5a).

The Wnt signaling pathway (GO:0016055) was identified only in

DAVID analysis of CI-derived gene list, but significantly regulated

genes from the Wnt pathway were identified by both approaches.

CI matched 14 genes uniquely while RMA identified 5 genes

uniquely. Again the genes showing the highest fold change in each

approach-specific gene list were further analyzed by RT-PCR

(TCF7L2 and LEF1 for RMA and TCF7 and DACT1 for CI)

(Table S3 and Table S5a). The mRNA expression was

confirmed for the TCF7 (CI) and LEF1 (RMA) transcripts. The

predictions of DACT1 (CI) and TCF7L2 (RMA) could not be

verified by RT-PCR (Fig. 3).

The number of probes with ambiguous matches is listed in

supplemental Table S5b for each of the selected probe set.

Ambiguous matches were found in TCF7 and TCF7L2, the later,

a gene recently linked to the development of diabetes (but not DN)

[11,12]. Importantly, the probe set 216511_s_at for TCF7L2 was

found to map downstream of all three transcripts annotated for

TCF7L2. Two additional probe sets for TCF7L2 mapped to exons

and were not listed as regulated in DN by either approach (see

Table S5a and b).

Wnt signaling in diabetic nephropathy
The potential relevance of Wnt signaling in advanced DN was

investigated in more detail. Mapping the respective genes found by

each approach onto the canonical Wnt pathway was performed

(KEGG [13] and Biocarta databases (BioCarta Pathways; http://

www.biocarta.com/genes/index.asp)). As shown in Fig. 4, and in

line with previous findings, the CI-analysis identified a much larger

fraction of the pathway as regulated than did the RMA analysis (23

versus 15 out of 27 genes, see Table S3 and Table S4). The

potential downstream effects of this pathway on known Wnt target

genes were then examined. Of the known Wnt target genes regulated

on the microarray 15 of 15 were identified by CI while RMA

identified 10 (Fig. 4 and Table S4). Matrix metalloproteinase 7

(MMP7) [14] showed the highest fold-change in Wnt-associated

genes and was confirmed by RT-PCR on the cDNA used for the

array analysis (DN 40.09623.88, LD: 1.061.73 (p,0.05)) as well as

on an independent cohort of patients with DN (DN: 6.4566.62; LD:

1.0060.79 (p,0.05)) (Fig. 5a). The induction of MMP7 protein was

verified by immunohistochemistry: MMP7 protein expression was

strongly increased in the tubulo-interstitial compartment of patients

with DN (Fig. 2 and Fig. 5b,c)

Discussion

DN develops gradually in response to systemic metabolic

changes and the cellular responses to these effects. The molecular

mechanisms that underlie progression of the disease to end stage

renal failure are not well defined thus limiting access to potential

therapeutic targets.

In contrast to the immune reaction in response to acute infection

or inflammation, the immune processes in chronic diseases such as

DN can be ‘‘smoldering’’ processes that are hard to detect. The

pathophysiologic effects elicited by such an immune cell infiltrate

lead to the accumulation of subtle damage over a long period of time

Diabetic Nephropathy Analysis
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[10]. Understanding the small changes in the biological networks

that regulate these processes is central to characterizing the

underlying pathogenetic events. Elucidation of the regulatory

networks driving the tissue damage could thus improve the diagnosis

in what can now be seen a heterogeneous disease and may help to

identify potential targets for therapeutic intervention.

Microarrays are widely applied for the characterization of

transcriptomic changes in diseased tissues. However, in previous

array analyses the approach has failed to detect some of the subtle

changes that occur in patient samples associated with the

development of chronic disease [4,5]. Lowering thresholds for

the detection of significantly regulated genes using standard

analysis approaches results in an increase in ‘‘background noise’’

in the experiment and increasingly unreliable results [15].

Previous reports have outlined the potential advantages of using

a single probe-based approach for gene annotation and expression

analysis [16]. Therefore, we directly compared a single probe-

based method (CI) with a common probe set-based method

(RMA). The overall picture that emerged from the CI analysis was

more inline with the pathologic observations. After confirmatory

RT-PCR studies the analysis of the probe signals suggested that

differences in single probe versus probe set calculation were a

major reason for the differences observed between the two analysis

methods (RMA, CI). Fig. 6 demonstrates the effect that basing

calculations on single probes versus probe sets can have in the

analysis. The difference between the signals of the individual

probes mapped to NRCAM shows why this gene escaped

detection based on an average value of all these probes by

RMA. DACT1 predicted to be regulated by CI narrowly missed

statistical significance at the confirmatory studies (p = 0.07)

probably in part due to different statistical methods applied to

array and RT-PCR results. While the results appeared to favor the

single-probe approach a few genes were missed by CI due to

insufficient coverage by unique mapped probes (LEF1) or because

the probe annotations were not yet included in the database at the

time of analysis (SPON2, see Table S5b).

The comparative analysis detailed here was based on probe

annotation and aspects of the relevant underlying biology. The

different statistics employed inside the methods will additionally

influence the result. However, as the goal of this study was to

improve the links between transcriptomic analyses and biological/

clinical observations, it is irrelevant to what extent probe annotation

and/or algorithmic differences are contributing to the performance

of the two program packages. Overall association with biological

processes was found to be improved for the single probe-based

method as judged by the number of GO-categories and genes

associated with relevant processes (inflammation and angiogenesis).

Moreover, signaling pathways were easier to identify and superpo-

sition of the significantly regulated genes yielded overall a more

complete picture provided by the single probe-based analysis.

In the course of the study the Wnt pathway was identified to be

associated with DN. This important biological pathway has not

been studied in detail in DN. The Wnt signaling pathway is known

to play a role in renal development and cystogenesis [17]. The

most highly regulated Wnt target gene identified in the analysis

was MMP7. Diverse roles for matrix metalloproteinases have been

postulated in various renal pathophysiologies [18]. A reduced

expression of MMP7 has been recently described in rodent models

of DN [19] but no human data on MMP7 expression in DN has

been reported. Contrary to what has been reported in the rodent

models, MMP7 was shown to be induced mainly in tubular

epithelial cells in human DN. Discrepancies between the findings

in rodent models for DN and human disease have been previously

reported (e.g. [5,20]). While the up-regulation of a matrix

Figure 3. Validation of the array expression pattern by real-
time RT-PCR. The expression of selected transcripts predicted by CI or
RMA, respectively, was tested by real-time RT-PCR. The same cDNA
hybridized on the array was used. Expression is shown for controls
(living donors (LD), n = 3, triangles) and DN (n = 6, full circles). In the
upper left corner gene symbols and predictions by each method are
indicated (red arrow: induced, green arrow: reduced, black arrow: not
regulated, compared to controls). Blue check indicates confirmation of
the respective prediction. The results in detail: Genes associated with
neurogenesis: APOE (predicted by CI) LD 1.0060.08, DN 0.4560.33
(p,0.05); SOCS2 (predicted by RMA) LD 1.0060.58, DN 1.4260.50
(n.s.); NRCAM (CI) LD 1.0060.57, DN 4.6163.56 (p,0.05); SPON2
(RMA): LD 1.0060.92, DN 25.47613.98 (p,0.05). Genes associated with
Wnt signaling: TCF7 (predicted by CI): LD 1.0060.41, DN 5.9862.49
(p,0.05); TCFL7 (predicted by RMA): LD 1.0060.36, DN 1.7260.55
(n.s.); DACT1 (CI): 1.0060.50, DN 3.4761.894 (n.s.); LEF1 (RMA): LD
1.0060.27, DN 5.3762.49 (p,0.05).
doi:10.1371/journal.pone.0002937.g003
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degradating protease in a setting of chronic fibrosis seems

counterintuitive, the MMP family plays diverse roles in regulating

tissue remodeling [21].

The RMA based approach uniquely identified neurogenesis

processes that may also be relevant in DN. However, in contrast to

the Wnt signaling pathway, neurogenesis was not represented by a

Figure 4. Mapping of respective genes found by CI or RMA onto the canonical Wnt-pathway. A scheme of the Wnt-pathway is depicted.
Black arrows indicate activation and red lines inhibition. Genes found only by CI are annotated with CI with a blue background (n = 13, 2 genes
[NRCAM, TCF7] confirmed by real-time RT-PCR, 1 gene failed [DACT1]), while genes only found by the RMA approach have a grey background with a
black frame and are marked with RMA (n = 4, only 1 gene [LEF1] confirmed by real-time RT-PCR, 1 gene [TCF7L2] failed). Genes found by both
approaches are annotated with CI and RMA and on a white background (n = 12, 1 gene confirmed by RT-PCR [MMP7]). A red triangle indicates up-
regulation of the respective gene. Genes which were not found by any array analysis but are important for the comprehension of the basic pathway
have a grey font. Comparison of known Wnt-target genes resulted in 15 genes specifically regulated in the microarray analysis (below the horizontal
line). The respective genes found only by CI (n = 5) have a blue background (1 gene [NRCAM] confirmed by real-time RT-PCR), while the genes (n = 10)
found by both approaches have a white background. VEGF was the only gene found to be down-regulated. There were no Wnt target genes only
found by RMA. Gene symbols are according to HUGO, synonyms are shown in brackets.
doi:10.1371/journal.pone.0002937.g004
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single GO-category but was rather represented by six different

processes. All but one of them also showed a robust, although not

significant representation in the list of unique genes from CI

(Table S3 and Table S4; respective SPON2 see Table S5b).

The potential finding of neurogenesis-associated processes in DN

will need further verification and additional experiments in future.

A significant difference (p,0.05) in confirmatory RT-PCR

experiments using the same cDNA as for the microarray

hybridization served as a stringent paramenter for microarray

analysis evaluation. However, as group sizes were limited, gene

regulation in DN of some genes defined as ‘‘false positives’’ can not

be excluded.

In summary, the single probe based analysis of oligonucleotide

based arrays demonstrated clear advantages over the common

probe set-based approach used in this study, most notably resulting

in improved sensitivity and specificity of the biological findings

(DAVID analysis). This was highlighted by the unique detection of

a number of categories directly linked to clinical observations

(inflammation and angiogenesis). In addition, the highlighted

involvement of the Wnt pathway was in line with a larger body of

data from the same microarray (Wnt target genes, Fig. 2 and 4).

Materials and Methods

Kidney biopsies, micordissection, RNA isolation and
target preparation

Human renal biopsies from controls and patients with DN were

collected from the European Renal cDNA Bank - Kröner-

Fresenius Biopsy Bank (ERCB-KFB), a multi-center study on renal

gene expression in human nephropathies. Diagnostic renal

biopsies were obtained from patients after informed consent and

with approval of the local ethics committees. Microdissected

samples taken from the tubulo-interstitial compartment were

processed as described [22]. For oligonucleotide array based gene

expression profiling of DN a total of 9 kidney biopsies from

individual patients were included: Biopsies from patients with

advanced DN (n = 6) were analyzed and compared with pre-

transplantation kidney biopsies from living donors as control renal

tissue (LD, n = 3). For confirmation of MMP7 induction, predicted

by both array analysis approaches, an additional independent

cohort from the ERCB-KFB was analyzed (DN, n = 16; controls,

n = 9). The biopsies were stratified by reference pathologists

according to their histological diagnosis.

Following renal biopsy, the tissue was transferred to RNase

inhibitor and microdissected into glomerular and tubular frag-

ments. Total RNA was isolated from microdissected tubulointer-

stitial tissue (for details see [22]).

300–800 ng of total RNA was reverse-transcribed (RT) and

linearly amplified according to a protocol previously reported [4].

The fragmentation, hybridization, staining and imaging were

performed according the Affymetrix Expression Analysis Techni-

cal Manual.

For microarray analysis Robust Multichip Analysis (RMA) was

performed. Subsequently we analyzed the expression arrays with

Significance Analysis of Microarrays (SAM) [8]. For more details

and for gene expression data of respective probe sets see http://
diabetes.diabetesjournals.org/cgi/content/full/55/11/
2993.

Microarray Data Analysis
To compare the respective analysis approaches both methods

used the same original CEL files resulting from the Affymetrix

Chip reader. Both program packages were used with either default

or previously tested parameters.

Figure 5. MMP7 mRNA expression is increased in DN. (a) MMP7
mRNA was quantified by RT-PCR on an independent cohort and
showed an induction in DN (DN (n = 16): 6.4566.62; LD (n = 9):
1.0060.79 (p,0.05)). MMP7 protein (marked in red) is also induced in
DN as shown by immunohistochemistry. (b) Control kidneys show
limited expression of MMP7 protein in tubular epithelial cells. (c) In DN,
MMP7 is markedly upregulated in tubular epithelial cells and in the
interstitial compartment.
doi:10.1371/journal.pone.0002937.g005
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I. Probeset-based analysis: Robust Multichip Average

(RMA). RMA (RMAexpress version 0.3) consists of three steps:

background adjustment, quantile normalization, and summariza-

tion [23]. RMA utilizes the Affymetrix provided probe set

annotation to identify genes directly from the CEL files. The

following settings were taken from previous studies [4,5]: a

background filter cut-off was defined to lower the count of false

positive calls using the highest signal value obtained from non-

human Affymetrix control oligonucleotides multiplied by a factor

of 1.2, corresponding in the current data set to a log based 2 value

of 5.8. Following normalized RMA, SAM analysis software (TIGR

MeV Version 4.01, http://www-stat.stanford.edu/̃tibs/SAM/)

was applied using a q-value,5% to identify genes that were

differently regulated between the analyzed groups.

II. Single probe-based analysis: ChipInspector

(CI). ChipInspector (version 1.3; Genomatix Software GmbH,

Munich) is a novel single probe-based analysis tool for microarray

data that consists of four steps: single probe-transcript annotation,

total intensity normalization, SAM analysis (adapted to single

probe handling) and transcript identification based on significantly

changed probes. All probes on the array are individually matched

against the appropriate genome and all known transcripts thereof

available at the time of analysis. Only probes that match uniquely

to the genome and to at least one transcript (or overlapping

transcripts) are retained for further analysis. The input data for the

SAM analysis in this case were single probe values and the

resulting probes showing significantly changed signals are then

used to identify the corresponding transcripts (which may be more

than one per gene). Fold changes are not used and the expression

ratios shown in the result table are calculated from the average

expression levels of all significant probes of each individual

transcript. Gene identifiers are then attached to each transcript.

SAM creates artificial background data by randomly permuting

the array results. Each probe has a score on the basis of its fold

change relative to the standard deviation of repeated measure-

ments for this probe. Probes with scores higher than a certain

threshold are deemed significant. This threshold is the Delta value.

The permutations of the data set are then used to estimate the

percentage of probes identified by chance at the identical Delta.

Thus, a relation of significant probes to falsely discovered probes

can be given for each Delta threshold. This relation is the False

Discovery Rate (FDR), a stringency indicator. Analysis was carried

out using all default settings as recommended by the software

provider, except for the expected FDR, which was set to maximal

detection of regulated transcripts with lowest amount of falsely

called features (FDR 0%).

Ranking of RMA and CI results by GeneOntologyChart
The GOChart in DAVID (version 2007; [9]) was used to establish

the distribution of differentially regulated genes attributed to

functional biologic categories for both resulting gene lists. The

controlled hierarchical vocabulary of the Gene Ontology Consor-

tium provides a structured language that can be applied to the

functions of genes and proteins in all organisms [24]. The biological

theme determination of gene lists in DAVID are based on the

Expression Analysis Systematic Explorer (EASE), a variant of one-

tailed Fisher exact probability [25]. At the time of analysis multiple

comparison correction was not implemented in DAVID because it

has been considered to be too conservative and might hurt biology

(communication of DAVID, 24 March 2007). For DAVID analyses

a p-value of 0.05 was used as standard cut-off level.

RT-PCR analysis used for validation
Reverse transcription and real-time RT-PCR was performed as

reported earlier [22]. Pre-developed TaqMan reagents were used for

human APOE, DACT1, LEF1, NRCAM, SOCS2, SPON2, and

18S rRNA (Applied Biosystems). For TCF7 and TCF7L2 the

following oligonucleotide primers (300 nmol/L) and probe

(100 nmol/L) were used: human TCF7, sense primer 59-TCAGG-

GAAGCAGGAGCTG-39, antisense primer 59-TTCTTGATG-

GTTGGCTTCTTG-39; fluorescence labeled probe (FAM) 59-

ACCGCAACCTGAAGACACAAGCAGA-39, human TCF7L2

Figure 6. Graphical overview of the gene locus of NRCAM. A schematic view of the NRCAM gene structure (NM_005010) is shown consisting
of 28 exons (black rectangles). Probes of the respective probe sets are indicated as blue or red bars. Red bars indicate probes with significantly higher
signal intensity in DN samples compared to controls; blue bars represent probes indicating no induction or repression. The height of each bar
indicates the fold-change for each single probe.
doi:10.1371/journal.pone.0002937.g006
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sense primer 59-GGATTCAGACACCCCTACCC-39, antisense

primer 59-CGTGTGTAGCGTATGATGTGG-39; fluorescence

labeled probe (FAM) 59-CAATGCTTCCATGTCCAGGTTC-

CCT-39. The expression of candidate genes was normalized to the

reference gene 18SrRNA showing robust expression in human

tubulo-interstitial tissue samples [26]. The mRNA expression was

analyzed by standard curve quantification.

Immunohistochemistry
Immunohistochemistry for T cells, B cells and monocyte/

macrophages was performed essentially as described [27]. The

MMP7 monoclonal antibody (Thermo Scientific, Fremont, CA,

#MS-813-R7) was used according to the manufactures directions

at a dilution of 1:20.

Statistics used for RT-PCR result evaluation
Data are given as mean6SD. Statistical analyses were

performed using SPSS 16.01 (SPSS Inc., Chicago, IL). Signif-

icance in immunohistochemical staining was evaluated using

Kruskal-Wallis and Mann-Whitney U tests. The non-parametric

two-sample test of Kolmogorov-Smirnov as well as the Moses-test

were applied to the real-time RT-PCR analyses of eight selected

candidate genes. A p-value,0.05 indicates a statistically significant

difference.

Supporting Information

Table S1 Quantification of immunohistochemical staining for

cell infiltrate. Renal biopsy tissue was stained for the T-cell

markers CD3, CD8, B-cells (CD45RA) and monocytes/macro-

phages (CD68). In DN (n = 7) CD3+ cells, CD8+ cells, overall T-

cells and B-cells and CD68+ cells were more frequently observed

than in controls (n = 4) (*: p,0.05).

Found at: doi:10.1371/journal.pone.0002937.s001 (0.04 MB

DOC)

Table S2 Prominent biological aspects found by DAVID

analysis in both ChipInspector and RMA output lists. Shown

are the 174 biological aspects found by both approaches. Gene

ontology categories found only by one of both approaches are

listed in Table S3.

Found at: doi:10.1371/journal.pone.0002937.s002 (0.44 MB

DOC)

Table S3 DAVID analysis of all regulated genes and transcripts

found by the two independent array analysis techniques. Shown

are the prominent biological aspects found by CI only (‘‘Class 1’’)

or RMA only (‘‘Class 2’’). In total 174 common GO-categories

were found (see, Table S2), additional 104 GO-categories were

uniquely associated with the CI-derived gene list, while 63

additional GO-categories were found by RMA only.

Found at: doi:10.1371/journal.pone.0002937.s003 (0.35 MB

DOC)

Table S4 Gene list of Wnt receptor signaling pathway,

neurogenesis, and Wnt target genes. Genes of the selected GO

categories are shown with their respective regulation indicated by

either analysis method. Bold are the gene symbols of genes with

the highest fold changes, which were selected for confirmatory

studies. In addition, Wnt target genes are listed. Only fold changes

indicated as significant by the respective method are shown.

Found at: doi:10.1371/journal.pone.0002937.s004 (0.34 MB

DOC)

Table S5 Probe set information and analysis results for the genes

selected for confirmatory studies. A) Results of the analyses

performed with CI and RMA are shown. Fold change and

significance are given for all transcripts (for CI) or probe sets (for

RMA) indicated by one of both methods to be significantly

regulated. * indicates significance, n.s. = not significant, BC = ex-

pression below cut-off (see method section). SPON2 was missed by

the initial version of CI (see above). B) Shown are the number of

probes in a probe set, number of probes with a perfect and with a

unique match, and the number of probes mapping to an exon.

The information has been extracted from Eldorado (Genomatix,

Germany). Accession numbers for known transcripts and probe set

identification numbers are listed. SPON2 was not annotated in

Eldorado at the time of analysis. The latest version gives results

indicated as ‘‘corrected’’.

Found at: doi:10.1371/journal.pone.0002937.s005 (0.15 MB

DOC)
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J. D. Sraer, P. Ronco, Paris; M. P. Rastaldi, G. D’Amico, Milano; P.

Doran, H. Brady, Dublin; D. Mönks, C. Wanner, Würzburg; A. J. Rees,

Aberdeen; F. Strutz, G. A. Müller, Göttingen; P. Mertens, J. Floege,
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