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Abstract: The dynamic interplay between pro-death and pro-survival Bcl-2 family proteins is
responsible for a cell’s fate. Due to the recognized relevance of this family in cancer progression
and response to therapy, different efforts have made in recent years in order to develop small molecules
able to target anti-apoptotic proteins such as Bcl-2, Bcl-xL and Mcl-1. The limitations of the first
Bcl-2 family targeted drugs, regarding on-target and off-target toxicities, have been overcome with
the development of venetoclax (ABT-199), the first BH3 mimetic inhibitor approved by the FDA.
The purpose of this review is to discuss the state-of-the-art in the development of drugs targeting
Bcl-2 anti-apoptotic proteins and to highlight the potential of their application as single agents or in
combination for improving anti-cancer therapy, focusing in particular on solid tumors.
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1. Introduction

Apoptosis is a deeply studied form of programmed cell death that triggers cells to suicide
through proteolysis of some key cellular components, which renders cells prone to be recognized by
phagocytes [1] The two mechanisms of apoptotic induction are the “death receptor” or “extrinsic”
pathway activated by exogenous death-inducing ligands, and the “mitochondrial” or “intrinsic”
pathway induced by stress conditions [1]. The intrinsic apoptotic pathway is mediated and regulated
by the balance of pro- and anti-apoptotic members of the B cell lymphoma-2 (Bcl-2) family of proteins,
and results in alteration of mitochondrial outer membrane permeabilization (MOMP), release of
cytochrome c from the mitochondria into cytosol, assembly of the APAF-1 containing apoptosome
and activation of the caspase cascade through caspase-9 [2,3]. Bcl-2 family members, characterized by
the presence of short conserved sequence regions (Bcl-2 homology [BH] motifs), are classified into
three subgroups: the anti-apoptotic/pro-survival proteins, including Bcl-2, Bcl-xL, Mcl-1, Bcl-w, Bcl-B,
and A1/Bfl-1; the pro-apoptotic BH3-only proteins, such as Bim, Bid, Bad, Noxa, Puma, and Bmf;
and the multidomain pro-apoptotic proteins, such as Bax and Bak [4]. The pro-survival protein
subgroup is characterized by the existence of the N-terminal BH4 domain [5]. The BH4 domain of
Bcl-2 and Bcl-xL is able to bind other proteins that do not belong to Bcl-2 protein family, allowing them
to play a role beyond their classical role in inhibiting apoptosis, in other important cellular functions
such as proliferation, autophagy, differentiation, DNA repair, tumor progression, and angiogenesis [6].
The anti-apoptotic Bcl-2 family proteins exert their pro-survival function by binding and inhibiting
the pro-apoptotic proteins, the sensors of cellular stress (the BH3-only proteins) and the effectors
of apoptosis (Bax and Bak) [7]. From a biochemical point of view the interaction between pro-
and anti-apoptotic proteins takes place via the binding of the hydrophobic face of the amphipathic
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BH3 α-helix from the pro-apoptotic protein into a hydrophobic pocket in the anti-apoptotic protein
formed by the BH1, BH2 and BH3 domains [8].

Anti-apoptotic proteins Bcl-2 (Figure 1), Bcl-xL (Figure 2) and Mcl-1 (Figure 3) are expressed in
a wide range of tumor histotypes, with different extent regarding mRNA and protein levels, by The
Human Protein Atlas database (https://www.proteinatlas.org/).

Figure 1. Expression of Bcl-2 in cancer. Bar charts showing the expression in different tumor histotypes
of Bcl-2 mRNA, reported as fragments per kilobase of exon model per million reads mapped (FPKM),
and protein, detected by immunohistochemistry and reported as percentages of positive patient samples.
Data are from The Human Protein Atlas database (https://www.proteinatlas.org/).

https://www.proteinatlas.org/
https://www.proteinatlas.org/
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Figure 2. Expression of Bcl-xL in cancer. Bar charts showing the expression in different tumor histotypes
of Bcl-xL mRNA, reported as fragments per kilobase of exon model per million reads mapped (FPKM),
and protein, detected by immunohistochemistry and reported as percentages of positive patient samples.
Data are from The Human Protein Atlas database (https://www.proteinatlas.org/).

A deregulated expression of several Bcl-2 family members has been observed in cancers from
different origin [9]. Moreover, several studies, including ours, have found that high levels of
anti-apoptotic proteins contribute not only to modulation of apoptosis and response to chemotherapy,
but also to tumor initiation and progression [6,10].

Since the discovery of Bcl-2, the founding member of the family, many papers have been published
regarding the role that Bcl-2 anti-apoptotic members play in cancer and in drug resistance, as well as
on their use for cancer therapy. In this regard, a comprehensive representation of the published papers
on PubMed (https://pubmed.ncbi.nlm.nih.gov/) since Bcl-2 discovery is reported in Figure 4.

https://www.proteinatlas.org/
https://pubmed.ncbi.nlm.nih.gov/
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Figure 3. Expression of Mcl-1 in cancer. Bar charts showing the expression in different tumor histotypes
of Mcl-1 mRNA, reported as fragments per kilobase of exon model per million reads mapped (FPKM),
and protein, detected by immunohistochemistry and reported as percentages of positive patient samples.
Data are from The Human Protein Atlas database (https://www.proteinatlas.org/).

Due to their multiple functions in cancer, Bcl-2 family proteins have become interesting targets for
anti-cancer drugs.

The purpose of this review is to discuss the role of the main Bcl-2 anti-apoptotic proteins in solid
cancer, to outline how Bcl-2 family regulation is positioned within the context of cancer treatment
and to discuss the potential of Bcl-2 family inhibitors for cancer therapy with the aim of improving
patient survival. Given the high volume of information about the relevance of Bcl-2 inhibitors in
hematologic malignancies, including acute myeloid leukemia (AML), mature B-Cell malignancies
and lymphoid malignancies [11–13], this article will focus mainly on Bcl-2 inhibitor application in
solid tumors.

https://www.proteinatlas.org/
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Figure 4. Bubble chart showing the number of published papers in the last 30 years regarding Bcl-2,
Bcl-xL, Mcl-1, Bcl-w, Bcl-B and A1/Bfl-1 anti-apoptotic proteins associated with apoptosis, cancer,
therapy or resistance.

2. Relevance of Bcl-2 Anti-Apoptotic Family Proteins in Cancer

2.1. Bcl-2

The tumorigenic effect of Bcl-2 was first described in subsets of non-Hodgkin’s lymphoma
(NHL), such as AML, where it has been found to be associated with chemoresistance and unfavorable
outcomes [14–16]. Evidence that Bcl-2 may have also oncogenic potential in carcinoma was first
provided in prostate cancer, where high expression of the protein was found in androgen-independent
tumors [17]. In subsequent studies, increased Bcl-2 expression has been reported in many different solid
tumor histotypes, including ovarian [18], breast [19] and lung [20] carcinoma, and melanoma [21,22].
Increased levels of Bcl-2 expression have been also associated with resistance to different drugs
including 5-fluorouracil in gastric cancer [23] cisplatin in ovarian cancer [24] and doxorubicin in
osteosarcoma and chondrosarcoma [25,26]. In the last years, our group demonstrated that, in addition
to its important role in the regulation of apoptosis and chemoresistance [27], Bcl-2 modulates in vitro
and in vivo tumor migration, invasion, autophagy and angiogenesis [28–33], promotes a cancer
stem-like cell phenotype [34], regulates the expression of microRNA and the activity of several
transcription factors and their specific target genes [35–37], controls an interleukin-1β-driven axis
of macrophage diversion that establishes tumor microenvironmental conditions favoring melanoma
development [38] and is involved in mitochondrial mRNA homeostasis [39]. We and other authors
demonstrated several non-canonical functions of Bcl-2, as well as other anti-apoptotic proteins, in an
apoptosis-independent manner [40]. Bcl-2 expression in cancer patient samples is also associated
with cancer progression, including liver metastatization in colorectal cancer [41,42], lymphovascular
invasion of breast cancer [43,44] and gastric cancer staging [45]. Moreover, Bcl-2 upregulation is
particularly evident during the progression from pre-invasive lesions to invasive carcinoma in lung
cancer samples [46].
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2.2. Bcl-xL (BCL2-like 1 Gene, BCL2L1)

Two isoforms of Bcl-X cDNA, Bcl-xL and Bcl-xS, with opposite functions in terms of apoptosis
regulation, have been identified. Bcl-xL is an anti-apoptotic protein sharing similar structural domains
with Bcl-2, while Bcl-xS, lacking the region with the highest homology to Bcl-2, promotes apoptosis [47].
Different mechanisms are responsible for the alternative splicing, including cellular stress, DNA damage,
protein synthesis stalling and protein kinase C inhibition [48]. We and others previously reported
the link of Bcl-xL protein expression not only with drug resistance in different tumor histotypes [27],
but also with tumor-associated properties, including angiogenesis and cancer cell stemness [34,49–52].
Recently, it has been demonstrated that Bcl-xL, interacting with Voltage-dependent anion-selective
channel 1 through its BH4 domain, favors cell migration by promoting reactive oxygen species in
breast cancer models [53]. In tumor patient samples, Bcl-xL upregulation has been reported to correlate
with invasion and metastasis in retinoblastoma [54], melanoma [55], breast [56], colon [57], tongue [58]
and hepatocellular [59] carcinoma.

2.3. Mcl-1 (Myeloid Leukemia Sequence 1)

Mcl-1 was initially discovered in MC-1 hematopoietic cell line were it was found upregulated
during differentiation from monocyte to macrophage [60]. High levels of Mcl-1 have been also reported
in hematological malignancies and subsequently in a wide range of solid tumors, including breast,
ovarian, prostate, pancreatic and non-small cell lung (NSCLC) carcinoma [61–66]. Mcl-1 amplification
and overexpression are also frequently associated with poor prognosis and resistance to anticancer
drugs [67–72].

3. Anti-Apoptotic Bcl-2 Family Protein Inhibitors

3.1. Antisense Oligonucleotides

The first strategy followed in the attempt to inhibit the function of anti-apoptotic Bcl-2 family
proteins was to design antisense oligonucleotides directed against the mRNA of the protein of
interest. The dual Bcl-2/Bcl-xL and the specific Bcl-xL antisense oligonucleotides were tested by us
and other groups in in vitro and in vivo preclinical models [49,73–75]. Oblimersen (genasense, G3139),
the specific antisense oligonucleotide drug directed against Bcl-2, was the first compound to reach
clinical study. After the failure of oblimersen as a single agent, its efficacy in combination with other
drugs was evaluated in several Phase I–III clinical trials in patients with advanced solid malignancies,
but they were discontinued [76–79]. A list of completed clinical trials with oblimersen is reported in
Supplementary Table S1.

3.2. BH3 Mimetics

In the past decades, different efforts have been made in order to understand the network of
protein-protein interactions involved in the regulation of apoptosis mediated by Bcl-2 family members.
The understanding of the interaction among Bcl-2 family members has been the foundation of
drug discovery approaches, based on innovative medicinal chemistry and structure-based drug
design, with the aim of generating small-molecule inhibitors of anti-apoptotic Bcl-2 family proteins,
which mimic the function of the BH3-only proteins to kill cancer cells [80]. The BH3 mimetics class
of inhibitors is mainly represented by molecules with low level of specificity and high affinity for
different anti-apoptotic Bcl-2 proteins, although in recent years specific Bcl-2 protein inhibitors have
been developed. A schematic list of BH3 mimetics is reported in Figure 5.

Despite significant efforts, ten BH3-mimetic drugs (obatoclax, AT-101, ABT-263 (navitoclax),
APG-1252, AZD0466, venetoclax, S55746, AMG-176, AZD5991 and S64315/MIK665) have reached clinic
with only the Bcl-2 inhibitor venetoclax currently approved by FDA [81,82].
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Figure 5. Schematic representation of BH3 mimetics. For each BH3 mimetic the corresponding Bcl-2
anti-apoptotic protein targets are indicated by lines categorizing BH3 mimetics according to their
specificity (multitargets, dual or specific inhibitors). * Sabutoclax is not reported to inhibit Bcl-w.

3.2.1. Rationale for the Use of BH3 Mimetics (Priming and Protein Addiction)

Cancer cell dependency on specific anti-apoptotic Bcl-2 proteins could be explained by multiple
factors, including tissue of origin, impact of the oncogenic lesions that drove tumorigenesis, and/or
factors produced by the tumor stroma [82]. Anti-apoptotic proteins are often expressed at high levels
in cancer cells, forming high numbers of complexes with their pro-apoptotic counterparts, a condition
described by the concept of “priming” [8]. Primed cancer cells are more sensitive to BH3 mimetics
(and other anti-cancer agents) compared with their “normal” counterparts [8]. The relative expression
levels between anti-apoptotic Bcl-2 family members and pro-apoptotic BH3 only proteins were found
to correlate with sensitivity to BH3-mimetic drugs [83].

The “protein addiction” phenomenon, the dependence of response to drugs in tumor cells on the
expression level of members of an anti-apoptotic family, is mostly linked to a single pro-survival protein
in leukemia and lymphoma, while in solid tumors it is often associated with multiple anti-apoptotic
protein levels [82,84]. Dependencies of tumor cells on anti-apoptotic Bcl-2 family members can be
experimentally determined by the so-called “dynamic BH3 profiling”, where BH3 peptides specific for
individual BH3-only proteins are applied to permeabilized cells and allowed to interact with other
BH3-containing proteins on the surface of the mitochondria, generating MOMP, after allowing Bax or
Bak oligomerization [8]. Other experimental approaches could be the use of inducible CRISPR/Cas9
platform [85] or culturing malignant cells from the patient with different BH3-mimetic drugs [86].

3.2.2. Multitarget BH3 Mimetics

The first generation of BH3 mimetics had limited selectivity for a specific anti-apoptotic Bcl-2
protein and most of them were also found to promote cell death independently of Bax/Bak proteins.
The pan BH3 inhibitor obatoclax (GX15-070), showing affinity for Bcl-2, Bcl-xL, Mcl-1, Bcl-w, A1/Bfl-1 [87]
and the R-(-) enantiomer of gossypol acetic acid, AT-101, able to bind to Bcl-2, Bcl-xL and Mcl-1 [88],
was were evaluated in Phase I/II clinical trials in hematological malignancies and in solid tumors,
including small-cell lung cancer (SCLC) and metastatic melanoma in the case of obatoclax (listed
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in Supplementary Table S2) and lung cancer, prostate cancer, squamous cell carcinoma of the head
and neck and brain and central nervous system tumors in the case of AT-101 (listed in Supplementary
Table S3). Due to significant toxicities associated with off-target effects, further development of both
obatoclax and AT-101 was halted [89,90].

Preclinical studies demonstrated that sabutoclax (BI-97C1), an apogossypol derivative
and pan-active Bcl-2 protein family antagonist (inhibiting Bcl-2, Bcl-xL, Mcl-1 and A1/Bfl-1), overcame
drug resistance, eliminated cancer stem cells in breast cancer [91] and synergized with minocycline,
a synthetic tetracycline, in a pancreatic cancer model [92] and with docetaxel in a model of prostate
cancer [93].

ABT-737 was one of the pioneer BH3 mimetics [94]. It is a small-molecule inhibitor of Bcl-2,
Bcl-xL and Bcl-w resulting from the combination of nuclear magnetic resonance-based screening,
parallel synthesis and structure-based design. The mechanism of action was demonstrated in
chronic lymphocytic leukemia (CLL) cells [95], but its efficacy and synergistic cytotoxicity with
chemotherapeutics and radiation was also reported for solid tumors including SCLC [94]. In preclinical
models of lung cancer, ABT-737 in combination with the inhibition of Notch by the use of GSI,
a γ-secretase inhibitor, showed a synergistic antitumor effect in vitro and significantly suppressed
tumor proliferation compared to the single drug treatment in vivo [96]. Studies conducted in melanoma
models demonstrated the ability of ABT-737 to empower the efficacy of several therapeutic strategies
including immunotoxins [97] and BRAF or MEK inhibitor in BRAF-mutated cells [98].

Being not orally bioavailable, ABT-737 development has been limited, and navitoclax, its orally
bioavailable analog, has been developed. Navitoclax showed efficacy in vivo in xenograft models
of leukemia and lymphoma [99] and in vitro in the treatment of SCLC cells [100]. Combination of
navitoclax with PI3K inhibition suppressed tumor growth in both an established SCLC xenograft
model and in an established circulating tumor cell-derived explant model generated from a blood
sample obtained at presentation from a chemorefractory SCLC patient [101]. The efficacy of navitoclax
has been reported for treatment of BRAFV600E positive in vivo melanoma models in combination
with copper chelators, able to sequester copper required for MEK1 and MEK2 activity through a direct
copper-MEK1/2 interaction [102].

Navitoclax effectiveness was limited by dose-dependent Bcl-xL-mediated thrombocytopenia [103].
In order to reduce the toxicity of navitoclax, new technology has been employed, converting
navitoclax into DT2216, a Bcl-xL proteolysis-targeting chimera (PROTAC) that targets Bcl-xL to
the Von Hippel-Lindau (VHL) E3 ligase for degradation. Since VHL is little expressed in platelets,
the toxicity in these cells is reduced, while the therapeutic potential of DT2216 remains similar to those
of the original molecule when evaluated in several xenograft tumors as a single agent or in combination
with other chemotherapeutic agents [104].

Given the relevant role of proteins of the Bcl-2 family in regulating clonal selection and survival
of lymphocytes, and their frequent overexpression in lymphomas, navitoclax progressed to clinical
evaluation, firstly as single agent Phase I/II trial in patients with this malignancy [105]. Regarding its
efficacy in solid tumors, navitoclax was shown to synergize with several chemotherapeutics such as
doxorubicin [106] and paclitaxel [107] in triple-negative breast cancer models, with PARP inhibitor in
high-grade serous ovarian cancer [108] and with TORC1/2 inhibitor in colorectal cancer [109].

At present, navitoclax is under clinical evaluation in combination with ruxolitinib, a JAK
inhibitor, in myeloproliferative neoplasm (NCT04041050), myelofibrosis (NCT03222609) and lymphoid
cancers (NCT00788684). Clinical trials are also ongoing using navitoclax in combination with
osimertinib, an epidermal growth factor receptor tyrosine kinase inhibitor, in NSCLC (NCT02520778);
sorafenib, a kinase inhibitor, in relapsed or refractory (R/R) solid tumors (NCT02143401); trametinib,
a MEK inhibitor, in advanced or metastatic solid tumors (NCT02079740); and dabrafenib (a BRAF
inhibitor)/trametinib in BRAF mutant melanoma (NCT01989585). Active clinical trials with BH3
mimetics are reported in Table 1.
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Table 1. Active clinical trials with BH3 mimetics (update 7 April 2020).

Inhibitor Specificity Clinical Trial
Identifier Tumor Histotype Phase Combination with

Navitoclax Bcl-2/Bcl-xL/
Bcl-w NCT04041050

myelo-
proliferative

neoplasm
I Ruxolitinib or

single agent

NCT03222609 myelofibrosis II Ruxolitinib or
single agent

NCT00788684 lymphoid cancers I Ruxolitinib

NCT02520778 advanced or metastatic non-small lung
cancer I Osimertinib

NCT02143401 relapsed or refractory solid tumors I Sorafenib

NCT02079740 advanced or metastatic solid tumors I/II Trametinib

NCT01989585 BRAF mutant melanoma I/II Dabrafenib/
Trametinib

APG-1252 Bcl-2/Bcl-xL NCT03080311 small cell lung cancer or other solid
tumors I single agent

NCT04210037 relapsed/
refractory small cell lung cancer I/II Paclitaxel

AZD0466 Bcl-2/Bcl-xL NCT04214093 hematologic or solid tumors I single agent

Venetoclax Bcl-2 NCT03000257 advanced solid tumors I ABBV-181

NCT03082209
previously treated

solid tumors and hematologic
malignancies

I ABBV-621

NCT03181126

relapsed/
refractory acute lymphoblastic

leukemia and relapsed/
refractory lymphoblastic lymphoma

I Navitoclax

NCT04029688 relapsed/refractory acute leukemias or
solid tumors I/II Idasanutlin

S65487 Bcl-2 NCT03755154 acute myeloid leukemia, non-Hodgkin
lymphoma or multiple myeloma I single agent

AMG-176 Mcl-1 NCT02675452
relapsed or refractory multiple

myeloma and subjects with relapsed or
refractory acute myeloid leukemia

I single agent

AZD5991 Mcl-1 NCT03218683 relapsed or refractory
hematologic malignancies II Venetoclax

S64315/
MIK665

Mcl-1 NCT02979366 acute myeloid leukemia or
myelodysplastic syndrome I single agent

NCT02992483 refractory or relapsed lymphoma or
multiple myeloma I single agent

NCT03672695 acute myeloid leukemia I Venetoclax

3.2.3. Dual BH3 Inhibitors: Bcl-2/Bcl-xL, Bcl-2/Mcl-1, Bcl-xL/Mcl-1

Starting from the arylsulfonamide scaffold of ABT-737/ABT-263, several dual Bcl-2/Bcl-xL inhibitors
have been generated. BM-1197, in SCLC models, has been demonstrated to have potent in vitro
proliferation inhibitory effect and to achieve in vivo complete and long-term tumor regression in
xenograft models, associated with reversible platelet reduction at highly efficacious doses [110].
BM-1197 efficacy was also tested in human colorectal cancer, where it increased the fraction of cells in
the sub-G1 phase of the cell cycle, induced apoptotic death and increased the cellular inter nucleosomal
DNA fragmentation [111]. Furthermore, in malignant lymphoma cells BM-1197 induced cell death
through the intrinsic apoptotic pathway [112].

S44563 was found to enhance in vitro and in vivo radiosensitivity of SCLC cells [113] and to
increase the efficacy of fotemustine, a nitrosourea alkylating agent, in uveal melanoma patient-derived
xenografts [114].

APG-1252 (BM-1252), a recently developed drug with high binding affinity to Bcl-2 and Bcl-xL,
has been reported to induce mitochondria-dependent apoptosis in leukemia cells in vitro, to achieve
complete and persistent tumor regression in multiple tumor xenograft models including ALL,
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SCLC and colon and breast carcinoma, and shows strong synergy with some chemotherapeutic
agents [115,116]. Phase I trials with APG-1252 alone or in combinatorial therapy are currently
ongoing for the treatment of patients with lung carcinoma or other solid tumors (NCT03080311,
NCT04210037). Moreover, AZD0466, a dual Bcl-2/Bcl-xL inhibitor is under clinical evaluation in
hematologic malignancies and advanced solid tumors (NCT04214093). Clinical trials with BH3
mimetics are reported in Table 1.

Single agent antitumor activity of S1, the BH3-mimetic dual inhibitor of Bcl-2 and Mcl-1, and its
derivative B4, has been also reported in cancer models with different origin [117].

Starting from the natural compound meiogynin A, molecules specifically targeting Bcl-2/Mcl-1 [118]
or Bcl-xL/Mcl-1 [119] have been synthesized and in vitro tested, nevertheless with limited application
until now. Moreover, two PROTACs compounds have been recently developed for the selective
degradation of Mcl-1/Bcl-2 [120].

The combination of BH3 mimetics targeting different anti-apoptotic proteins such as Bcl-2 and Mcl-1
or Bcl-xL and Mcl-1, has been reported to shown significant benefit for the treatment of melanoma [121].

3.2.4. Bcl-2 Specific Inhibition

The turning point in the research for Bcl-2 inhibitors was reached with the development of
venetoclax, a potent and selective BH3 mimetic for Bcl-2 protein, which was able to circumvent the
thrombocytopenia observed with navitoclax [122]. The first FDA approval for venetoclax in first-line
treatment of patients with the R/R CLL and carrying the 17p deletion came in 2016 [123]. Subsequently,
in June 2018, the clinical practice of venetoclax was introduced by the FDA for patient with CLL or
small lymphocytic lymphoma, regardless of 17p deletion. After the first excellent findings, venetoclax
was tested in combination, with satisfactory results, in different hematological malignancies [11–13,124].
In November 2018, the FDA approved the use of venetoclax in combination with hypomethylating
drugs azacitidine, decitabine or low-dose cytarabine for the treatment of newly-diagnosed AML in
adults who are aged 75 years or older, or who have comorbidities that preclude use of intensive
chemotherapy. In January 2019, the impressive results of the Murano Phase III trial [125] prompted
the European Commission to approve the combination of venetoclax/rituximab for patients with R/R
CLL, previously treated without success. Other combination therapies have been evaluated in clinical
trials in hematological tumors. In CLL, venetoclax was evaluated in combination with obinutuzumab,
an anti-CD20 monoclonal antibody, in Phase Ib [126], or with ibrutinib, an inhibitor of Bruton’s tyrosine
kinase, in Phase II [127,128]. Venetoclax showed activity in a Phase I trial in multiple myeloma (MM)
patients carrying t(11;14) with multiple prior lines of therapy as single agent [128] and in combination
with bortezomib, a proteasome inhibitor, and dexamethasone in a Phase Ib study [129]. In a small cohort
of patients affected by R/R AML and treated with venetoclax as single agents, subjects with isocitrate
dehydrogenase (IDH) 1/2 mutations were found to have better response in respect to patients carrying
the wild type gene [130,131]. Venetoclax in combination with navitoclax and chemotherapy is under
evaluation in subjects with R/R ALL or R/R LL (NCT03181126). Mechanisms of resistance to venetoclax
have been identified in G101V-mutated Bcl-2 proteins in CLL patients [132], thus emphasizing the
need to persevere in research of Bcl-2 inhibitors.

In 2019, the first clinical study evaluating the efficacy of venetoclax in solid tumors demonstrated
that the combination of venetoclax with tamoxifen showed a tolerable safety profile and activity in
estrogen-receptor and Bcl-2-positive metastatic breast cancer [133].

Several trials are ongoing to evaluate the potential of the combination therapy of venetoclax in
advanced solid tumors, in particular in combination with ABBV-181, an anti-PD1 monoclonal antibody
(NCT03000257), with ABBV-621, a second-generation TRAIL-receptor agonist (NCT03082209), and with
idasanutlin, a small molecule designed to bind to murine double minute 2 (MDM2), for pediatric
and young adult patients with neuroblastoma or other malignancies (NCT04029688).
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Other BH3 mimetics targeting Bcl-2 such as S55746 [134] and its prodrug S65487 are under
evaluation in clinical trials for the treatment of CLL, NHL and MM patients (NCT03755154).
Active clinical trials with specific BH3 mimetics are reported in Table 1.

Several preclinical studies also investigated the efficacy of venetoclax in combination therapy
for solid tumors. Studies conducted in melanoma models demonstrated the ability of venetoclax
to empower the efficacy of mitochondrial matrix chaperone inhibitor [135]. Studies performed in
estrogen-positive breast cancer cell lines, patient-derived organoid and patient-derived xenograft
models evidenced the efficacy of venetoclx in combination with both fulvestrant/palbociclib
and anti-PD1 therapy [136], while results on merkel cell carcinoma indicated the combination
of venetoclax with DNA damage induction as a possible novel therapeutic strategy for this skin
cancer [137].

Resistance to venetoclax in NHL cell lines has been reported to be overcome by Mcl-1 selective
inhibitor A-1208746 or Bcl-xL selective inhibitor A-1155463 in combination with venetoclax [138].

Venetoclax and navitoclax synergized with doxorubicin or dinaciclib, an inhibitor of
cyclin-dependent kinases, providing effective therapeutic strategies in SCLC [84].

3.2.5. Bcl-xL Specific Inhibition

Experimental evidence indicates that overexpression of Bcl-xL could be associated with resistance
to venetoclax and chemotherapic agents [138–140]. This consideration prompted the development
of specific Bcl-xL inhibitors. WEHI-539 was the first molecule to specifically target Bcl-xL [141].
It was found to enhance apoptosis in combination with doxorubicin in osteosarcoma cells expressing
high level of Bcl-xL protein [142]. However, the observed in vivo toxicity limited its applicability
in clinical trials [141]. Structure-based design optimization of WEHI-539 led to the development
and characterization at preclinical level of other selective inhibitors of Bcl-xL, such as A-1155463,
showing in vivo antitumor activity in a xenograft model of SCLC, and A-1331852 increasing the
sensitivity of rhabdomyosarcoma cells to several conventional chemotherapeutic agents without
apparent toxicity [139,143,144]. To date, no specific Bcl-xL inhibitor has passed to clinical evaluation.

3.2.6. Mcl-1 Specific Inhibition

In recent years an increasing interest in developing a Mcl-1-specific inhibitor is arising, especially
for hematological tumors. Rationale and progress in targeting Mcl-1 in hematologic malignancies have
been recently reviewed [145].

UMI-77 was the first designed molecule with selected affinity for Mcl-1 [146], showing in vivo
tumor growth inhibition in models of pancreatic cancer. Subsequent developed molecules were
A-1210477, showing cell killing activity as single agents and in combination with navitoclax in leukemia
cells [147], and inducing apoptosis in breast cancer [148], as well as compounds 4 and 5, showing
apoptosis activity in primary MM and AML patient-derived cells [149].

S63845 showed high level of apoptotic induction in a wide range of hematopoietic malignancies,
breast and NSCLC cell lines and with an acceptable safety margin as a single agent in in vivo experiments
in several cancer models [86]. Several preclinical studies suggested the promising application of
Mcl-1 inhibitors in combinatorial therapy: combinations of S63845 and AMG-176 (and the related
compound AM8621) with inhibitors of fibroblast growth factor receptor (FGFR), MEK or BRAF
showed to efficiently reduce in vitro cell proliferation and in vivo tumor growth of NSCLC [86,150],
lung squamous cell carcinoma [151] and glioblastoma [152] models, while combinations of S63845
with chemotherapy or HER2-targeted therapies demonstrated to efficiently inhibit the growth of
triple-, as well as HER-2-positive breast cancer [86,153]. The efficacy of combination of S63845 with
selective inhibitors, such as ABT-199 or A-1331852, has been also reported in preclinical cervical cancer
models [154] and pediatric solid tumors [155], while S63845 in combination with inhibitors of the
bromodomain and extra-terminal proteins showed efficacy in metastatic melanoma [156].
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The first Mcl-1 inhibitor to progress in Phase I trial was AMG-176, evaluated in R/R MM and R/R
AML (NCT02675452). Unfortunately, some clinical trials using Mcl-1 inhibitors, such as AMG-397,
have been suspended for cardiac toxicity (NCT03465540). This toxicity can be due to the relevant
role of Mcl-1 in cardiac homeostasis in adult murine models, loss of Mcl-1 causing alterations in
cardiomyocytes and lethal cardiomyopathy [157,158].

AZD5991 and S64315/MIK665 at present are under evaluation in clinical trials as a single agent,
Phase I, or in combination with venetoclax, Phase II, in R/R hematologic malignancies (NCT03218683,
NCT02979366, NCT02992483, NCT03672695). Clinical trials for evaluation of Mcl-1 BH3-specific
inhibitors are reported in Table 1.

Recently, VU661013, a new Mcl-1-specific inhibitor, has been reported to rescue venetoclax
resistance in AML [159] and inhibit cell survival in estrogen receptor-positive breast cancer when used
in combination with navitoclax [160].

An alternative strategy to the use of specific Mcl-1 inhibitors is to target Mcl-1 indirectly. Since Mcl-1
expression is regulated by the transcriptional activator Cyclin-dependent kinase 9 (CDK9), the use of
specific CDK9 inhibitors is a promising approach for the treatment of tumors expressing high levels of
Mcl-1 protein [161]. The highly selective CDK9 inhibitor, AZD4573, induced apoptosis and subsequent
cell death in hematologic cancer models in vitro and favored tumor regression in tumor xenografts
in vivo, through the indirect inhibition of Mcl-1 [161]. AZD4573 is currently under evaluation in a
Phase I clinical trial for patients with hematologic malignancies (NCT03263637).

3.3. BH3 Peptides

In addition to molecules resembling the BH3 domain, the use of BH3 peptides has also been
evaluated as a possible strategy to inhibit Bcl-2 anti-apoptotic members. Biochemical studies based
on computational mutagenesis and docking approaches led to the development of BINDI proteins,
formed by a BH3-like central helix with two flanking regions which form additional interactions that
are specific for the different anti-apoptotic Bcl-2 proteins. This strategy resulted in proteins able to
bind anti-apoptotic Bcl-2 proteins with increased affinity and specificity, and demonstrated that the
designed inhibitors were able to induce apoptosis in cancer cells in vitro by engaging the BH3-binding
grooves of specific pro-survival proteins [162].

A very recent and elegant paper explored the possibility of de novo designing switchable protein
systems to modulate binding among proteins, and demonstrated the possibility to modulate the
binding of Bcl-2 to Bim, thus opening the prospective of using this system to regulate the function of
Bcl-2 family members [163].

A series of BH3 sensitizer peptides that bind Bcl-xL with sub-nanomolar affinity and selectivity
up to 1000-fold over each of the competing pro-survival proteins, have been tested in vitro in a panel
of cancer cell lines, showing reduced proliferation in cells expressing high level of Bcl-xL protein [164].

3.4. Molecules Promoting Protein Conformational Change

Another interesting approach to inhibit Bcl-2 functions is to target the BH4 domain. The BH4
domain of Bcl-2 binds to the inositol 1,4,5-trisphosphate receptor (IP3R), preventing Ca2+ signals
that mediate cell death. In many cancers the high level of Bcl-2 expression inhibits IP3R-mediated
Ca2+ elevation, thus preventing apoptosis [165]. Moreover, the BH4 domain has been also reported to
be involved in the so-called “non-canonical” Bcl-2-mediated functions, not including anti-apoptotic
and pro-survival functions [6]. Thus, BH4 has become an interesting target for drug development [166].
Structural studies were employed to identify BDA-366, an allosteric Bcl-2 inhibitor able to bind the
BH4 domain, inducing a conformational change in the protein responsible for the exposure of the BH3
domain, which converts Bcl-2 in a pro-apoptotic protein [167]. BDA-366 was found to inhibit both
lung cancer [167] and myeloma growth in vitro and in vivo [168].

The Zhang group identified the Q221R222N223 motif, QRN, as a hidden conformational switch
controlling ubiquitination of Mcl-1, and demonstrated the ability of compound 5, a dual-function Mcl-1
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inhibitor, to favor Mcl-1 ubiquitination by promoting helical conformation of QRN, thus inducing both
apoptosis and Mcl-1 degradation [169].

A new approach for disarming Mcl-1 in cancer identified an allosteric mechanism able to disrupt
the binding activity of Mcl-1 to BH3 domain of pro-apoptotic proteins: allosteric Mcl-1 inhibitors
specifically target Cysteine 286, inducing conformational changes and allosteric inhibition of BH3
domain interaction with Mcl-1 [170], or bind to Lysine 234 allowing specific increase in binding to
Mcl-1 over other Bcl-2 family members [171].

3.5. Bcl-2 Quadruplex Selective Approach

Preclinical evidence also supports the Bcl-2 G-quadruplex (G4)-selective approach to treat cancer
and to circumvent the limitations of Bcl-2 protein-based therapeutics [172]. In the proximity of the
P1 promoter (5′), three G4 and one i-motif have been reported to regulate Bcl-2 transcription [173].
Furthermore, the Bcl-2 5′ untranslated region containing an RNA G4-forming motif has been found to
modulate Bcl-2 protein expression [174]. The in-depth characterization of these structures provided
information for designing small molecules targeting G4 and regulating the expression of Bcl-2.
The desirable molecules should show high affinity to Bcl-2 G4 and low affinity to duplex or other
G4. Although a high number of G4, mainly identified by computational methods or structure-based
drug design, show good binding affinity to the Bcl-2 quadruplex, they could not achieve good drug
candidature for their failure to discriminate different G4, such as telomeric and other oncogenic
G4. At present only a few compounds targeting G4 structures have been successfully evaluated in
cellular and in vivo models. Quindoline, perylene and coronenen derivatives have been reported to
downregulate Bcl-2 transcription and promoter activity and to induce apoptosis in cancer models
but with a promiscuous mechanism of action affecting also other biological targets, such as telomeric
and other oncogenic G4 [175,176]. Some organometallic complexes have been found to be more selective
to Bcl-2 than to telomeric quadruplex, to have poor affinity for duplex DNA and to exhibit in vitro
and in vivo antitumoral activity against cancer models from different histotypes [177]. Very recently,
drug-like imidazo [2,1-i] purine derivatives have been identified by a bioinspired design and have
been reported to show antitumoral activity through their effect on Bcl-2/c-myc gene promoter G4 [178].
Furthermore, furopyridazinone-based molecules have been found to target the Bcl-2 gene promoter
G4 with good selectivity and induce cytotoxic effect in T-lymphoblastoid cells [179]. Ligands able
to target and stabilize G4 structures both in the Bcl-2 gene and in its RNA transcript have been also
reported [180]. Due to the promiscuity to other molecular targets, to the poor bioavailability and to the
conformational rigidity, the clinical pharmacology of G4-stabilizing molecules is still at the beginning.

4. Vaccination Using Anti-Apoptotic Protein-Derived Peptides

The induction of active immunity against tumor-associated antigens may be a promising approach
to prevent cancer relapse, and thus there is a need to identify tumor-associated antigens for the
development of cancer vaccination. In this context, spontaneous T cell responses against anti-apoptotic
protein-derived peptides in patients suffering from cancers of different origin have been reported [181].
In particular, in vitro T cell responses against a peptide derived from Bcl-xL was observed in cancer
patients but not in healthy controls, and the subpopulation of T cells specific for the Bcl-xL peptide was
cytotoxic against HLA-matched cancer cells of different histotypes [181]. Two murine tumor-associated
epitopes derived from mouse Bcl-xL have been reported to induce CD8+ T cell production of
interferon-γ in mice, providing a preclinical model for cancer vaccination [182]. These preclinical
studies supported the passage to Phase I trial evaluation of therapeutic vaccination with peptides
from Bcl-2, Bcl-xL and Mcl-1 in patients with relapse MM (NCT01272466). In this study, vaccines were
given in combination to treatment with bortezomib [183]. This vaccination was well tolerated and the
signs of toxicity were all attributed to bortezomib. Moreover, the safety, toxicity and immunological
effect of vaccine Bcl-xl_42-CAF09b, composed of Bcl-xl_42, a peptide fragment of the full protein
and the adjuvant CAF09b, able to improve the activation of the immune system, are under evaluation
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in patients with hormone-sensitive prostate cancer and lymph node metastases in a Phase I trial
(NCT03412786).

5. Pro-Apoptotic Bcl-2 Family Protein Activations

Several structural studies have helped the understanding of determinant for regulation
and activation of pro-apoptotic proteins [184,185]. These findings have been used to design peptides
specifically targeting and activating the pro-apoptotic function of Bax, Bak and Bim, in order to promote
cell death [186].

The use of a hydrocarbon-stapled Bim BH3 peptide (Bim SAHBA) was shown to overcome both
Bcl-2 and Mcl-1 apoptotic resistance in B-cell lymphoma cell lines [187].

In another study, the potent BH3 α-helical domain of Bim has been incorporated into peptide
amphiphile nanostructures to facilitate cellular uptake, showing specificity of binding to Bcl-2
anti-apoptotic proteins and inducing cell death in mouse embryonic fibroblasts [188].

Computational methods have been applied in order to design BH3 peptides derived from Puma
and Bmf showing high binding affinity for A1/Bfl-1 [189].

Free energy binding studies of complexes formed by Bak and BH3 peptides have been employed
to find the main residues responsible for inhibition of activation of Bak, which are useful in designing
novel small molecule mimics of BH3 able to promote the mitochondrial pore formation mediated by
Bak [190].

Although Bcl-2 is a recognized anti-apoptotic protein, in some conditions Bcl-2 associates with
the orphan nuclear hormone receptors Nur77 and Nor-1, converting Bcl-2 into a pro-apoptotic
molecule [191]. NuBCP-9, a Nur77-derived peptide, induces a conformational change, exposing the
Bcl-2 BH3 domain, finally inhibiting tumor growth in vitro and in vivo [192].

6. Conclusions

The involvement of apoptosis has been long studied for its response to conventional chemotherapy,
but its relevance is also clear in response to more innovative treatment strategies. The family of
Bcl-2 proteins has long been known to play a pivotal role in the regulation of apoptosis. In the last
decades, a huge amount of evidence has demonstrated that cancers from different origin, especially
hematological malignancies, strictly depend on anti-apoptotic members for proliferation, survival
and response to therapy. In this view, intense studies have been performed in order to identify
Bcl-2 inhibitors to be used for cancer therapy, and cell death discoveries have been translated into
the identification of novel therapies using Bcl-2 family inhibitors. Starting from the clinical use of
antisense oligonucleotides directed against Bcl-2, and passing through BH3 mimetics that showed
severe on-target toxicity, recent FDA approval of the BH3 mimetic venetoclax corroborated the clinical
relevance of using Bcl-2 anti-apoptotic members as therapeutic targets, not only for hematologic
malignancies but also for breast carcinoma. Numerous clinical trials are ongoing to evaluate the activity
on solid tumors of specific or dual inhibitors as single agents or in combination therapy. We hope
positive results can offer a way for these therapeutic strategies to be used for treatment of a large
amount of solid malignancies.

A huge volume of preclinical studies have accumulated evidence in support of the role played by
anti-apoptotic proteins in the progression of solid tumors. Thus, the use of Bcl-2 protein-targeting drugs
as single agents or in combination with current standard-of-care therapies could represent a concrete
opportunity to overcome therapy-resistant/recurrent solid tumors and to increase the disease-free
survival of cancer patients. Further studies are required to confirm the clinical potential of Bcl-2
inhibitors as single and combinatorial agents for the therapy of chemotherapy-sensitive and resistant
cancer. It is likely that a number of malignant diseases other than hematologic ones in the near future
will be successfully targeted with anti-apoptotic Bcl-2 family members after careful patient selection,
to improve treatment responses and patient survival.
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