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The therapeutic landscape for chronic myeloid leukemia (CML) has improved significantly
with the approval of tyrosine kinase inhibitors (TKIs) for therapeutic use. Most patients with
optimal responses to TKIs can have a normal life expectancy. Treatment-free remission
(TFR) after discontinuing TKI has increasingly become a new goal for CML treatment.
However, TKI only “control“ CML, and relapse after discontinuation has become a key
factor hindering patient access to attempt TFR. In this study, we reviewed studies on TKI
discontinuation, including both first and second-generation TKI. We also reviewed
predictors of relapse, new monitoring methods, and strategies targeting leukemic
stem cells.
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INTRODUCTION

Chronic myeloid leukemia (CML) is a clonal myeloproliferative disease characterized by the BCR-ABL
fusion gene as a result of t (9;22) (q34;q11) translocation (1). Tyrosine kinase inhibitors (TKIs) have
revolutionized the treatment of CML and significantly improved the outcomes for CML patients.
Currently, several TKIs are approved for the treatment of CML: imatinib, dasatinib, nilotinib, bosutinib,
ponatinib (2–6). Most CML patients who benefit from TKIs have a life expectancy similar to that of the
general population (7, 8). However, the adverse events and TKI costs associated with lifelong treatment
considerably affect affected patients’ quality of life and dependence on TKI, ultimately affecting treatment
response (9–11). An attempt at treatment discontinuation can be considered in some patients to mitigate
the adverse events or reduce treatment costs. In addition, female patients of childbearing potential can
benefit from stoppi ng TKI to lessen the risk of teratogenic effects (12). Results from multiple trials
suggest that patients with a stable deep molecular response (DMR) can safely discontinue TKI without
relapse, but close monitoring is recommended (13, 14). Treatment-free remission (TFR) is increasingly
becoming a therapeutic goal for patients with DMR (15, 16). However, more studies analyzing predictive
factors, new monitoring methods, new strategies targeting stem cells are required to improve current
TFR rates. The purpose of this review is to provide updated data on TKI discontinuation studies and
analyze predictive factors, monitoring methods, and novel strategies to improve TFR.
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OUTCOMES WITH FIRST- AND SECOND-
GENERATION TKI DISCONTINUATION

The pioneering TFR trials with imatinib demonstrated the
feasibility of TKI discontinuation. With the advent of second-
generation TKI discontinuation trials, data regarding TFR are
increasingly available. As clinical trials of TFR discontinuation
show a favorable TFR rate, many patients in the real world can
attempt to stop TKI to achieve TFR. Here, we mainly present the
data on discontinuation imatinib, dasatinib, and nilotinib
discontinuation in clinical trials and the real world (Tables 1
and 2). In addition, we discuss the feasibility of the second TKI
discontinuation attempt after an unsuccessful attempt.
Imatinib Discontinuation
In the prospective, multicenter Stop Imatinib (STIM) trial, 100
patients with undetectable minimal residual disease (UMRD)
for more than two years with imatinib were enrolled. Molecular
relapse was defined as a significant increase in BCR-ABL
transcripts during two consecutive assessments. The
Frontiers in Oncology | www.frontiersin.org 2
estimated molecular relapse-free survival (MRFS) was 41%
and 38% at 12 months and 24 months (17). In the Long-
Term Follow-Up of the STIM1 study, the MRFS rate was 38% at
60 months. 80% of patients displayed relapsed in the first 6
months. 96.5% (55/57) patients achieved a second UMRD with
a median of 4 months of retreatment (13). With longer follow‐
up intervals, it became clear that low levels of transcripts were
detectable in some patients and did not increase further. In
some studies, molecular recurrence was defined as the loss of
MMR. The A-STIM study estimated the TFR rates as 64% at 12
and 24 months and 61% at 36 months (18). The KID study
reported similar TFR rates of 62.5% and 58.5%, at 12 and 24
months as in the A-STIM study (19). In studies with longer
follow-ups, the 5-year MRFS rate in the ISAV study was 47.4%,
and the 8-year MRFS rate in the TWISTER study was 45% (20,
21). These results suggest that some patients can achieve a long-
term safe and stable response after discontinuation of imatinib.
Due to difficulty achieving UMRD in many laboratories, DMR
(MR4.0 or MR4.5) for two years has increasingly become an
inclusion criterion in subsequent studies, JALSG-STIM213,
DOMESTIC, and the TRAD study, which reported similar
TABLE 1 | Studies of Imatinib Discontinuation.

Study Eligibility criteria No.
Pts

Relapse definition TFR rate Median time to
relapse

Patients regaining MR after reinitiating TKIs

STIM (13, 17) UMRD ≥ 2 years;
Imatinib treatment
≥3 years

100 Two successive increased BCR-
ABL transcripts

41% at 12
months
38% at 24
months
38% at 60
months

2.5 months
(range, 0.9 to
22.3)

55/57 regained UMRD with a median of 4
months

A-STIM (18) UMRD ≥ 2 years;
Imatinib treatment
≥3 years

80 Loss of MMR 64% at 12 and
24 months
61% at 36
months

4 months
(range, 2 to 17)

31/31 regained MMR

KID (19) UMRD >2 years;
Imatinib treatment
≥3 years

90 Loss of MMR 62.2% at 12
months
58.5% at 24
months

3.3months
(range, 0.9 to
20.8)

37/37 regained MMR at a median of 3.9
months (range, 0.5 to 11.1)

ISAV (20) UMRD ≥ 1.5
years;
Imatinib treatment
≥2 years

107 Loss of MMR 52.6% at 5 years 5 months
(range, 1.4 to
55.6)

95.9% regained MMR at a median of 1.9
months

TWISTE (21) UMRD ≥ 2 years;
Imatinib treatment
≥3 years

40 Loss of MMR 47.1% at 2 years
45% at 8 years

15/22 relapsed
within 6 months

22/22 regained UMRD at a median of 3.3
months (range, 0.0 to 17.4)

JALSG-STIM2
(13, 22)

MR4.0≥2 years;
Imatinib treatment
≥3 years

68 Loss of MMR 67.6% at 12
months

22/25 relapsed
within 12 months

25/25 regained MMR within 6 months

DOME-STIC
(23)

MR4.0 ≥ 2 years 99 Loss of MR4.0 69.6% at 6
months
68.6% at 12
months
64.3% at 24
months

NR 25/26 regained MR4.0 within 12 months

TRAD (24) MR4.5≥ 2 years;
Imatinib treatment
≥3 years

131 Loss of MMR
and/or MR4.0

69.9% at 12
months

53/58 relapsed
within 6 months

49/54 regained MR4.5 at a median of 2.48
months
UMRD, undetectable minimal residual disease; MMR, major molecular response; MR4.0, molecular response of 4‐log reduction of BCR‐ABL1 transcripts; MR4.5, molecular response of
4.5‐log reduction of BCR‐ABL1 transcripts; TFR, treatment‐free remission; MR, molecular response.
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12-month TFR rates of 67.6%, 68.6%, and 69.9%, respectively
(22–24).

Molecular relapse commonly occurred in the first six months
after imatinib withdrawal (13, 18, 24). In the TWISTER study
with long-term follow-up, the latest relapse was detected 27
Frontiers in Oncology | www.frontiersin.org 3
months after stopping imatinib (21). A recent study showed the
residual rate of molecular recurrence after two years of
discontinuing imatinib was estimated to be 18% (42). Even
though some patients with a stable DMR or deeper molecular
response can achieve TFR after imatinib discontinuation, long-
TABLE 2 | Studies of dasatinib and nilotinib discontinuation.

Study Eligibility criteria No.
Pts

Treatment Relapse
definition

TFR rate Median time to
relapse

Patients regaining MR after
reinitiating TKIs

DADI (25) MR4.0 ≥1 year on
dasatinib

63 First-line or
subsequent line
dasatinib

Loss of
MR4.0

44% at 36 months 33/33 relapsed
within 7 months

33/33 regained MR4.0 within 6
months

D-STOP
(26)

MR4.0 ≥ 2 years
on dasatinib

54 First-line or
subsequent line
dasatinib

Two
successive
BCR-
ABL1-
positive

62.9% at 12 months; 59.3% at 24
months

20/22 relapsed
within 7 months

22/22 regained MR4.0 within 12
months

DASFREE
(27)

MR4.5 ≥ 1year on
dasatinib

84 First-line or
subsequent line
dasatinib

Loss of
MMR

48% at 1 year; 46% at 2 years NR 44/45 regained MMR at a
median of 2 months (range, 1 to
4)
43/45 regained MR4.5 at a
median of 3 months (range, 2
to18)

First-line
DADI (28)

MR4.0 or deeper≥1
year,
dasatinib treatment
≥2 years

58 First-line dasatinib Loss of
MR4.0

55.2% at 6 months 2 months (range,
1.3 to 2.7)

23/25 regained MR4.0 within 12
months

ENEST
Freedom
(29–31)

MR4.5 ≥ 2 years;
nilotinib ≥3 years

190 First-line nilotinib Loss of
MMR

51.6% at 48 weeks;
48.9% at 96 weeks
42.6% at 5 years

88/94 relapsed
within 48 weeks

90/91 regained MMR(91.2%
within 12 weeks)
84/91 regained MR4.5

STAT2 (32) MR4.5≥ 2 years on
nilotinib

78 Second-line
nilotinib

Loss of
MMR

67.9% at 1 year; 62.8% at 2 years 3.4 months
(range, 1.8 to
5.8)

25/29 regained MR4.5 (50%
within 3.5months)

NILSt (33) MR4.5 at 2 years
on nilotinib

112 First-line and
second-line
nilotinib

Loss of
MR4.5

60.9% at 1 year; 60.9% at 3 years 4 months (range,
2 to 11)

33/33 regained MR4.5 at a
median of 2.8 months (range, 1
to 17)

ENESTop
(34–36)

MR4.5 ≥2 years on
nilotinib

126 Second-line
nilotinib

Loss of
MMR or
confirmed
loss of
MR4.0

58% at 48 weeks; 53% at 96 weeks;
46.0% at 192 weeks; 42.9% at 5
years

49/53 relapsed
within the 24
weeks

58/59 regained MMR;
56/59 regained MR4.0;
55/59 regained MR4.5 at a
median of 2.9 months (range,
0.9-22.5)

STOP 2G-
TKI (14)

MR4.5≥ 2 years;
TKI treatment ≥3
years

100 Dasatinib or
nilotinib

Loss of
MMR

63.33% at 1 year 53.57% at 4 years 4 months (range,
1 to 38)

25/25 regained MMR at a
median of 2 months (range, 1 to
6)

LAST (37) MR4.0 ≥2 years;
TKI treatment ≥3
years

172 Imatinib, dasatinib,
nilotinib, or
bosutinib

Loss of
MMR

60.8% at 36 months 4 months (range,
1.5 to 41.3)

55/59 regained MR4.0

RU-SKI
(38)

MR4.0 ≥ 2 years;
TKI treatment ≥3
years

98 Imatinib, dasatinib,
or nilotinib

Loss of
MMR

53% at 12 months 52% at 24
months

3 months (range,
1 to 28)

47/47 regained MMR at a
median of 3 months (range, 0.4
to 15)

Gabriel
Etienne
(39)

MR4.5 ≥ 2 year 95 Imatinib, 2-3G TKI Loss of
MMR

55.1% at 12 months; 46.9% at 48
months

NR NR

Argentina
Stop Trial
(40)

MR4.0 ≥ 2 years;
TKI treatment ≥3
years

46 Imatinib, dasatinib,
nilotinib

Loss of
MMR

80.2% at 6 months NR 12/15 regained MMR at a
median of 3 months (range, 1 to
8);
9/15 regained MR4.0 at a
median time of 3 months (range,
1 to 5)

EURO-SKI
(41)

MR4.0 ≥1 year; TKI
treatment ≥3 years

758 Imatinib, dasatinib,
or nilotinib

Loss of
MMR

61% at 6 months
50% at 24 months 49% at 36
months

297/373
relapsed within 6
months

321/373 regained MMR at a
median of 2.8 months;
302/373 regained MR4.0 at a
median of 3.7 months
October 202
MMR, major molecular response; MR4.0, molecular response of 4‐log reduction of BCR‐ABL1 transcripts; MR4.5, molecular response of 4.5‐log reduction of BCR‐ABL1 transcripts; TFR,
treatment‐free remission; MR, molecular response.
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term molecular follow-up remains mandatory for CML patients
in TFR.

Dasatinib Discontinuation
The DADI trial was a prospective multicenter trial investigating
the safety and efficacy of discontinuing first-line or subsequent
dasatinib (25). 63 patients taking dasatinib and with confirmed
stable DMR (MR4.0) for at least one year tried to stop dasatinib.
The estimated overall TFR was 44% at 36 months. Most patients
experienced molecular relapses within the first seven months
after discontinuation. All relapsed patients achieved molecular
response after retreatment with dasatinib. The presence of
imatinib resistance was a significant risk factor for molecular
relapse. In the D-STOP trial, 54 patients with steady DMR for
two years had discontinued dasatinib. The estimated treatment-
free survival at 12-month and 24 months were 62.9% and 59.3%,
respectively (26). Moreover, in the DASFREE study, 84 patients
discontinued first and second-line of dasatinib therapy; 48% and
46% of all patients were found with maintained TFR at one and
two years. Patients with the first and second-line treatment
showed comparable TFR rates at two years, 51%, and 42%,
respectively. The TFR rate was the same for patients resistant
to prior TKI and intolerant to prior TKI, both at 44% (27). The
first-line DADI trial assessed the safety and efficacy of
discontinuing first-line dasatinib; 58 patients with DMR for
one year discontinued dasatinib after receiving first-line
dasatinib for at least 24 months. The TFR rate at 6 months
was 55.2% (28). These findings indicate that discontinuation of
first-or subsequent-line dasatinib after a sustained DMR
was feasible.

Nilotinib Discontinuation
The ENESTfreedom study was the first single-arm, phase 2
clinical trial to evaluate the possibility of stopping first-line
nilotinib. 190 patients with at least two years of DMR (MR4.5)
of frontline nilotinib therapy were enrolled. Patients restarted
nilotinib following the loss of MMR. After stopping nilotinib, 98
(51.6%), and 93 patients (48.9%) remained in MMR at 48 and 96
weeks, respectively (29, 30). At the 5-year data cut-off, 81/190
patients (42.6%) were still in sustained TFR, while 90/91 patients
(98.9%) regained MMR after restarting nilotinib treatment (31).
Several clinical studies have evaluated the possibility of stopping
second-line nilotinib. In the STAT2 trial, 78 patients with stable
DMR (at least MR4.5) after 2-year consolidation therapy with
nilotinib attempted to discontinue nilotinib. The TFR rates at 12
and 24 months were 67.9% and 62.8%, respectively (32).
Similarly, patients who achieved MR4.5 after first-line imatinib
or nilotinib therapy were given nilotinib consolidation for up to
24 months in the NILSt trial, and 87 of these patients proceeded
to discontinuation of nilotinib. The TFR rate at 1 and 3 years
both was 60.9% after nilotinib discontinuation (33). In the
ENESTop study, 126 patients with sustained MR4.5 after
second-line nilotinib treatment entered the TFR phase. The
TFR rates at 48, 96, and 192 weeks were 58%, 53%, and 46.0%,
respectively. Most patients requiring nilotinib retreatment
rapidly regained MMR, MR4.0, or MR4.5 (34, 35). The long-
term follow-up results showed a 5-year TFR rate of 42.9% (36),
Frontiers in Oncology | www.frontiersin.org 4
comparable to the results of the ENESTfreedom study (31).
These results illustrate the long-term durability of TFR in
patients with first or second-line nilotinib. In addition, the
subgroup analysis of the ENESTop study showed that patients
switching to nilotinib due to intolerance, resistance, and
physician preference had a similar TFR rate at 48 weeks: 30 of
51 (58.8%), 16 of 30 (53.3%), and 27 of 44 (61.4%), respectively
(43). Accordingly, first-line resistant or intolerant patients who
discontinue second-line TKI still have the chance to achieve TFR.

In the ENSTnd study, with ≥10 years follow-up in newly
diagnosed CML patients, the estimated cumulative rates of TFR
eligibility [estimated using ENESTfreedom criteria (31)] with
nilotinib 300-mg twice-daily, nilotinib 400-mg twice-daily, and
imatinib, respectively, at 5 years were 20.9%, 20.6%, and 11.0%
and 10 years were 48.6%, 47.3%, and 29.7% (44). The JALSG
CML212 study compared the achievement of MR4.5 in newly
diagnosed CML patients between nilotinib and dasatinib (45).
The MR4.5 rates by 12, 24, and 36 months were 25.6%, 37.4%,
and 40.5% in the nilotinib arm and 23.4%, 36.6%, and 44.5% in
the dasatinib arm, respectively, with no significant difference,
indicating nilotinib and dasatinib were equally effective for CML-
CP patients in achieving MR4.5. Among patients reaching TFR
eligibility, approximately 50% maintained their responses after
TKI discontinuation, and dasatinib, nilotinib TKIs did not
increase the overall TFR success rate (Tables 1, 2). Therefore,
it can be speculated that only 5% and 10% of newly diagnosed
CML patients achieved TFR at 5 years of treatment with
imatinib, nilotinib (or dasatinib), compared with 15% and 24%
at 10 years of treatment.

Multiple TKIs
The STOP 2G- TKI study estimated the safety of second-
generation TKI discontinuation in CML patients receiving
dasatinib or nilotinib (14). All patients included were treated
for at least three years and had two years of stable MR4.5. TFR
rates at 12 and 48 months were 63.33% and 53.57%, respectively.
The LAST study presented a TFR rate of 60.8% at 36 months.
The median time to molecular recurrence was the same as that in
STOP -2G TKI, both 4 months (37). In the RU-SKI study, 98
patients treated with first or second-generation TKI were
included. Survival without MMR loss at 12 and 24 months
after TKI discontinuation was 53% and 52%, respectively (38).
An observational study by Gabriel Etienne et al. exhibited MRFS
rates of 51.8% and 43.8% at 12 and 60 months, respectively,
similar to the RU-SKI study (39). Furthermore, the Argentina
Stop Trial (AST) trial recently included 46 patients also showed a
high MRFS at 6 months of 80.2% (40). Evidence from these trials
demonstrates that patients with DMR can achieve favorable
MRFS. The EURO-SKI study enrolled the largest number of
patients (n=758) treated with imatinib, nilotinib, or dasatinib
who achieved confirmed DMR for at least one year. The MRFS
rate of these patients was 61%, 50%, 49% at 6, 24 months, and
49% at 36 months (41). With 72 months follow-up, 12 out of 111
patients (10.8%) who were in TFR at 36 months, subsequently
lost MMR. Interestingly, 1% (1/98) of patients at MR4.0 at 36
months relapsed, yet the risk of relapse for those not at MR4.0
was 85% (11/13), indicating the molecular response at 36 months
October 2021 | Volume 11 | Article 769730
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after TKI discontinuation was highly predictive of molecular
relapse (46). The results suggested that the frequency of
continued molecular monitoring after three years may depend
on the molecular status. The ELN recommendations suggest
continuous measurement of BCR-ABL1 levels every 3 months
(16). BCR-ABL1 levels should be monitored every 3 months for
patients not in MR4.0, while those in MR4.0 may only need an
evaluation of BCR-ABL1 levels once or twice a year.

Second Attempt to TKI Discontinuation
An increasing body of evidence suggests that approximately one-
half of CML patients with steady DMR can successfully
discontinue TKI, and patients with molecular relapse can
regain DMR rapidly after restarting TKI (13, 27, 31). Several
studies explored the feasibility of the second discontinuation on
patients with molecular relapse after the first attempt of TKI
discontinuation. In the TRAD study, 32 patients with MR4.5 for
12 months with dasatinib treatment after failed imatinib
discontinuation attempted to achieve a second TFR. After
dasatinib discontinuation, the estimated TFR rate was 20.4% at
6 months (24). In the KID study, 15/23 patients (62.1%) who
attempted second imatinib discontinuation experienced
molecular relapse after a median of 2.9 months (47). In the
RE-STIM study, 70 patients reattempted TKI discontinuation
after a first unsuccessful attempt. The TFR rates at 12, 24, and 36
months were 48%, 42%, and 35%, respectively. Patients who lost
MR4.5 later than the median time (>3 months) after the first TKI
discontinuation experienced a remarkably lower rate of
molecular relapses after the second attempt than others (48).
In the enlarged RE-STIM study, 106 patients were enrolled with
a median follow-up of 41 months after the second
discontinuation. The TFR rates were 44.3%, 38.5%, and 33.2%
at 24, 36, and 48 months after the second TKI discontinuation.
The speed of molecular relapse after the first TKI discontinuation
remained significantly associated with the second TFR (49).
Those results showed that some patients who failed the first
discontinuation could safely and successfully discontinue TKIs a
second time, especially for patients who relapsed later than the
median time during a first discontinuation attempt. Further
investigations on the predictors that can identify patients for
second TKI discontinuation and new strategies to improve the
TFR rate are required.

Real‐World TKI Discontinuation
In recent years, several studies have reported the outcome of TKI
withdrawal in patients with CML outside clinical trials. A study
from a Spanish research group described the outcomes of 236
patients after TKI discontinuation in clinical practice. The TFR
rate at 4 years was 64%. TKI treatment duration less than 5 years
and MR4.5 duration shorter than 4 years were both associated
with a higher incidence of molecular recurrence (50). Another
observational study by an Italian research group reported an
estimated TFR at 12 months of 69% for patients discontinuing
first- and second-line TKI, including 68% for those with
imatinib, and 73% for those with second-generation TKI (51).
A Swedish group reported that 62.2% of patients discontinuing
TKI in clinical practice remained in TFR at the last follow-up
Frontiers in Oncology | www.frontiersin.org 5
(median follow-up time 1.6 years), consistent with the Spanish
and Italian studies (52). A single-institution retrospective study
also showed that 65% (65/100) patients maintained MR4.5 after a
median follow-up of 30 months after discontinuation of TKI.
MR4.5 duration for at least six years before discontinuation has
been associated with a considerably low risk of loss of MR4.5
(53). A retrospective study assessed first, second, and third
attempts to stop TKIs in patients in the real world (54); 28 out
of a total of 53 patients (53.4%) achieved sustained TFR after the
first attempt; subsequently, 4 of the 10 patients (37.5%) who
attempted the second discontinuation successfully achieved TFR.
Patients with molecular relapse achieved MMR soon after
restarting TKI. All six experienced a loss of MR4.5 after the
third attempt to stop TKI. Consistent with the RE-STIM study,
loss of MR4.5 at 3 months was an important predictive factor
for achievement of second TFR. The above studies suggest
that TKI discontinuation in CML is common and feasible
outside of clinical trials. Importantly, second successful TKI
discontinuation can still be achieved in appropriately selected
patients in clinical practice.
DE-ESCALATION TKI DOSE –

AN ALTERNATIVE STRATEGY

Several clinical studies have evaluated whether TKI dose
reductions can maintain molecular responses. In a study
assessing whether high-dose imatinib could be safely reduced
to a standard dose without increasing the risk of losing DMR,
MMR was maintained in 90% of 68 patients (61/68) with 400 mg
imatinib (55). In the NILO-RED study, 67 patients with MMR or
deeper molecular response switched from a standard to low dose
Nilotinib. The 12-month probability of survival without MMR
loss was 97% (56). The non-randomized DESTINY trial assessed
the efficacy of a novel approach characterized by halving the dose
of a TKI for 12 months and subsequently discontinuing the TKI
completely for a further 24 months (57). 174 patients who
received TKI for at least 3 years and achieved MMR at least
for 12 months were included, of which 125 patients were in the
MR4.0 cohort and 49 patients were in the MMR cohort. During
the 12 months of half-dose therapy, 2% of patients with MR4.0
and 19% with MMR experienced molecular recurrence. All
relapsing patients rapidly regained MMR or better within 4
months of resumption of full-dose TKI. These results indicated
the feasibility of lower TKI doses in maintaining responses in
patients with stable responses. Fassoni et al. applied a simple
mathematical model that describes the time course of TKI
response in CML as a dynamic process (58). Their findings
showed that dose reduction retained the long-term efficacy in
patients who achieved stable molecular remission.

Furthermore, long-term follow-up of the DESTINY trial
presented 2-year MRFS rates of 72% and 36% for the MR4.0
and MMR groups after TKI discontinuation (59). Relapse-free
survival in the DESTINY trial appeared to be better than in the
EURO-SKI study, with 24-month relapse-free rates of 50% (41).
Some studies had similar results as the DESTINY trial, with the
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chen et al. TFR in CML
reduced dose group having a higher TFR rate than the full-dose
group. A retrospective study compared the efficacy of TKI
discontinuation in patients with reduced and standard doses.
Higher TFR rates were observed in the low-dose group at 12
(80% vs.56.8%, P=0.03) and 60 months (58.8% vs. 47.5%,
P=0.14) (60). Another recent study evaluated the efficacy and
safety of TKI dose reduction in 246 patients who reached MMR
due to TKI intolerance in the real world. The 3-year MRFS in
MMR and MR4.0 were 94.1% and 87.1%. Interestingly, of the 94
patients in MMR, 54.2% achieved a molecular response level of
MR4.0 or higher with a lowered dose. 76 patients discontinued
TKI after 1.76 years of low dose treatment, and the 2-year TFR
rate in these patients was 74.1% (61). Consistent with the
DESTINY trial, a TKI step-down strategy before treatment
discontinuation may be a promising strategy to improve TFR.

A possible mechanism underlying the improved TFR and
response in the reduced group may be altered immune response
against leukemia induced by TKI de-escalation (62). In a recent
study, an ordinary differential equation model including an
antileukemic immunologic effect was used to assess the
predictive impact of different immunological configurations on
TKI discontinuation. Dose optimization could be considered for
class C patients since they could achieve TFR only if an optimal
balance between leukemia abundance and immunologic
activation were achieved before treatment cessation (63). In the
updated DESTINY study, BCR-ABL1IS values monitored during
dose reduction were strongly associated with individual relapse
risk after TKI discontinuation. It was recommended that after a
12-month dose reduction period, patients should only stop
treatment if they are below MMR and have a negative/low
BCR-ABL1 slope; patients with a high slope should return to
full-dose TKI therapy because of the high likelihood of relapse
(64). The changes in BCR-ABL1 kinetics changes during dose
reduction may help clinicians decide whether to stop TKI
treatment after the dose reduction period.
PREDICTIVE FACTORS OF MOLECULAR
RECURRENCE

Identifying predictive factors of molecular recurrence
contributes to the clinical prediction of a successful attempt
and the ability to sustain TFR. Here, we discuss the clinical,
immunological, and other factors that may help identify patients
suitable for TKI discontinuation.

Clinical Indicators
During the Stop Imatinib (STIM1) study, patients with low or
intermediate Sokal risk scores and IM duration longer than 54
months experienced a considerably lower rate of molecular
recurrence (13). The TKI treatment duration was also
associated with a favorable prognosis in other studies (23, 27,
43, 50). The EURO-SKI trial documented that longer DMR
durations were associated with an increased probability of TFR
(41). The recent TRAD study further reported that one
additional year of MR4.0 duration decreased the risk of TFR
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failure by 14.0% and proposed six years as the shortest imatinib
duration (65). Several studies reported the depth of molecular
response at the study baseline could predict TFR (22, 25, 32). In
this regard, the ENESTfreedom study described patients
maintaining MR4.5 at 48 weeks experienced a better TFR rate
at 5 years than patients lacking MR4.5 (86.0% for patients in
MR4.5 vs. 33.3% for patients in MR4.0 and 20.0% for patients in
MMR), suggesting a stable MR4.5 may be a potential predictor of
successful TFR (31). In the DADI trial, imatinib resistance was a
significant risk factor for molecular relapse (25). Nevertheless,
patients switching to nilotinib due to imatinib intolerance and
resistance in the ENESTop study interestingly experienced a
similar TFR rate at 48 weeks (58.8%vs. 53.3%) (43). Furthermore,
in the multiple, TKIs discontinuation study, first-line 2-3G TKIs
compared to imatinib were significant predictors of MRFS (39).
Imatinib withdrawal syndrome was associated with a higher
probability of sustained MMR than patients without
withdrawal syndrome (79.5% vs. 49.2%, P=0.003) in the KID
study (19). However, no association between withdrawal
syndrome development and the rate of molecular relapses was
found in the RU-SKI study (38). These results substantiate
patients with deeper molecular responses and a longer
duration of molecular responses before stopping TKI had
higher rates of TFR.

Several studies reported that patients with e14a2 transcripts
had a higher probability of maintaining TFR than those with
e13a2 transcripts (66, 67). In a recent study, BCR-ABL1 levels at
the first month after TKI discontinuation were associated with
successful TFR. Moreover, the slopes obtained with the values at
baseline at 1 and 2 months were also significantly different
between patients with and without sustained MMR (68). In
another study, the time required to halve the initial BCR-ABL1
transcripts value was the strongest independent predictor of
sustained TFR. Patients with halving times less than 9.35 days
had a significantly higher TFR rate than those with halving times
greater than 21.85 days (80% vs.4%, P<0.01) (69). Digital PCR
(dPCR) is a technique that promises to achieve highly accurate
absolute nucleic acid quantification with higher precision and
improved daily reproducibility compared to real-time PCR (RT-
PCR) (70). In the ISAV study, age and dPCR results were
significant predictors of molecular recurrence (20). Those
results corroborate the critical importance of the BCR-ABL1
transcript type and the kinetics of BCR-ABL1 decline on long-
term outcomes. In addition, BCR-ABL1 levels monitored by
dPCR, if available at TKI discontinuation, should be taken into
account in selecting patients suitable for discontinuation.

Immunological Indicators
After discontinuation of TKI therapy, relapse depends
significantly on an individual’s leukemia-specific immune
response (63). Immunological indicators are also emerging as
predictive biomarkers of molecular relapse. In the DADI trial,
high NK-cell counts, including CD3– CD56+ and CD16+ CD56
+ cells, and high counts of NK-cell large granular lymphocytes
(CD57+ 56+) were significantly associated with TFR (25).
During the three years follow-up of the D-STOP study, CD3-
CD56+ NK, CD16+ CD56+ NK, and CD57+ CD56+ NK large
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granular lymphocyte (NK-LGL), CD8+ CD4- cytotoxic T cell,
and CD57+ CD3+ T-LGL cell numbers in patients with TFR
were transiently elevated after 12 months but returned to basal
levels after 24-month dasatinib consolidation. Silent responses of
the T/NK subsets to dasatinib throughout consolidation therapy
were significant for maintaining TFR (26). In an immunological
study within the EURO-SKI study, the MRFS rate was higher in
patients with a higher relative proportion of NK cells than the
median, compared with patients with lower NK-cell proportion
(73% vs. 51% at 6 months, P=0.02). Moreover, patients with
higher than median CD56bright NK cells exhibited a decreased
MRFS at 6 months (52% vs 70%, P=0.14) (71). In the
IMMUNOSTIM study, the CD56dim NK cell count was an
independent prognostic factor of TFR (72). It is widely
acknowledged that NK cell functions are under the control of
surface inhibitory and activating receptors, such as Natural killer
group 2(NKG2) and killer immunoglobulin-like receptors (KIR).
Patients homozygous for KIR A haplotype experienced an
increased cumulative TFR (73). In another study, the
KIR2DL5B-positive genotype was independently related to a
delayed second DMR after TKI restart (74). KIR2DS3 was also
showed to be more frequent in patients who relapsed after TKI
discontinuation (75). HLA polymorphisms have been observed
to be associated with TFR (76). Natural killer group 2D receptor
(NKG2D) is an activating receptor expressed on NK cells.
NKG2D HNK1/HNK1 (high-cytotoxic activity-related allele
on NKG2D hb-1) haplotype has been associated with the faster
acquisition of MR4.5 (77). NKG2A downregulation by dasatinib
enhanced NK cell cytotoxicity and accelerated molecular
responses (78). These results demonstrated that NKG2D gene
polymorphisms and NKG2A might serve as biomarkers for
predicting TFR following dasatinib treatment.

Intriguingly, in the EURO-SKI trial, increased level of CD86
receptor, the ligand of CTLA-4 on plasmacytoid dendritic cells
was associated with CD8+ CTLs exhaustion and higher risk of
relapse after TKI cessation (79). Patients with CXorf48-specific
CTL-negative displayed an increased relapse rate compared to
patients with CXorf48-specific CTL-positive (63.6% vs. 0%),
indicating CXorf48 could be a promising therapeutic target of
Leukemic stem cells (LSCs) to achieve TFR (80). In a recent
study, a notable increase in unconventional CD8± T cells
expressing TCRgb+ was observed in patients with TFR (75).
Monocytic myeloid-derived suppressor cells (Mo-MDSCs) were
concomitantly decreased in patients who achieved TFR (81).
Such evidence showed that both immune suppressors and
effectors in immunobiology contribute to underlying
successful TFR.

Other Indicators
Several studies have explored the effect of genetic factors on the
successful discontinuation of TKI. Downregulation of Plasma
miR-215 and, microRNA-148b has been associated with
successful discontinuation of imatinib (82, 83). The results
from whole-exome sequencing revealed variants in genes
CYP1B1, ALPK2, and IRF1 in patients with relapse and one
variant in gene PARP9 in patients without relapse (84). In a
EURO-SKI sub-trial, patients with high transcript levels of the
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ABCG2 efflux transporter underwent a higher risk of
relapse (85).
THE NEW TECHNOLOGY OF MOLECULAR
MONITORING

New monitoring technology may contribute to the identification
of patients who are eligible to discontinue TKI in the future. In
recent years, digital PCR (dPCR) has emerged as one of the most
promising tools. Some recent findings indicated that dPCR is
more efficient than RQ-PCR for monitoring MRD in CML and
contributes to selecting patients more compatible with TFR (37,
86–88). In the study by Nicolini et al., low levels of BCR-ABL1
were assessed by dPCR in 175 patients at the time of
discontinuation of imatinib. The duration of TKI (≥74.8
months) and dPCR (≥ 0.0023%(IS)) were the two identified
predictive factors of molecular recurrence (86). Colafigli, G et al.
have reported that dPCR-positive patients presented significantly
increased risks of molecular recurrence compared to dPCR-
negative patients (50%vs.14%, P=0.026) (87). In another study,
patients with a dPCR < 0.468 experienced a significantly higher
TFR rate at 2 years than patients with dPCR ≥ 0.468 (83% vs.
52% P = 0.0017). Nevertheless, RT-qPCR was unable to identify
patients with a higher risk of relapse after TKI discontinuation
(88). In the LAST study, dPCR was administered in patients with
undetectable BCR-ABL1 by RQ-PCR. The molecular recurrence
rate for patients with detectable BCR-ABL1 by RQ-PCR, for
undetectable BCR-ABL1 by RQ-PCR but detectable by dPCR,
and for undetectable BCR-ABL1 by both dPCR and RQ-PCR
were 50.0%, 64.3%, and 10.3%, respectively (P≤ 0.001).
Accordingly, detection of BCR-ABL1 by RQ-PCR or dPCR at
the time of TKI discontinuation predicted a higher risk of
molecular recurrence (37).
NOVEL STRATEGIES TARGETING LSCS

Although most patients with CML-CP achieve a good response
with TKI, approximately half of them can successfully
discontinue TKI (13, 34, 89). Disease progression and relapse
after TKI discontinuation is a conundrum that remains
unresolved. Evidence from several studies demonstrated that
TKIs act mainly on highly proliferating leukemic cells but have
modest effects on CML stem cells (LSCs), which can survive
using kinase-independent mechanisms (90, 91). Single-cell RNA
sequencing analysis used to distinguish between Bcr-Abl-positive
and negative stem cells showed that malignant stem cell
populations with quiescence-related genetic features persisted
after treatment (92) (Figure 1). More emphasis should be placed
on kinase-independent mechanisms and targeting quiescent,
insensitive LSCs to achieve long-term survival in patients. In
recent years, many researchers sought to further study LSCs, and
many promising novel strategies targeting LSCs have been
developed, aiming to eliminate LSCs and improve outcomes of
patients (Figure 2).
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Targeting Bone Marrow Microenvironment
Signals fromthebonemarrowmicroenvironmentplay a crucial role
in quiescent LSCs escaping TKI therapy (93). The C-X-C motif
chemokine ligand 12 (CXCL12) is a major chemoattractant for the
Frontiers in Oncology | www.frontiersin.org 8
homing process and plays a major role in their localization to
regulatory niches of LSCs and normal HSCs (94). Disturbed
expression of the C-X-C chemokine receptor type 4 (CXCR4) in
CML LSCs or CXCL12 targeting in CML LSCs can affect the
FIGURE 2 | Novel strategies targeting CML leukemia stem cells.
FIGURE 1 | Model for the treatment of CML.
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homing process. Moreover, up-regulation of CXCR4 by TKI
contributed to the migration of LSCs to the bone marrow stroma
and promoted the survival of quiescent LSCs (95). CXCR4
inhibitor, plerixafor, in conjunction with TKI has also been
shown to override drug resistance (96). CXCR4 antagonist
BKT140 combined with TKI was found to overcome the
protection of bone marrow stroma and reduce the growth of
CML cells both in vitro and in vivo (97). Deletion of CXCL12
from mesenchymal stem cells increased the elimination of LSC by
TKI treatment (98). Novel therapy interrupting the CXCR4-
CXCL12 axis may weaken the protective role of the bone marrow
microenvironment, enhance the sensibility ofCMLcells toTKI, and
even eliminate LSC.

Evidence has shown that autocrine tumor necrosis factor-a
(TNF-a) production in LSCs promotes their survival by inducing
NFkB/p65 activity, independent of BCR-ABL kinase. TNF-a
inhibitor combined with TKI induced significantly higher levels
of apoptosis of LSCs compared to either treatment alone, as TNF-a
inhibitor showed no off-target inhibition of BCR-ABL kinase
activity (99). In another study, TNFa antibody infliximab
combined with TKI impaired LSCs growth (100). Moreover,
TNF-a signaling was found to mediate expansion and increased
expression of CXCL1 in 6C3+ stromal progenitors, and higher
expression CXCL1 signaling through CXCR2 enhanced growth
capacity and self-renewal of LSCs. Interestingly, CXCR2 inhibitor
in combination with TKI remarkably impaired the long-term
regenerative capacity of LSCs in vivo, with minimal impact on the
total peripheral blood count of normal mice (101). IL-1 signaling
has also been found to contribute to the overexpression of
inflammatory mediators in CML LSCs, indicating that blocking
IL-1 signaling can modulate the inflammatory environment.
Combined treatment with IL-1RA for IL-1 blockade significantly
enhancedLSCelimination comparedwithTKI alone,whichmaybe
associated with additional inhibition of NF-kB signaling (102).
Indeed, before the advent of Imatinib, IFNa was used as first-line
therapy andwasmore active against primitiveCMLprogenitor cells
than imatinib treatment, which preferentially targeted more
mature, differentiated CML progenitor cells (103). In addition,
results from an in vivo study showed that IFN-a activated
dormant stem cells, sensitizing them to the killing effects of
subsequent therapeutic agents (104), thus supporting IFN-a
combined with a TKI may be a promising strategy to improve
outcome. The interim analysis results in phase III clinical study of
TIGER (CML V) showed that the upfront accession of Peg-IFN to
Nilotinib further increased MR4.0 and MR4.5 rates, which may
translate into higher TFR rates (105). In addition, the MRFS rate
was significantly higher in patients treated with IFN for a longer
periodbefore initiatingTKI and inpatients using IFNafter stopping
TKI (106, 107).

Targeting LSCs via Molecular Pathways
Targeting key genes required to regulate LSCs survival but not
normal hematopoietic stem cells (HSCs) is an important strategy
to inhibit LSCs. Several signal pathways are involved in the
regulation of survival and proliferation of LSCs, including Wnt/
b-catenin, Hedgehog, MAPK/MNK1/2, mTOR, PTEN, PP2A,
Alox5, JAK/STAT, SIRT1, and others (108–115). Inhibitors or
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agonists targeting some of these signal pathways have been
developed and investigated. For example, inhibition of b-
catenin by C82, deregulation of the hedgehog by smoothened
antagonist LDE225, PP2A-activating drugs, JAK2/STAT5
inhibition ruxolitinib has been shown to reduced survival of
LSCs (116–119). A Peroxisome Proliferator-Activated Receptor
gamma (PPAR-g) agonist, Pioglitazone is currently used as an
antidiabetic agent without hypoglycemic effects in healthy
humans. Pioglitazone has been reported to alter the quiescent
state of LSCs by reducing STAT5 transcription, thus sensitizing
them to TKI (120). In another study, LSCs apoptosis triggered by
PPARg agonist rosiglitazone is related to increased expression of
Scd1, Pten, and p53 (121). In the ACTIM phase 2 clinical trial,
the cumulative incidence of MR4.5 was 56% in patients who
yielded MMR but did not achieve MR4.5 after 12 months of
pioglitazone combined with imatinib treatment (122). In a recent
study, FcgRIIb was demonstrated to be upregulated in primary
CML stem cells, with BTK as a major downstream mediator.
Targeting the Bcr-Abl-FcgRIIb-BTK axis by ibrutinib combined
with TKI remarkably enhanced apoptosis in quiescent LSCs and
thus contributed to eradicating LSCs, suggesting that combining
TKI therapy along with BTK inhibition could be a potential
approach targeting LSCs (123). Hypoxia-inducible factor-1a
(HIF-1a) is a key regulator of the cellular and systemic
adaptation to low oxygen (124). In murine models of CML,
HIF1a has been documented to have a critical role in the survival
and proliferation of LSCs. Deletion of HIF-1a inhibited CML
proliferation by impeding cell cycle procession and inducing
apoptosis in LSCs (125). In vivo and in vitro studies have
demonstrated that HIF-1 inhibitors reduce the survival and
growth of CML cells and decrease the sustenance of LSCs, but
without serious effects on non-CML hematopoietic cells (126).

Targeting LSCs via Bcl-2 and
P53 Modulation
The splice variants encoded by BCL2 family genes have pro-and
anti-apoptotic functions that contribute to leukemogenesis, CML
progression, TKI resistance (127). BCL-2 is overwhelmingly
expressed in LSCs and is further increased when patients
advance to blast crisis (128). Emerging evidence has shown
that combining targeting of BCL-2 by BCL-2/BCL-XL or pan-
BCL-2 inhibitors and BCR-ABL tyrosine kinase can enhance the
eradication of quiescent LSCs (128–130). Venetoclax, a BCL-2
-selective inhibitor, has shown potent activity in inhibiting the
growth of BCL-2-dependent hematological cancers but spares
platelets, thus avoiding pronounced thrombocytopenia caused
by BCL-XL inhibition (131). Preclinical studies showed
significant synergistic effects between venetoclax and TKI on
eradicating CD34+CD38−, CD34+CD38+, and quiescent stem/
progenitor CD34+ cells (132). In a recent retrospective study,
nine CML-BP patients treated with venetoclax in combination
with TKIs experienced an overall response rate of 75% and
overall survival of 10.9 months (133).

P53 is crucial in tumor suppression, which can activate the
pro-apoptotic BCL-2 family BAX, PUMA, NOXA, and BID and
antagonize the anti-apoptotic proteins BCL-2 and BCL-XL
triggering apoptosis (134, 135). Targeting p53 in combination
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with TKI is emerging as a potential strategy to eliminate CML
LSCs. SIRT1 is, in fact, an important p53 regulator and is
overexpressed in LSCs. As mitochondrial respiration is not
affected by TKI treatment, in vitro and in vivo deletion of
SIRT1 inhibited expression of mitochondrial genes and
enhanced sensitivity to TKI (136). Inhibiting of SIRT1 or
SIRT1 knockdown also increased apoptosis in LSCs and
reduced their growth by activating p53 (137). In recent years,
activation of p53 by inhibiting MDM2 (the E3 ligase of p53) in
combination with TKI has been investigated. The results showed
that TKI in combination with MDM2 inhibitor markedly
induces apoptosis of LSCs and enhances the efficacy of TKI by
inducing pro-apoptotic and suppressing anti-apoptotic Bcl-2
proteins (138–140).

Targeting Autophagy in LSCs
Autophagy is a lysosomal-mediated, self-degrading process
involved in maintaining cellular homeostasis by recycling and
decomposing impaired or senescent organelles through the
formation of autophagosomes (141, 142). Autophagy may also
promote tumor survival by assisting tumor cells to adapt to
metabolic stress and evade apoptosis induced by anticancer
drugs (143). In CML, autophagy has been documented to be
induced in TKI-treated LSCs, which express higher levels than
differentiated cells and act as a survival mechanism (144, 145).
Several studies have shown that lysosomotropic agent
hydroxychloroquine (HCQ) eliminated CML cells and
enhanced LSCs to TKI-mediated apoptosis (146, 147).
Intriguingly, Lys05, a highly potent lysosomotropic agent,
reduced LSCs quiescence and targeted xenografted LSCs
combined with TKI treatment (148). Autophagy inhibitors
were also among the first compounds to be evaluated in the
clinic. The CHOICES study, which explored the safety and
efficacy of imatinib (IM) and hydroxychloroquine (HCQ)
compared with IM alone, showed MMR rates were 92% and
80% (P=0.21) in patients with IM/HCQ and IM at 12 months,
while DMR/MMR rates were75% and 66.7% in patients with IM/
HCQ and IM at 24 months (149).

Epigenetic Targeting
Besides the acquisition of genetic lesions, LSCs also exhibit
epigenetic dysregulation and reprogramming. Recently,
epigenetic therapies have been demonstrated to effectively
eliminate LSCs and provide a potential cure for CML in
combination with TKI. EZH2, a histone methyltransferase, is a
polycomb repressive complex 2 (PRC2) component and is
overexpressed in CML LSCs (150). PRC2 is dysregulated in
LSCs and coupled with extensive reprogramming of
H3K27me3 targets, resulted in altered dependency of the
survival in LSCs on EZH2 compared to normal cells (151). In
another study, EZH2 inhibitors inhibited colony formation of
both human LSC and LSCs with the T315I mutation but spared
HSCs. EZH2 deletion also markedly reduced leukemic cells,
delayed disease progression, and prolonged survival compared
to the control in vivo (152). EZH2 inhibitors in combination with
TKI led to significantly increased apoptosis and a significant
reduction in colony formation in LSCs compared to TKI
Frontiers in Oncology | www.frontiersin.org 10
treatment alone, even in the undivided “TKI-persistent” cells,
which may be associated with the reactivation of pro-apoptotic
targets and/or promotion of apoptosis downstream of p53 by
overcoming BCL6 and EZH2-mediated inhibition of p53
upstream (151).

Histone deacetylase inhibitors (HDACi), a group of
promising anticancer agents, can induce apoptosis in
nonproliferating cancer cell lines by modulating gene
expression through increased histone lysine acetylation (153).
HDACi combined with TKI resulted in significantly increased
apoptosis of quiescent CML CD34+ cells highly resistant to TKI,
which may be associated with downregulation of HOX-, MYC-
and WNT-related genes and the reduced expression of E2F-
regulated genes (154). In another study, HDACi JSL-1 combined
with TKI enhanced the elimination of LSCs and sensitized LSC
cells to TKI through g-catenin-independent mechanisms (155).
Chidamide, a novel selective HDACi, markedly reduced the
transcript levels of Bcr-Abl and b-catenin and induced
apoptosis in LSC when combined with TKI, but exhibited little
toxicity towards normal CD34+ progenitor cells (156). Protein
Arginine Methyltransferase (PRMT5) was overexpressed in
human CML CD34+ cells. Targeting PRMT5 with the small-
molecule inhibitor PJ-68 reduced the survival and renewal
capacity of LSCs by suppressing the Wnt/b-catenin pathway
and increased levels of negative regulators p15INK4B and p27KIP1

(157). These findings suggest that epigenetics-based therapies
may have a potential role in eradicating LSCs.
Targeting LSCs via Surface Markers
Since LSCs and HSCs express similar cell surface markers,
additional markers that can distinguish LSCs from HSCs have
been investigated, providing an opportunity to prioritize the use
of antibodies against LSCs. IL1RAP was identified as a unique
cell surface biomarker distinguishing Ph (+) from Ph (-) LSCs by
FISH (158). Targeting IL1RAP by antibodies and novel CAR T-
cell therapy has been found to exert anti-leukemic effects in vivo
and in vitro through specific killing, with no severe negative
effects on normal HSC (159, 160). CD26 (DPPV) has also proved
to be a novel, specific biomarker for CML LSCs, which is
promising for the diagnosis and targeted treatment of CML
(161–163) . In a recent study, a venetoclax- loaded
immunoliposome remarkably induced apoptosis in CD26+
cells in both stem cells and progenitor cells population (164).
However, DPPIV blocker vildagliptin in combination with
nilotinib did not exert a synergy effect, indicating insignificant
effects of co-administration (165). CD25 is a novel STAT5-
dependent marker of LSCs, whose expression is upregulated by
the PI3K/mTOR blocker BEZ235. In addition, BEZ235 produced
synergistic antitumor effects on CML cells when combined with
nilotinib or ponatinib (166). Recently, CD93 has also been
identified as a novel marker on LSC and persisted in patients
with molecular recurrence after TKI discontinuation (167, 168).
CD25 and, CD93 are potentially promising targets for LSCs-
eradicating immunotherapies. These significant findings support
the approach of targeting surface antigens of LSCs for
LSCs elimination.
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Targeted agents targeting the above molecules or pathways
have shown promising efficacy in eliminating LSCs by enhancing
the killing effect of TKI on LSCs in vitro and vivo studies. Several
promising strategies have also entered clinical trials, and some
preliminary results showed that TKIs in combination with IFN-
a, JAK2 inhibitors, PPAR-g agonists, BCL-2 inhibitors, and
lysosomotropic agents have the potential to improve treatment
response in CML (169, 170).

CONCLUSIONS

In clinical studies and the real world, some patients who achieve a
stable DMR can successfully discontinue first- or second-generation
TKI. However, caution should be taken in MMR patients
attempting TFR outside of clinical trials. There remains a
possibility for patients who fail a first TFR to discontinue TKI
with close monitoring. Patients with a deeper molecular response
and longer molecular response duration before stop TKI have
decreased risk of molecular relapse. Some immunological
indicators such as NK cell counts and NKG2D can also
contribute to identifying patients suitable for TKI discontinuation.
Developing models that incorporate relevant predictors to predict
the likelihood of maintaining TFR is clinically important. Since TKI
Frontiers in Oncology | www.frontiersin.org 11
de-escalation may alter the immune response against leukemia and
preserve the long-term efficacy of standard dose TKI therapy while
reduce adverse events, the de-escalation approach to TFR may be a
promising strategy aimed to improve TFR. New molecular
monitoring techniques and novel strategies contributing to the
eradication of LSCs are currently under evaluation and are
expected to yield preferable outcomes for improving TFR.
Importantly, there is hope to expand the TFR population and
improve TFR in clinical practice shortly.
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