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Simple Summary: Onboard, imaging techniques have brought about a huge transformation in the
ability to deliver targeted radiation therapies. Each generation of these technologies enables us to
better visualize where to deliver lethal doses of radiation and thus allows the shrinking of necessary
geometric margins leading to reduced toxicities. Alongside improvements in treatment delivery,
advances in medical imaging have also allowed us to better define the volumes we wish to target. The
development of imaging techniques that can capture aspects of the tumor’s biology before, during
and after therapy is transforming how treatment can be delivered. Technological changes have
further made these biological imaging techniques available in real-time providing the opportunity to
monitor a patient’s response to treatment closely and often before any volume changes are visible on
conventional radiological images. Here we discuss the development of robust quantitative imaging
biomarkers and how they can personalize therapy towards meaningful clinical endpoints.

Abstract: Onboard, real-time, imaging techniques, from the original megavoltage planar imaging
devices, to the emerging combined MRI-Linear Accelerators, have brought a huge transformation
in the ability to deliver targeted radiation therapies. Each generation of these technologies enables
lethal doses of radiation to be delivered to target volumes with progressively more accuracy and
thus allows shrinking of necessary geometric margins, leading to reduced toxicities. Alongside
these improvements in treatment delivery, advances in medical imaging, e.g., PET, and MRI, have
also allowed target volumes themselves to be better defined. The development of functional and
molecular imaging is now driving a conceptually larger step transformation to both better understand
the cancer target and disease to be treated, as well as how tumors respond to treatment. A biological
description of the tumor microenvironment is now accepted as an essential component of how to
personalize and adapt treatment. This applies not only to radiation oncology but extends widely in
cancer management from surgical oncology planning and interventional radiology, to evaluation of
targeted drug delivery efficacy in medical oncology/immunotherapy. Here, we will discuss the role
and requirements of functional and metabolic imaging techniques in the context of brain tumors and
metastases to reliably provide multi-parametric imaging biomarkers of the tumor microenvironment.

Keywords: imaging biomarker; microenvironment; brain cancer; quantitative imaging; radiation
oncology; response; RECIST
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1. Introduction

Since on-board cone-beam computed tomography (CBCT) systems entered the market
in 2005, their use has enabled image-guided radiotherapy to become the routine standard of
care for the majority of radiotherapy procedures in the second decade of the century. This
has resulted in improved tumor control and reduced toxicities for patients [1]. Since then,
the radiotherapy landscape has seen multiple paradigms evolve, driven by imaging [2,3].
Of these, quality, toxicity reduction, dose escalation, and hypo-fractionation, largely relate
to the accuracy and precision of delivery which, while not yet fully exploited, are well
described in the literature and are being developed in clinic through the use of systems
such as linear accelerators with onboard MRI and even the prospect of MR-guided particle
therapy [4,5].

The other paradigms, voxelization and adaptation, and to it we would add ‘response’,
are the focus of this paper. Their evolution is reliant on the functional and metabolic aspects
of imaging which are yet to be fully exploited but could significantly enhance disease
outcomes [6]. Their use would allow the tissue microenvironment to be probed, both on
a whole tumor and voxelwise basis. This in turn would enable techniques such as dose
painting during radiotherapy planning; treatment adaptation; as well as an assessment of
treatment response and tumor micro-environmental changes in a more biologically relevant
way. Early intervention and adaptation are essential in the management of cancer therapy
and key components of the personalization of care.

There exists a large range of imaging techniques, from the more “direct” signal inter-
rogation of tumor physiology using computed tomography (CT) and magnetic resonance
imaging (MRI) with or without the use of contrast-enhancing tracers; to more “indirect”
approaches often referred to as “metabolic” imaging where the imaging signal is a by-
product of tumor metabolism, often measured with positron emission tomography (PET)
following either glucose or oxygen consumption mechanisms. Here, we will take a closer
look at the role of various functional imaging techniques in the context of brain tumors
and metastases treated with both stereotactic radiosurgery and (systemic) immunother-
apy. Using experience with Phase 1/2 trials, we will discuss the feasibility of obtaining
functional parametric images, how they can describe various components of the tumor
microenvironment and how they can reliably be used to both plan and evaluate treatment
response. This will start with an in-depth look at the concept of what constitutes a reli-
able clinical endpoint. Biological imaging will focus mostly on flow-based and metabolic
MRI and PET techniques. Reviewed works were chosen to support the hypotheses and
potential transformative practices of a biological personalization to cancer treatment rather
than providing a full systematic literature review. The reliability of using multiparametric
techniques in routine radiation oncology practices will be discussed as well as the rele-
vance of computational image processing techniques and use of artificial intelligence. It
is now known that metabolic reprogramming in brain tumors is influenced by the tumor
microenvironment, hence contributing to drug resistance and tumor recurrence. Many of
these aspects of altered metabolism provide novel therapeutic opportunities to effectively
treat primary brain tumors, but furthermore, altered cancer metabolism can be leveraged
to noninvasively image tumors, which facilitates improved diagnosis and the evaluation of
treatment effectiveness.

2. Evaluation of Treatment Response

Defining reliable endpoints is an essential part of treatment assessment, and still
presents as a challenge to the oncology community. Progression-free-survival (PFS) has
become increasingly important and with it, the ability to radiologically assess progres-
sion [7]. Although response rate, overall survival (OS), and PFS are well-known indicators
of treatment efficacy, several other aspects have been studied to assess responses associated
with clinical benefits to the patient, ranging from quality of life to the need of further
treatments [8]. Endpoints in oncology can be objective or subjective, the first ones being
preferred due to reducing self-report biases and being more accurate when reported [9]. Ob-
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jective or standardized tests are usually based on function (e.g., objective cognitive testing),
while subjective tests rely usually on symptoms and signs and their burden to the patient
(patient-reported outcome). Some current endpoints being evaluated in neuro-oncology
are cognitive standardized testing, symptom burden, quality of life, seizure activity and
corticosteroids use.

Identification and delineation of tumor burden on imaging is a critical, yet challenging,
function for neuro-oncology practice. Currently, the gold standards for the radiological
assessment of treatment progression/response are the Response Evaluation Criteria in
Solid Tumors (RECIST) [10] or the Radiological Assessment of Neuro-Oncology Criteria
(RANO) [8]—the latter being more oriented towards assessment with MRI of the brain. Both
of these techniques characterize disease as either stable, progressing, partially responding,
or completely responding, based on changes in the dimensions of the tumor observed
on radiological imaging. Anatomical changes in the tumor burden on different imaging
sequences are used as surrogate for efficacy throughout the entire treatment journey.

One of the main weaknesses of these anatomical methods is the lack of any func-
tional/biological dimension in the assessment. This was partially acknowledged in the
development of the original RANO which, explicitly excludes tumors exhibiting greater
enhancement after radiation treatment. These weaknesses have been exacerbated in recent
years as the use of immunotherapy has grown, which can induce an immune response
around the tumor, shown as enhancement on imaging, which can appear radiologically
as progression—the extreme scenario being an immunotherapy-responding patient being
incorrectly moved to palliative management based on inaccurate response assessment.
Pseudo-progression is a confounder to both RECIST and RANO. In response, iRECIST [11]
and iRANO [12] have been developed, which concede that the decision on treatment
response must be delayed and confirmed with later images when dealing with patients un-
dergoing immunotherapy. Hence, there is still a need to develop methods that distinguish
treatment failure from pseudoprogression.

The RANO efforts have also advocated for the use of clinical status as an endpoint,
to assess response to treatment of different types of brain tumors. One example is lep-
tomeningeal metastases (LM), a feared complication that can arise with tumor progression,
usually presenting with discordant clinical and radiological features. Protocols such as
the RANO-LM have been developed to refine recommendations of endpoints and to
response criteria to specific settings, adding domains such as gait, strength, level of con-
sciousness, and behavior to the Neurological Assessment in Neuro-Oncology (NANO)
assessments [8,13]. However, these criteria still need validation and are restricted to clinical
trials. Nowadays in neuro-oncology, disease progression is mostly assessed and defined
using qualitative and quantitative evaluation of tumor burden (tumor is measured us-
ing two diameters) before, during, and after therapy. However, they are many other
variables correlated to clinically meaningful progression including quality of life and or
neuro-cognition [14].

Quality of life (QoL) and neuro-cognition have been in the spotlight recently for
becoming an essential endpoint to be established, especially since patients are experiencing
longer survival rates because of more effective treatment. It is imperative to consider
QoL as clinical trial endpoints because it not only directly impacts the patients’ everyday
lives, but it has been shown that morbidity correlates to poor prognosis, for example, the
worsening of cognitive function [8]. Objective QoL and neurocognitive assessments are
ultimately preferred since they increase reproducibility and decrease self-report bias.

Additionally, accurate criteria regarding optimal timing of post-treatment tumor
imaging still poses a challenge to radiologists. That means, finding the balance between
assessing imaging early enough to catch an incomplete response and proceed with new
intervention; and allowing enough time for complete tumor response and the resolution of
radiotherapy-induced inflammation. Because in many tumors types appropriate timing
of imaging is still not a consensus, many protocols such as RANO, i-RANO, i-RECIST
and RANO-LM are raising efforts to establish reliable endpoints and enable widespread
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clinical adoption of the new therapies. Future work should apply the present model to
new and functional/quantitative imaging technique, in addition to leveraging the power
of artificial intelligence.

3. Biological Imaging

Medical image biomarkers of cancer promise improvements in patient care through
advances in precision medicine. Compared to genomic biomarkers, image biomarkers
provide the advantages of being non-invasive, and characterizing a spatially heterogeneous
tumor in its entirety, as opposed to limited tissue available via biopsy. Additionally, the
understanding that functional and quantitative imaging of the tumor microenvironment is
better poised to capture changes in tumor physiology and functional behavior following
treatment much sooner than radiological measurements spurred the exponential effort
in imaging biomarker development. A key component in capturing biological changes
is understanding tumor heterogeneity, hence the importance of voxelization. Tumor
heterogeneity is due, at least in part, to the stability of multiple genomic clonal populations
within a neoplasm [15]. These arise from divergent evolution of the originating cells’
progeny and may be sustained by geographical isolation within the tumor and cooperation
between clones. Tumor-extrinsic features of the extracellular matrix (ECM) and tumor
microenvironment (TME) lead to dynamic interplay between epigenetically regulated
phenotypes. Spatial heterogeneity in TME components across a tumor may reinforce
intra-tumor heterogeneity, whereas global changes in TME between patients influences
inter-tumor heterogeneity [16].

3.1. Flow-Based Physiological Imaging

One aspect of the TME that has been heavily investigated is tumor angiogenesis and
methods focusing on (indirect) metrics of the permeable nature of tumor microvascula-
ture. Dynamic Susceptibility Contrast-enhanced (DSC) and Dynamic Contrast-Enhanced
(DCE) are MRI perfusion techniques that use an intravascular, non-diffusible, exogenous
Gadolinium-based contrast agent. DSC emphasizes the susceptibility effects of Gadolinium-
based contrast agents on the signal echo, using a series of T2- or T2*-weighted images.
DCE exploits the relaxivity effect of Gadolinium-based contrast agent on the signal echo,
acquiring serial T1-weighted images before, during and after its administration [17,18].

3.1.1. Dynamic Susceptibility Contrast (DSC) Imaging

DSC is the most commonly used MR perfusion technique. It is acquired during the
first pass of a compact gadolinium bolus through the brain vessels and generally employs
an echo planar T2*-weighted gradient echo sequence with a temporal resolution of 1–2 s.
Total acquisition time is usually less than 2 min. Gadolinium shortens the T2 and T2*
of the tissue resulting in decreased signal along the vessels and tissues surrounding the
vessels. Multiple parameters can be derived from this technique, with cerebral blood
volume (CBV)—which reflects vessel density—being the most frequently used in brain
tumors (see Figure 1). DSC does not provide absolute CBV values, therefore values are
often expressed as relative metrics compared to normal appearing white matter or grey
matter (rCBV). A new DSC technique consisting in the simultaneous acquisition of gradient
echo and spin echo DSC perfusion shows great promise [19]. This technique provides, not
only an estimation of vessel density but also an estimation of mean vessel size and vessel
type (arterial or venous dominance).
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performed 11 months after treatment showed increase in size of the treated lesion and a new en-
hancing lesion medial to it. (D) CBV map from DSC perfusion (arrow) demonstrates mainly low 
perfusion. Some small foci of slightly elevated perfusion may represent foci of recurrent tumor on 
a background of predominant radiation necrosis. 
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bolus through the brain vessels. The presence of blood, calcium or air-bone interfaces can 
result in background susceptibility artefact that severely impairs our ability to measure 
perfusion. In particular, the presence of hemorrhage, very often precludes perfusion eval-
uation in hemorrhagic brain metastasis and high-grade gliomas. In order to achieve high 
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Figure 1. T1-weighted and DSC imaging of a left cerebellar metastasis. (A) Post contrast T1-Weighted
MRI image of a 40 yo (year old) female with colon cancer and left cerebellar metastasis. (B) MRI
7 months later showed marked reduction is size after radiosurgery treatment. (C) MRI performed
11 months after treatment showed increase in size of the treated lesion and a new enhancing lesion
medial to it. (D) CBV map from DSC perfusion (arrow) demonstrates mainly low perfusion. Some
small foci of slightly elevated perfusion may represent foci of recurrent tumor on a background of
predominant radiation necrosis.

DSC perfusion is used in clinical practice for characterization of brain masses, glioma
grading, and, most commonly, for the differentiation between treatment-related abnor-
malities mimicking tumor progression and true recurrent tumor. Many studies have
investigated the use of DSC derived CBV for differentiation between treatment related
changes and true tumor progression in gliomas and brain metastasis [20–23]. The two most
common approaches to measure CBV are mean lesion value and maximum lesion value
(“hot spot” approach). A recent meta-analysis showed pooled sensitivities and specificities
for detecting tumor recurrence in high-grade gliomas using the mean rCBV (threshold
range, 0.9–2.15) and maximum rCBV (threshold range, 1.49–3.1) corresponding to 88%
and 88% (95% CI: 0.81–0.94; 0.78–0.95) and 93% and 76% (95% CI: 0.86–0.98; 0.66–0.85),
respectively [20]. In a head-to-head comparison between DCE and DSC for the differentia-
tion between tumor recurrence and radiation necrosis in treated high grade gliomas, DSC
perfusion showed higher diagnostic accuracy than DCE perfusion [24].

DSC relies on the dynamic susceptibility induced by the first pass of a gadolinium
bolus through the brain vessels. The presence of blood, calcium or air-bone interfaces can
result in background susceptibility artefact that severely impairs our ability to measure
perfusion. In particular, the presence of hemorrhage, very often precludes perfusion
evaluation in hemorrhagic brain metastasis and high-grade gliomas. In order to achieve
high temporal resolution, the spatial resolution and signal to noise of DSC perfusion are
lower than in DCE, which limits the evaluation of small lesions. In addition to these
technical limitations, similar to DCE, DSC suffers high variability in the optimal reported
thresholds [20].

3.1.2. Dynamic Contrast Enhanced (DCE) Imaging

DCE is a technique that investigates microvascular structure and function by tracking
the pharmacokinetics of the injected contrast medium as it passes through the tumor
vasculature. This technique is used in both CT as well as MR imaging using low molecular
weight Iodine- and Gadolinium-based contrast agents respectively [25–28]. The increased
tumor signal intensity measured following injection—referred to as a time attenuation
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curve (TAC)—reflects its perfusion, vascular permeability and extracellular volume. The
combination of pharmacokinetic modeling with TACs is sometimes referred to as ‘perfusion’
imaging, which allows for the derivation of quantitative and semi-quantitative metrics.
Models vary from simple first-pass uptake derivations, to compartmental and distributed
parameter models [29,30]. Some of the most widely utilized metrics are the volume transfer
coefficient (Ktrans) of contrast between the blood plasma and the extracellular extra-vascular
space (Ve) derived from the 2-compartmental Tofts model, which aims to represent the
permeability of the tumor vasculature. The latter has been shown to be higher in tumor
recurrence than in radiation necrosis [31,32]. A more recent study by Chen et al. (2018)
evaluated multi-parametric MRI as a biomarker for NCS-specific progression-free survival
(PFS) and overall survival (OS) in brain metastases patients from primary breast cancer.
They found in multivariate analyses, that ∆ Ktrans and ∆Peak were independent prognostic
factors for CNS-specific PFS and OS, respectively, after controlling for age, size, hormone
receptors, and performance status [33].

The importance of radiation dose was investigated in another study by Winter et al.
(2018) where they compared the direct voxel-wise relationship between dose and early MR
biomarker changes both within and in the high-dose region surrounding brain metastases
following stereotactic radiosurgery (SRS). Longitudinal changes were investigated by
computing absolute ∆ADC, ∆ Ktrans and ∆Ve for day 3 and 20 post-SRS relative to day 0.
Only Ve exhibited significant differences between day 0 and 20 and day 3 and 20 within
the gross tumor volume (GTV) following SRS. Strongest dose correlations were observed
for ADC within the GTV and weak correlations were observed for ADC and Ktrans in
the surrounding >12 Gy region most likely reflecting underlying vascular responses to
radiation [34].

Although the quantitative and semi-quantitative analyses are of great interest in
scientific investigation, the additional benefit in clinical routine is still controversial. The
reasons for this are varied but can likely be grouped into tumor heterogeneity and the need
for voxel wise analysis on the one hand and the lack of validation and standardization in
the analysis methods on the other hand [3,35]. The requirement for voxel wise analysis is
clearly demonstrated in a study developing a parametric temporal approach to voxel-based
tissue classification and analysis from 4D DCE CT of the brain [36]. It is was shown that the
voxel-wise approach is more reproducible and sensitive compared to conventional 2D DCE
analysis and resulted in greater accuracy and reliability in measuring changes in perfusion
CT-based kinetic metrics in patients with metastatic brain cancer treated with SRS.

Utilizing the phantom-validated DCE CT parametric analysis as a gold standard
in terms of contrast enhancement, a follow-up study then set out to compare the early
detection of tumor response using DCE MRI against 4D DCE CT in the same patient
cohort [35,36]. Perfusion images were acquired in the same patient on the same days with
both modalities over the course of treatment. In a direct (co-registered) voxel-to-voxel
comparison, Pearson analysis showed statistically significant correlations between CT
and MR perfusion which peaked at day 7 for Ktrans (R = 0.74, P < 0.0001) (see Figure 2).
The strongest correlation to DCE-CT measurements however was found with DCE-MRI
analysis using voxel-wise T10 maps instead of assigning a fixed T10 value [37], highlighting
the need for voxelization to capture an accurate representation of tumor heterogeneity.
Comparison of histogram features also showed statistically significant correlations between
modalities over all tumors compared to average signal values, confirming the importance
of voxelwise approaches. Despite the differences in contrast agents, these are some of
the highest multi-modal correlations reported in the literature and this is attributed to
the detailed patient setup and image registration but equally, the standardized analysis
method used in both techniques following conversion of TAC to contrast enhancement
curves [38].
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Figure 2. Central section through a brain metastasis for the same patient over different imaging days
showing (top) Ktrans values using a static T10 map, (middle) the voxel-based T10 map, and (bottom)
Ktrans values using the individual T10 map [37].

A multi-institutional study in H&N cancer investigated the variability in quantitative
metrics from DCE MRI with different algorithm implementations of the Tofts family of
models [39]. The results highlight the need for cross-algorithm quality assurance to enable
interpretable DCE MRI results but showed comforting results when different institutions
used a similar software.

Some of the hesitancy in clinical translation of perfusion-based pharmacokinetic
metrics is rooted in the limitations and variability of existing modeling approaches. A
return to semi-quantitative and qualitative parameters seems perhaps more practical,
and therefore potentially more robust, in evaluating treatment but will not provide any
personalization of care nor fully utilize the potential that biological parameters can provide
if properly validated.

Validation of DCE perfusion techniques continues to be a topic of interest with the
RSNA’s Quantitative Imaging Biomarker Alliance (QIBA) DCE Profile whose most recent
claim supports that a measured change in Ktrans of a brain lesion (glioblastoma multiforme,
GBM) of 21% or larger indicates that a true change has occurred with 95% confidence [40].
Part of the reason for these relatively large thresholds of detectable change are the lack of
test-retest data available in the literature as will be discussed later. Another reason, however,
is in large due to the limitations of commonly used compartmental models to capture the
underlying tumor permeability and perfusion on a voxel wise basis. Their simplicity
encouraged their wide use in oncological research, but they do not account for the roles of
diffusion and convection in driving tracer transport. At the level of a voxel, this translates to
the assumption of no cross-voxel tracer exchange, often leading to the misinterpretation of
derived perfusion parameters [17–20]. Newer, more advanced transport models have since
been proposed. Sinno et al. devised a Cross-Voxel Exchange Model (CVXM) that describes
the exchange of tracer between the vasculature and the tissue, as well the transport of the
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molecules through the extravascular space (governed by diffusion and convection) [41].
CVXM’s advantages over existing models [8,18–20,22] are (1) its consideration of cross-
voxel exchange at the voxel level, thus maintaining conservation of mass; and (2) its
incorporation of all three transport processes allowing, when paired with DCE-MRI, a
comprehensive measurement of kinetic parameters in all of the tumor’s interstitium: i.e.,
periphery and center.

3.1.3. Arterial Spin Labeling

Arterial spin labelling uses the magnetic labelling of protons in blood to create an
endogenous contrast agent. For example, blood excited, or ‘tagged’ in the carotid artery
will, after a period of a few seconds, arrive in a tumour in the brain and change the signal
obtained from an image taken of the tumour at that moment. By subtracting an obtained
without the tagged blood from an image with the tagged blood creates an image of cerebral
blood flow. The quantitative nature of this technique makes it particularly appealing
non-invasive alternative to metrics obtained from DCE and DSC techniques.

Various studies have been conducted to evaluate the role of ASL derived tumour
blood flow for both tumour grading/differentiation and treatment response with some
promising results [42–46]. Some authors have suggested that ASL may be more sensitive
in distinguishing tumour recurrence and pseudoprogression than other, more invasive
techniques [44,47]. However, this promising modality has yet to enter more commonplace
clinical practice. Factors such as limited signal to noise have largely limited the technique
to large research settings with high field strength magnets.

3.2. Metabolic Imaging
3.2.1. Diffusion Weighted Imaging (DWI)

Diffusion-weighted-images provide unique contrast and are used clinically to distin-
guish benign from malignant tumors, identify recurrent tumors, and monitor treatment
response [48]. Diffusion-weighted-imaging-(DWI) is an MRI technique sensitive to the
underlying random movement of water molecules in the tissue such as diffusion. Its origins
date back to the 1960s with Stejkal and Tanner [49] whose sequences and mathematical
descriptions still broadly define the technique. The reader is directed to many excellent
reviews for a fuller description of the physics [50–54] but in its simplest Stejkal-Tanner form,
two identical gradients are applied either side of the 180◦ pulse in a spin-echo sequence.
The 180◦ pulse means that stationary spins brought out of phase by the first gradient
will be brought back into phase by the second gradient—i.e., the resulting echo will be
the same as it would be without the two gradients. However, if the spins move in space
over the course of the experiment, the gradients they experience will not be equivalent
and opposite resulting in the spins being, at least partially, out of phase when the echo is
produced—the signal will be attenuated. Depending on the implementation, the ‘b-value’
of a DWI sequence is a product of, amongst other variables, the gradient strength (mT)
and gradient duration (s). Repeating the sequence with increasing ‘b-values’, usually by
increasing the gradient strength, exacerbates the signal attenuation due to the random
movement of water molecules.

Signal loss in DWI can be used to generate two important biomarkers: Intra-voxel
Incoherent Motion (IVIM), related to tissue perfusion, and Apparent Diffusion Coefficient
(ADC), related to tissue cellularity. IVIM signal loss is partly due to water molecules
flowing in the pseudo-random geometry of capillaries moving over the course of DWI
sequence. Tissues that have a greater density of capillaries, i.e., more perfused tissues,
will have greater IVIM signal loss. Diffusion related signal loss is due to water molecules
moving at around 1/10th of the speed. As the diffusion of water molecules in tissue is
influenced by the density of cell membranes, signal loss due to diffusion is a function of
the tissue structure and is characterized by ADC.

To separate signal losses due to ADC and IVIM, the speed of the water molecules in
the different processes is exploited. At low b-values (<~250 ms) [55], the gradient strength
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gradient-duration product is too small to see large signal losses due to diffusion i.e., water
molecules will not, in general, diffuse far enough, fast enough, between the two identical
but opposite gradients to experience significantly different field strengths and subsequent
signal loss. However, water molecules in the capillaries moving approximately 10 times
faster will experience very different field strengths. Hence, at low b-values, observed signal
loss is dominated by water molecules in the capillary bed. Therefore, IVIM signal loss
can be quantified using low b-value sequences. At higher b-values, signal loss occurs
mono-exponentially with increasing b-values due to diffusion. Diffusion related signal
loss within a voxel can be modelled and an apparent-diffusion-coefficient (ADC) image
produced—a biomarker of the tissue’s cellular structure [56].

IVIM has been described since the early days of DWI [57], but has enjoyed a renais-
sance in recent years, particularly in oncology, where need for vascular biomarker has
been a focus. Correlation between IVIM and perfusion metrics produced by DCE-MRI [58]
have been shown in some studies with IVIM having the obvious advantage of needing
no contrast agents with their associated risks. However, other physiological processes
such as glandular secretion and tubular flow compromise the perfusion-only model of
IVIM [59,60].

ADC is non-specific and may be indicative of a range of underlying physiological
changes such as necrosis, vascular development, or tumor cell proliferation. However, there
is much literature correlating changes in ADC with outcomes in various types of tumor
including in glioma, cervix, and prostate [61–65]. It is important to note that many of these
findings are based on histogram analytics of ADC values, suggesting value in an increased
role for radiomics, and once again, the importance of voxelization. When it comes to
differentiation between treatment effect and true progression with DWI, histogram analysis
appears to render better results than whole lesion average values. However, valuable
spatial information is lost when using this approach. Recent studies in gliomas have shown
that decreased ADC does not equal tumor progression because coagulative necrosis in the
central necrotic component of radiation necrosis can result in marked diffusion restriction.
Therefore, the location of the low ADC values is key. Reduced ADC in the central necrosis
suggests coagulative necrosis in the context of radiation necrosis whereas reduced ADC in
the solid or enhancing lesion components suggests hyper-cellularity associated to recurrent
tumor [24].

The use of DWI and ADC to distinguish pseudoprogression has also attracted interest.
This has been amplified by the growth of targeted therapies and immunotherapies such
as anti-PD1 and anti-CTLA-4 agents. Higher or intermediate ADC has been shown to
correlate with pseudoprogression in various studies [66–69] whereas lower ADC has been
shown to be precede new tumor growth [70]. However, further research is required to
establish a consensus and these findings remain suggestive.

There has also been a diversification and expansion in the number of MRI systems,
with the MRIdian System™ (ViewRay™, Cleveland, OH, USA) and the Unity system
(Elekta AB, Stockholm, Sweden), being of particular note to radiation oncology through
their on-board imaging integration. DWI during the course treatment is now feasible at
an expanding number of radiation treatment centers [71], thus rapidly increasing oppor-
tunities for the use of imaging biomarkers to assess treatment response [72]. However,
those wishing to take advantage of these opportunities should do so only after careful
consideration of the literature, preferably including that associated with their particu-
lar imaging systems, consultation with medical physics specialists, and after the design
and implementation of an appropriate quality assurance program to ensure the accuracy,
repeatability, reproducibility of measures (see Section 5).

3.2.2. MR Spectroscopy

Proton (1H)-magnetic resonance spectroscopy (MRS) is an established molecular
profiling technique used in many research centers worldwide for pathological assessments
and provides information regarding the presence and concentration of various metabolites.
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The large voxel size of MRS, however, is a limitation when it comes to metabolic profiling
of highly heterogeneous diseased tissues such as tumorous tissue. This technique has been
commonly used for differentiation between radiation necrosis and recurrent tumor [73–75].
In recurrent tumor, choline elevation is often observed whereas in radiation change, N-
acetylaspartate, choline and creatine peaks will all be low. In current clinical practice,
perfusion imaging is more commonly used than MR spectroscopy when evaluating tumor
response [76,77].

Complementary to 1H-MRS for metabolic imaging is Chemical Exchange Saturation
Transfer (CEST)-magnetic resonance imaging (MRI). CEST is an imaging technique, which
exploits chemical exchange of labile protons of a particular (endogenous or exogenous)
CEST agent with water to detect the former indirectly with high sensitivity through the
water signal. Specifically, amide proton transfer (APT) CEST, which relies on the saturation
of the amide protons including those within peptide bonds, shows signals in brain tumors
related to increased levels of proteins and peptides [78]. Specific to glioma, CEST studies
at both 3T and 7T have suggested the potential to predict response to therapy and offer
unique signal characteristics and sensitivity to pH. A recent study by Chan et al. (2020)
suggested a pulsed CEST/MT approach to be feasible on a 1.5T linac-integrated MRI and
allow for distinguishing early from late progression GBM cohorts [79].

3.2.3. PET Imaging

Tumor hypoxia is a key mechanism in disease progression and early identification of
regions at risk for recurrence and prognostic-based classification of patients is necessary to
formulate personalised therapeutic strategies. Leimgruber et al. [80] developed an image-
based algorithm to spatially map areas of aerobic and anaerobic glycolysis (glyoxia) using
18F-FDG and 18F-FMISO PET in glioblastoma. They found that glyoxia-generated images
were consistent with disease relapse topology and showed more prominent variation than
hypoxia-based information alone. This highlights that spatial mapping of aerobic and
anaerobic glycolysis allows unique information on tumor metabolism and hypoxia, thus
providing a greater understanding of tumor biology and potential response to therapy. Key
to acquiring these parametric maps is therefore the ability for biological imaging techniques
to provide voxelwise information.

Among the most extensively studied imaging modalities for better understanding
how primary brain tumor biology is reflected in the imaging phenotype are O-(2-[18F]
fluoroethyl)-L-tyrosine (FET)-PET and DSC perfusion imaging. Using FET as a tracer,
PET can visualise the amino acid uptake in gliomas and thus metabolically active tumor
cells [81]. MR-based DSC perfusion provides evidence of neoangionesis and can help
predict patient survival and response to anti-angiogenic therapy (bevacizumab) [82] but is
not often routinely available for radiotherapy treatment planning or follow-up imaging.

A study of brain metastases treated with SRS investigated the correlation of 18F-
Fluorocholine uptake in surgical samples with pathologic evidence of recurrent tumor [83].
Strong correlation was observed between surgical SUVmax and PET imaging. However,
18F-fluorocholine count data was not only driven by viable tumor but also by degree of
inflammation and reactive gliosis.

More recently, amide proton-transfer-weighted (APTw) imaging is a MRI technique
that semi-quantitatively reflects the concentration of endogenous proteins and peptides [84].
In newly diagnosed gliomas, evidence was found for a relevant overlap of tumor areas
defined by established cut-offs for APTw and FET, both in contrast enhancing tumor and
FLAIR-hyperintense tumor. Here too, synergistic use of multi-modality analysis found
a correlation between cellularity for both imaging modalities that helped with tumor
grading and differentiation between progression and pseudo-progression. These types of
information rich datasets can act as a strong basis for training machine learning classifiers
which are able to integrate the multimodal data input.
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4. Multi-Parametric Correlates of Tumor Microenvironment (TME)

Similar to the benefits of a unified pharmacokinetic modeling approach for DCE imag-
ing [38], is the concept of an integrated TME feature model using multi-modal analysis
to provide a better description of the tumor functional status. A study by Li et al. (2019)
investigated an unsupervised patient clustering technique and showed that selected his-
togram features from perfusion and diffusion MRI can offer incremental prognostic values
over clinical variables in glioblastoma patients [85].

One disadvantage of a voxel-wise approach such as the above, is that accurate co-
registration of the data is necessary. Fortunately, several algorithms and software exist for
performing co-registration and MRI manufacturers have developed automatic MRI slice
positioning protocols (e.g., AutoAlign) that enable the precise and consistent alignment
of scans among different individuals and repeated imaging of the same individual [86].
Voxel resampling is equally important and needs to be done in 3D prior to processing the
data using interpolations of the reference and target radiological images without a loss of
information.

The construction of TME feature model can be broadly classified into supervised or
unsupervised algorithms. Unsupervised algorithms use the inherent data heterogeneity
within a given dataset to automatically determine distinct features between different tissue
classes, e.g., malignant vs. healthy tissue. Supervised algorithms, in contrast, “learn” to
distinguish tissue classes using training sets that are representative of data acquired from
patients with the same disease/tumor type in which the state of tumor stage/response
is known, e.g., measured with histopathology or on follow-up imaging. In supervised
learning algorithms, the outcome states are a priori determined, and a training dataset is
used to develop a model that minimizes misclassification rates in the training data. With
supervised algorithms, one needs to be careful not to “overfit” on the training data in order
for the model to be applicable to other datasets.

Perkuhn et al. (2018) [87] investigated preoperative MRI scans (T1, T2, FLAIR, and
contrast-enhanced [CE] T1) of 64 patients with an initial diagnosis of primary glioblastoma,
which were acquired in 15 institutions with varying protocols. All images underwent
preprocessing (co-registration, skull stripping, resampling to isotropic resolution, nor-
malization) and were fed into an independently trained deep learning model based on
a multilayer, multiscale convolutional neural network for detection and segmentation
of tumor compartments. Automatic segmentation results for the whole tumor, necrosis,
and contrast enhanced tumor were compared with manual segmentations. The proposed
approach for automatic segmentation of glioblastoma proved to be robust and showed on
all tumor compartments a high automatic detection rate and a high accuracy, comparable
to interrater variability. Automatic segmentation of brain metastases was also investigated
using deep learning CNN based on GoogLeNet architecture and found to produce excellent
detection and segmentation accuracy compared to manual segmentations by 2 experienced
neuroradiologists [88]. A preliminary multi-parametric radiomics approach in small data
set of 24 patients with brain metastases, was further able to distinguish true progression
from pseudoprogression [89] and demonstrated that this approach could provide higher
classification accuracy than single parameter radiomics features.

5. Reliability/Variability of Quantitative Imaging Biomarkers

Imaging biomarkers are important in oncology as they non-invasively provide infor-
mation about the tumor and can be used for treatment response monitoring [72]. Quantita-
tive imaging biomarkers (QIBs) are of particular interest because they provide quantitative
information about tissue characteristics [3]. Ideally, they facilitate the comparison across
different vendors and centers. However, differences in system hardware, acquisition pa-
rameters, and image analysis techniques introduce variability of QIB values [56,90]. It is
critical to understand these differences and to test and validate QIBs before they can be
incorporated in clinical trials [90–92].
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The diversification of systems exacerbates a pre-existing barrier to the increased ex-
ploitation of, in particular, DWI related biomarkers—a lack of convincing repeatability and
reproducibility studies [93]. Sequence design can be limited by manufacturer constraints,
preventing standardization across machines. DWI is known to have large geometric distor-
tions which are a barrier to their use in targeting radiotherapy, but also lead to uncertainties
in measured ADC and IVIM across the imaging space.

The statistical requirements to reliably differentiate between measurement uncertainty
and true biomarker change in response to treatment are described in more detail in a QIBA
recommendation paper for DCE MRI and DWI measurements [93].

Careful consideration of sequence design and a comprehensive quality assurance (QA)
program is an essential part of any program hoping to obtain imaging biomarkers. Testing
with phantoms is important and will provide assurance that the measures obtained are
reliable [94]. Repeatability measures, such as test-retest studies, should also be conducted
wherever feasible. Publications from QIBA and consortia relevant to the imaging unit being
used [71,95,96] should be sought and be used as a foundation for sequence and quality
assurance program design.

The introduction of hybrid systems, which integrate an MRI with a linear accelerator
(MR-linac), presents a unique opportunity for QIB studies. MRI-guided treatments enable
QIBs to be acquired daily, which is practically not feasible on diagnostic MRI systems and
will provide valuable longitudinal information. However, to maximize the power of these
QIB studies, it is critical to harmonize the acquisition protocols across centers [71].

Translation of diagnostic investigations to MR-guided delivery systems requires ma-
chine characteristics to be considered. For example, when designing protocols for ADC
measurement, b-values should be chosen with care, consulting the literature for that ma-
chine [71], and consideration given to the characterization of ADC accuracy across the
imaging space with subsequent ROIs chosen accordingly. Factors such as linear-accelerator
gantry angle on hybrid MRI-linear accelerators add additional uncertainty [71,95,96] which
require quantification.

In summary, a quality assurance program with support from medical physics is
essential, protocol and quality assurance programs should be bespoke for an individual
center and technology, test-retest measurements should be obtained wherever possible,
and the measurement uncertainty should be properly characterized across all conditions
and the imaging space.

6. Current vs. Next Steps

Advanced imaging techniques based on QIB are promising in the yet gray areas of
response assessment in neuro-oncology, but its use as objective clinical and clinical trial
endpoints still needs accuracy and reproducibility validation. Complimentary to the need
for improved evaluation metrics of treatment response, is the requirement of improved
trial design to determine the role of QIB and allow the evaluation of its reliability and
prognostic ability.

Imaging interpretation requires profound knowledge of the tumor biology after oper-
ation, radiation, and chemotherapy, since tumors respond differently to different therapies.
To date manual or semi-automated quantification of tumor volume and response by ex-
perts using fancy tools is variable across platforms, is time-consuming and expensive.
This all leads to neuro-radiologists expending extra time and energy during the response
assessment effort.

Radiological findings play a critical role in the assessment and management of patients
with brain tumors, and it is not rare that progression is missed on imaging, causing
irreparable consequences to patients’ QoL. This is one of the reasons why finding the
optimal timing of imaging is important. Using RANO or iRANO/iRECIST to describe
changes when assessing brain tumors characteristics (T2/flair or T1 with contrast) can be
challenging and time consuming. One example is the iRECIST protocol, which addresses
specific criteria to assess tumor response in imaging after immunotherapy since the therapy
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itself can cause apparent tumor enhancement due to inflammation—and, because of that,
should the patient present with worsening on imaging within 6 months of treatment and
remains clinically stable, they should continue the course of treatment [97,98].

Artificial intelligence (AI) has shown to be a promising field in neuro-oncology [99].
The development of automated algorithms that use deep learning to perform imaging
readings in neural conditions has shown positive results, with a range of benefits such
as decreasing inter-observer variability or maximizing time efficiency in manual tumor
segmentation, and its use has been well described in other areas of oncology. Automated
readings of imaging can be used to improve and facilitate reliable use of endpoints, reducing
time to assess tumors and physician burden associated with manual tumor segmentation.
AI tools can also be integrated into clinical workflow, providing reproducible results and
efficiency to patient assessment. One further use of AI is in management of disease, since
rapid automated segmentation allows for strict comparison of tumor volume and sizes in
patients undergoing therapy [99].

However, in order for AI to be used in the clinical setting, institutions must provide
infrastructure for efficient image processing and in-site AI data mining, which currently
poses as the major barrier to its wide implementation. Furthermore, it is important that
research and multicenter clinical trials are performed to assess the role of AI, and validate
the use of this technique as a reliable and precise manner to assess patients with brain
tumors, as well as develop more precise techniques that account for anatomic variability
and dataset differences [99]. Future work will prove that volume is not the only feature that
can be extracted for response assessment and that assessing intensity, texture and hidden
pattern will be of great use improve prediction of disease progression in oncology.

Following guidelines outlined in previous publications, this review offers a broad
overview of the subject, which can be useful as an educational tool for this innovative
topic. It is worth noting that the main drawback of narrative reviews is their unsystematic
method of article selection which could result in a bias in the overall analysis of findings.
However, due to paucity of information on the topic, the authors decided to proceed with
this type of review regardless, in order to contribute to the literature by addressing such
topics and encouraging discussion.

7. Conclusions

Functional and metabolic imaging approaches have evolved significantly over the last
decade and the voxelization of these non-invasive, repeatable approaches is very well suited
to describe the heterogeneous nature of the tumor microenvironment. Here we discussed
the most widely developed biological imaging techniques reported in the literature in the
context of radiation and immunotherapy to primary and metastatic brain tumors. Some,
such as DCE and DSC MRI are different approaches to obtaining a similar metric, e.g.,
perfusion. Others, such as DWI and PET hypoxia imaging are more complementary in
nature; but all aim to aid in providing the fullest description possible of a TME model that
has a high correlation/prognostic ability to evaluate a tumor’s staging and its response to
treatment. There is no doubt that other techniques will soon start to play a stronger role in
contributing to this model: MR spectroscopy, arterial spin-labeling MRI and FLT-PET to
just name a few.

The concept of what constitutes a reliable clinical endpoint is an important consid-
eration in this new realm. Complimentary to the need for improved evaluation metrics
(RANO/RECIST) of treatment response, is the requirement of improved trial design to
determine the role of QIB and allow the evaluation of its reliability and prognostic abil-
ity. The community, through efforts of international agencies such as e.g., QIBA and
QIN, as well as TCIA and MRL consortia are supportive of the efforts to establish data
and clinical trials geared towards validating the QIB against adapted endpoints. The
latter have matured beyond progression free or overall survival to also include QoL and
neuro-cognition metrics.
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The technological advances in imaging acquisition and analysis techniques have
matured to a strong enough foundation for the end goal of prognostic QIB to be in sight.
The role of deep learning and AI in developing the second phase of this journey has been
shown, but requires large, well curated, validated data sets to be further developed. This
can only be achieved through collaboration and standardization, supported by automation
and innovation.
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