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Abstract: The bacterivorous nematode Caenorhabditis elegans is an important model species for
understanding genetic variation of complex traits. So far, most studies involve axenic laboratory
settings using Escherichia coli as the sole bacterial species. Over the past decade, however, investigations
into the genetic variation of responses to pathogenic microbiota have increasingly received attention.
Quantitative genetic analyses have revealed detailed insight into loci, genetic variants, and pathways
in C. elegans underlying interactions with bacteria, microsporidia, and viruses. As various quantitative
genetic platforms and resources like C. elegans Natural Diversity Resource (CeNDR) and Worm
Quantitative Trait Loci (WormQTL) have been developed, we anticipate that expanding C. elegans
research along the lines of genetic variation will be a treasure trove for opening up new insights into
genetic pathways and gene functionality of microbiota interactions.
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1. Caenorhabditis elegans Responses to Microbiota

Caenorhabditis elegans (Nematoda; Rhabditidae) is a cosmopolitan hermaphroditic nematode that
thrives on bacteria in rotting plant material [1,2]. It was introduced as a tractable species for biological
research during the early 1970s [3], and since then, it has been established as a widely used model
species in biological research. As a bacterivorous nematode, C. elegans populations can easily be reared
in the lab. Research using C. elegans has mainly investigated nematodes kept under axenic laboratory
conditions (i.e., populations are maintained in petri dishes at 20 ◦C on agar plates seeded with Escherichia
coli as a food source) that are devoid of interactions with natural pathogens. Microbiota provide
C. elegans with nutrients, but they may also be pathogenic, leading to decreased growth and fitness of
nematodes [4]. Over the past few years, there has been a growing interest in unraveling the interaction
between C. elegans and its pathogenic microbiota, like microsporidia, bacteria, and viruses, with the aim
to better understand C. elegans ecology away from E. coli [5,6]. The C. elegans microbiota community
normally inhabits or is closely associated with the nematode [7]. Recently, it was reported that the
microbiota are able to synthesize essential nutrients for C. elegans and that the microbiota assembly is
highly dynamic in time and species composition [8]. Understanding the interactions between C. elegans
and microbiota may help further in gaining a deeper insight of microbiota interactions in other species.
This comes at an important moment since it is increasingly realized that microbiota play in an important
role in metazoan health [9].

2. Genetic Variation in Caenorhabditis elegans as the Basis to Understand Microbiota Interactions

The vast majority of C. elegans microbiota studies are host-pathogen interaction studies and
have been limited to elucidating the molecular mechanism of host-pathogen interaction using a
single C. elegans wild type strain, the canonical strain Bristol N2 [10]. Yet, studying genetically
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variable C. elegans strains will provide a broader view on the genetic architecture of host-pathogen
interactions (Table 1). Over the past two decades, C. elegans has been established as a platform for
studying the genetic architecture of complex traits using quantitative genetic analyses based on genetic
variation [11,12]. A range of complex phenotypes have been mapped to loci and genetic variants
using genetic linkage studies or genome-wide association approaches [13]. The C. elegans Natural
Diversity Resource (CeNDR) was established to collect all genetic and genomic studies based on
wild strains, thus facilitating genome-wide association studies (GWAS) [14]. It is a comprehensive
data platform showing the genetic variation of C. elegans worldwide and facilitating genome-wide
association analyses. Worm Quantitative Trait Loci (WormQTL) was recently launched, a platform
for systems genetics in C. elegans [15]. Next to this, genetic resources such as recombinant inbred
line (RIL) populations and introgression line (IL) populations derived from wild type Bristol N2
and Hawaii CB4856, or other wild strains, were constructed to unravel quantitative trait variants or
genetic architectures [16]. For instance, two multiparent RIL panels were constructed derived from
either four or eight parental wild strains. The quantitative trait loci (QTL) mapping panel C. elegans
eight parental experimental evolution (CeMEE) contains more than 500 RIL. CeMEE has already been
applied in C. elegans research to understand the genetic basis of complex phenotypes, like fertility and
the hermaphrodite body size during reproduction [11,13,17]. Another four parental population of
recombinant inbred lines was derived from wild type strains that together captured genetic variation
on a local scale [13]. Several studies using a range of these genetic resources have been used to study
the genetic variation regarding the C. elegans–microbiota interactions (Table 1). These studies will be
discussed in more detail below.

Table 1. Quantitative genetic studies of C. elegans–microbiota interactions.

Microbiota Species Phenotypes Strains of
C. elegans Reference

Bacteria B. thuringiensis Behavior response (evasion and
reduced parasite ingestion)

Ten wild strains;
RILs and ILs [18]

P. aeruginosa
Behavior response

(oxygen-dependent behavioral
avoidance)

RILs and ILs [19]

S. marcescens Odor attractiveness CB4856 and N2 [20]

Microsporidia N. ironsii Ability of clearing infection; initial
colonization of Nematocida CB4856 and N2 [21,22]

N. ironsii Resistance in young L1 larvae CB4856 and N2 [21–23]

Virus Orsay virus Susceptibility N2 and JU1580;
ILs (GWAS) [24]

RIL: recombinant inbred lines; IL: introgression lines; GWAS: genome wide association study.

3. Caenorhabditis elegans–Bacteria Interactions

Of all C. elegans microbiota groups, bacteria are the most well studied. Bacteria may serve as food
and/or may be pathogenic to C. elegans. The most abundant bacteria studied include Gammaproteobacteria
(Enterobacteriaceae, Pseudomonaceae, and Xanthomonodaceae) and Bacteroidetes (Sphingobacteriaceae,
Weeksellaaceae, and Flavobacteriaceae) complemented with a few Acetobacteriaceae [25,26]. Proteobacteria,
Bacteroidetes, Firmicutes, and Actinobacteria are bacterial phyla found living in the same habitat as
C. elegans [27]. C. elegans populations thrive well on these bacteria, and some of these bacteria may
even increase resistance to abiotic and biotic stress factors, including pathogen infection [25,28].
C. elegans is able to avoid the pathogenic bacteria, Pseudomonas aeruginosa, through aversive olfactory
learning. This ability could be transmitted to next generations under the function of P-element Induced
WImpy testis (Piwi) Argonaute homolog Piwi Related Gene (PRG-1), thus improving the fitness of the
progeny [29]. Besides, innate pathways are also under investigation [30]. Pseudomonas vranovensis is a
natural pathogen of C. elegans, parental exposure of C. elegans to P. vranovensis upregulates the cysteine
synthases CYSL-1 and CYSL-2 and the regulator of hypoxia inducible factor RHY-1, which promotes
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the resistance of progeny to infection [31]. Besides variant strains, sex differences in C. elegans also have
impact on the resistance to Bacillus thuringiensis [32]. Under infection pressure from B. thuringiensis,
males of C. elegans have lower resistance and survival than hermaphrodites. Next to this, proteome
levels in C. elegans differ depending on the type of bacteria that they feed on [10], like Ochrobactrum
spp. (MYb71, MYb237) or E. coli OP50.

Schulenburg and Muller (2004) showed that genetic variation affects infection of C. elegans
by a parasitic strain of Gram-positive B. thuringiensis using ten wild strains [18]. Their analyses
revealed genetic variation for behavioral responses as an important defensive factor in C. elegans.
Here, the behavioral trait comprised evasion and reduced parasite ingestion. As for the gene level,
different quantitative genetic studies have identified the neuropeptide Y receptor gene, npr-1, as a
major pleiotropic determinant regarding bacterial food intake. Natural variation in npr-1 was first
reported to modify social behavior and responses to food [33]. Later, it was reported that polymorphic
npr-1 affected behavioral responses to the Gram-negative pathogen Pseudomonas aeruginosa by means of
oxygen-dependent behavioral avoidance rather than direct regulation of innate immunity [19]. Nakad
et al. (2016) investigated the role of npr-1 in C. elegans exposed to B. thuringiensis and P. aeruginosa using
QTL analyses of behavioral immune defense and RNAseq-based transcriptomics using recombinant
inbred lines and introgression lines [34]. Several QTL were detected, including one on chromosome X
harboring npr-1. The wild type N2 allele was found to be associated with reduced defense against
B. thuringiensis and had an opposite phenotype to that previously mapped for the N2 npr-1 allele
against P. aeruginosa. Global gene expression profiling suggested that npr-1 plays an important role
against both pathogenic bacteria through p38 Mitogen-Activated Protein kinases (MAPK) signaling,
insulin-like signaling, and C-type lectins.

The reduced sensitivity to P. aeruginosa was associated with the induction of oxidative stress
genes and activation of GATA transcription factors. In contrast, oxidative stress gene suppression
combined with the activation of Ebox transcription factors determined B. thuringiensis effects. Like npr-1,
genetic variation in other genes related to neuronal functions was found to play a key role in
detecting food related cues, like tyramine receptor gene tyra-1, encoding a G protein-coupled
catecholamine receptor [35]. Interestingly, npr-1 was found to control a range of phenotypic differences
through behavioral avoidance of ambient oxygen concentrations to growth and physiology. Together,
these results show that genetic variation in npr-1 gives rise to pleiotropic effects that are associated
with bacterial food [36].

Next to npr-1, Chang et al. (2011) found polymorphisms in a Homologous to the E6–AP Carboxyl
Terminus (HECT) domain-containing E3 ubiquitin ligase, HECW-1. Two polymorphisms close to
residues of HECW-1 each affected C. elegans behavioral avoidance exposed to P. aeruginosa [37].
The resistance of C. elegans to P. aeruginosa is achieved by avoidance instead of physiological stress
pathways. Neuronal analysis pointed out that HECW-1 functions in two of sensory neurons against
P. aeruginosa through inhibition of the neuropeptide receptor NPR-110.

In C. elegans–bacteria interaction studies, QTL analysis was not only used to study npr-1, but also
to detect other genetic variants. For example, it was found that the ability of C. elegans to sense
bacteria also differed among the different strains of C. elegans. The odor of Serratia marcescens is more
attractive to Bristol N2 than Hawaii CB4856. In this case, QTL analysis helped to define the region that
interacts and affects S. marcescens preference based on RILs [20]. In summary, genetic variation study
of C. elegans–microbiota systems were mostly researched in bacteria until now. The results varied from
gene level to behavior level, expanding the insight into different host mechanisms in C. elegans against
bacterial pathogen.

4. Caenorhabditis elegans-Microsporidia Interactions

Microsporidia are a group of eukaryotic intracellular pathogens comprising more than a thousand
species that are associated with a wide host range [38]. Nematocida parisii was the first microsporidian
species found to infect C. elegans and causes lethal infections. The mechanism of microsporidia to
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invade host tissue is mainly achieved by restructuring multicellular host tissues into syncytia and
proliferating cells across the host tissue cells before forming spores [39]. As N. parisii has been isolated
from wild C. elegans, C. elegans–N. parisii interactions have become an important model for studying
both the infection process of pathogen and response of the host. The response of C. elegans to N. parisii
involves a transcriptional response named intracellular pathogen response (IPR) that can be triggered
by proteotoxic stress to improve the resistance to the stress [40]. This response results in upregulation
of 80 so-called IPR genes regulated by genes pals-22 and pals-25 [41]. Whilst studying natural pathogens
of C. elegans including microsporidia, it was found that IPR involves gene pals-22 and pals-25 which
play an essential role in combatting pathogens. Mutation of pals-22 showed increased resistance to
microsporidia infection as well as virus infection. However, mutants of pals-25 showed suppressed
phenotypes caused by mutation in pals-22, including increased IPR gene expression, thermotolerance,
and immunity against natural pathogens. Gene pals-22 was proved to repress expression of some
ubiquitin ligase complex components and other IPR genes [41].

Microsporidia are transmitted horizontally and replicate predominantly in intestinal cells in C.
elegans. However, among different species of microsporidia, host range [42], virulence [39], and tissue
tropism strongly differ [43]. For example, N. parisii only invades and replicates in the intestinal cells of
C. elegans, while Nematocida displodere is able to infect multiple host tissues [43]. Besides, some IPR
genes regulated by N. parisii in C. elegans were hardly induced by Nematocida ausubeli, suggesting it
may evolve to counteract with the host response [42]. In the meantime, among different species of
nematodes, their responses to microsporidia are not the same as well. For instance, after three days
of infection, for C. elegans and C. briggsae, 50% of the worms were infected, while for Oscheius tipulae,
no infectious behavior was found [42].

Genetic variation in epithelial immunity was found in C. elegans after infection of the intestines by
Nematocida ironsii [21–23]. Wild type CB4856 displayed a higher clearing and resistance to infection
than wild type Bristol N2, and this difference was specifically found in their young larvae. It was
concluded that this antagonistic pleiotropic effect in CB4856 enables a higher progeny later in life and
leads to a selective advantage under laboratory conditions. In the study, resistance was mapped to four
genomic loci, and two of these loci influencing resistance were confirmed [23]. Overall, the quantitative
genetic study revealed that resistance to microsporidia early in the life of C. elegans is a complex trait
associated with higher reproductive output later in life, thus enhancing overall fitness. Currently,
only a few genetic variation studies of microsporidia infections in C. elegans have been conducted.
More research into the genetic variants affecting epithelial tolerance is required since the epithelium
plays a major role in host–pathogen interactions.

5. Caenorhabditis elegans–Virus Interactions

Studies on C. elegans–virus interactions were hampered by the lack of a naturally infectious
virus until 2011 when Orsay virus was found [24,44]. Orsay virus is a single-stranded RNA (ssRNA)
positive-strand virus related to the family Nodaviridae [45]. It is the first virus found to naturally
intracellularly infect and complete its whole life cycle in C. elegans intestinal cells [24,46]. Orsay virus
consists of two segments: the RNA1 segment encodes viral RNA–dependent RNA polymerase (RdRP),
and the RNA2 segment encodes capsid protein and one additional open reading frame (ORF) of 332
amino acids at 3′ end called delta (ORF δ) [46,47]. ORF δ is important for nonlytic viral egress [48,49].
Contrary to most Nodaviruses, Orsay virus does not contain a RNA-3 translated suppressor for RNAi,
and RNA2-encoded protein also lacks RNAi suppression function [50].

Many pathogens of C. elegans share the same target tissue, the intestine [47]. Orsay virus is
no exception. The intestine in C. elegans consists of 20 cells, holding a proportion of one third of
somatic mass and is essential for absorbing nutrient and producing food derived macromolecule [46].
It was found that intestinal cells showed high susceptibility when infected by virus, while few cells
from the entire host tissue were infected [46]. Orsay virus affects the intestinal region of nematode
which is mainly reflected by the disappearance of cell structures like storage granules and extensive
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convolutions of the apical intestinal border. However, due to lack of the adaptive immune system
and specialized immune cells, the defense against virus infection critically depends on epithelial cells.
Interestingly, the key anatomical features of the epithelium are conserved between C. elegans and
mammals [51], which allows studies in C. elegans to be translated to higher species.

Orsay virus infection also triggers the IPR pathway. The exposure to Orsay virus led to
upregulation of the Skp, Cullin, F-box (SCF) ubiquitin ligase components, such as the cullin
ortholog CUL-6. The ubiquitylation components, the proteasome, and the autophagy pathway
are all important for defense against viral infection [52]. However, although C. elegans–Orsay virus
and C. elegans–microsporidia interaction pathways both belong to IPR, there is a difference between
the two pathogens. The C. elegans retinoic acid-inducible gene (RIG)-I-like receptor DRH-1 was proved
to be necessary for inducing IPR when infected by Orsay virus, but not for microsporidia infection
or proteotoxic stress [40]. Differentially expressed genes identified responsible for immune response
within C. elegans–microsporidia and C. elegans–Orsay virus interactions were also not the same.

The intraspecies susceptibility to Orsay virus of C. elegans is highly variant [53,54], as different
C. elegans strains have distinct susceptibilities when faced with Orsay virus infection. Studies into
the genetic variation to Orsay virus infection revealed that DRH-1, encoding a RIG-I-like helicase,
is required for the initiation of an antiviral RNAi pathway and the generation of virus-derived siRNAs
(viRNAs) [53]. Wild type Bristol N2 was more resistant than strain JU1580 as it accumulates 50–100
fold less viral RNA inside at young adult stage [24]. The difference was also shown for L2–L4
nematodes, as the final viral load of JU1580 was significantly higher than Bristol N2. It was noted that
there were offspring right before measuring viral load. Thus, maybe N2 progeny might lose vertical
transmitted infection after several generations, while JU1580 progeny remains infected [54]. In any
case, the difference regarding viral susceptibility is affected by genetic variation, thus research on
polymorphic loci is essential for identification of causal loci. GWAS analysis is often applied for the
detection of polymorphic variants which could link genetic variation with phenotypes. Subsequently,
inbred lines and introgression lines can be generated by crossing different wild types of C. elegans [55].
For instance, experiments using GWAS and introgression lines proved that a drh-1 polymorphism is
involved in viral susceptibility [53]. In summary, based on C. elegans genetic variation studies involving
Orsay virus, insight into antiviral immunity in C. elegans was developed and more detail in viral
infection and host response was revealed.

6. Conclusion and Future Outlook

Quantitative genetic analyses into different C. elegans genotypes of pathogenic microbiota
interactions can be complementary to studying interactions in a single genotype. Studying
microbiota interactions across multiple genotypes allows for unraveling the genetic architecture
of these interactions.

Mapping of genetic variation is an essential tool in investigating the genetic basis of complex traits
that underlie the interaction between C. elegans and its associated microbiota. Resources like CeNDR,
in combination with QTL studies, could provide more insight of gene function and evolutionary
studies. To overcome the limitations of RILs that were derived from a combination of two parental
strains (usually Bristol N2 and Hawaii CB4856), multiparent populations like CeMEE and the four
parental population panel can improve the power of detecting natural genetic variants [13].

In the future, with the application of advanced methods of quantitative genetics study, genetic
variation of C. elegans could be explored more to reveal the genetic architecture of variants relating to
complex microbiota related traits. This may promote the study of the underlying molecular genetic
mechanisms at, for instance, the metabolic and protein levels. Further, it may aid to understand
how microbiota influence the fitness of C. elegans and how functional genes affect the microbiota
interactions. For example, a recent study on nematode trapping fungi (NTF) demonstrated the trap
induction, involving G protein β–subunit Gpb 1, plays as fitness character in NTF family [56]. A next
step would be to combine different microbiota, like bacteria and viruses, in order to assess their
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impact simultaneously. Together, they could be exploited to obtain knowledge on both molecular
and evolutionary aspects of host-microbiota interactions, including but not limited to microsporidia,
bacteria, and viruses. Thus, it would provide more information on how organisms in nature adjust
and evolve in the interaction with its microbiota.
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