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The gut microbiota has nutritional and protective functions. In patients with end-stage renal disease, changes in 
the gut microbiota disrupt their protective functions. Probiotics help maintain normal bowel function. However, 
their role in patients with end-stage renal disease is controversial. We investigated whether Clostridium butyricum 
affects the nutrition and immune function of patients with end-stage renal disease undergoing maintenance 
dialysis between 2014 and 2015; thirty-seven patients were included. The patients were divided into two groups: 
one in which C. butyricum was administered and one in which it was not. One tablet of the probiotics, which 
contained 20 mg of C. butyricum, was administered orally three times daily for 2 years in the C. butyricum group. 
The 16S rRNA genes were sequenced from stool samples of 14 (37.8%) patients in the C. butyricum group and 23 
(62.2%) patients in the control group. The differences in the gut microbiota of the two groups were analyzed. The 
α-diversity index indicated that the C. butyricum group had significantly more operational taxonomic units and 
higher albumin and transferrin levels than the control group. The effector to target cell ratio was significantly 
higher in the C. butyricum group. In addition, interleukin-6 levels were significantly lower in the C. butyricum 
group, and inflammation was less severe in this group. The patients undergoing maintenance dialysis with C. 
butyricum had abundant gut microbiota. They also had a good nutritional status, low systemic inflammation, and 
a good immunological status.
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INTRODUCTION

The bacteria found in the human intestinal tract form the gut 
microbiota [1]. The gut microbiota is a major part of the host 
microbial flora and contains approximately 1014 bacterial cells 
that are symbiotic with the host [2]. They interact with the 
metabolism of the host to perform various beneficial functions, 
including control of nutritional and immunologic functions 
[3, 4]. However, changes in the intestinal ecosystem can lead 
to an increase in various pathogenic bacterial species, which 
can have some detrimental effects on the host’s health, such as 
carcinogenesis [5, 6].

End-stage renal disease (ESRD) is associated with chronic 
systemic inflammation and plays a central role in cachexia, 
anemia, and cardiovascular disease [7, 8]. Uremia, the most 
common complication of ESRD, occurs when waste products are 
not excreted by the kidneys and instead accumulate in the body. 

It has been shown that general systemic inflammation in patients 
with uremia may be partly due to an impaired intestinal barrier 
function [9]. Chronic inflammation of the entire gastrointestinal 
tract and elevated blood levels of intestinal microbial DNA and 
endotoxin have been reported in hemodialyzed patients [10, 11]. 
Thus, it has been suggested that patients with uremia have impaired 
intestinal barrier function, presumably causing endotoxinemia 
and systemic inflammation. However, the underlying mechanism 
of intestinal barrier dysfunction in patients with ESRD remains 
unclear.

Gut microbiota and microbial metabolism by-products play a 
role in intestinal barrier function [12]. Some intestinal pathogens 
disrupt the epithelial barrier by internalizing tight junction 
proteins [13]. Cytokines, produced as a result of intestinal 
mucosal damage, such as interleukin 6 (IL-6), mediate the 
systemic inflammatory response by stimulating the production of 
C-reactive protein, thereby worsening the prognosis of patients 
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with ESRD [14]. Compared with healthy individuals, patients 
with ESRD have significantly different compositions of gut 
microbiota and colonic microbial metabolomes [15]. Therefore, 
modification of the gut microbiota may be a promising treatment 
for patients with ESRD.

Probiotics are microbes that are beneficial to the host’s health: 
they modify the gut microbiota. They are often used in the 
treatment of dyslipidemia, intestinal infections, inflammatory 
bowel syndrome, and cancer, due to their metabolic, 
immunomodulatory, and anti-tumoral properties [4, 16]. Probiotic 
microorganisms suppress the growth of harmful microorganisms, 
inhibit carcinogenic enzymes, activate the immune system of 
host cells, activate immune cells, and produce cytokines [17]. 
Furthermore, the use of probiotics has been shown to reduce 
uremia and improve cardiovascular disease [18]. Clostridium 
butyricum (CB) is probiotic that produces short-chain fatty 
acids (SCFAs), such as butyric acid, acetic acid, and propionic 
acid. Short-chain fatty acids play a role in suppressing intestinal 
inflammation and maintaining normal intestinal function [19]. 
CB has been used to prevent or treat intestinal disorders in 
animals [20]. In clinical practice, CB is used for the treatment 
of gastrointestinal disorders associated with the destruction of 
the gastrointestinal microbiota, such as diarrhea and constipation 
[21]. The administration of CB has recently been reported to 
result in changes in the bacterial flora [22].

However, the effect of probiotic products on patients with 
ESRD remains unknown. Therefore, the aim of our study was to 
evaluate the effect of CB on the nutritional and immunological 
statuses of patients with ESRD.

MATERIALS AND METHODS

Participant information
This retrospective study included 37 patients who underwent 

maintenance hemodialysis (HD) at our institution between April 
2014 and March 2015. The patients were divided into two groups: 
the CB group, which received probiotics, ad the control group, 
which did not. Baseline demographic and clinical data were 
retrieved from the hospital database. The inclusion criteria were as 
follows: HD three times weekly for at least 6 months and vascular 
access through an arteriovenous fistula or prosthesis. Patients 
were excluded if they had liver disease, malignant tumors, active 
collagen disease, chronic hemorrhage, infection, or missing data. 
The study protocol followed the principles of the Declaration of 
Helsinki. This study was approved by the Institutional Review 
Board of the National Hospital Organization Yanai Medical 
Center (Provided ID Number: Y-1-9). Written informed consent 
was obtained from each participating patient.

Treatment procedure
One tablet of MIYA-BM® (Miyarisan Pharmaceutical Co., Ltd., 

Tokyo, Japan), which contained 20 mg of CB, was administered 
orally 3 times per day. Patients received the probiotics for 2 years.

Data collection
Blood samples were collected at the start of each dialysis 

session, with an interval of 2 days between sessions. Beta-
2 microglobulin (β2MG) was measured using the latex 
agglutination method. Iron and transferrin were measured using 
Nitro so PSAP reagent. The serum copper, selenium, and zinc 

levels were measured by atomic absorption spectrophotometry. 
Measurement of immunoglobulin, complements, and cluster 
of differentiation (CD)4/CD8 was entrusted to Bio-Medical 
Laboratories, Inc. (Tokyo, Japan). Measurements of natural 
killer (NK) cell activity and soluble interleukin-2 receptor (sIL-
2R) were obtained as previously reported [23]. Serum IL-6 was 
determined with a Quantikine ELISA kit (R&D Systems, Inc., 
Minneapolis, MO, USA). Kt/V was calculated using a single-pool 
kinetic model [24].

Fecal sample collection and DNA extraction
A fresh fecal sample was obtained from each patient and 

immediately frozen at −80°C. Sample collection and DNA 
extraction were conducted according to previously described 
methods [25]. The DNA extraction was performed using an 
automated DNA isolation system (GENE PREP STAR PI-480, 
Kurabo, Osaka, Japan).

Polymerase chain reaction amplification, Miseq sequencing, 
and sequence data process

To amplify the V3-V4 regions of bacterial 16S rRNA, the 
primer set 341f/R806 [26, 27] was used. Polymerase chain 
reaction (PCR) was performed under the conditions described 
previously [25, 28]. The PCR-amplified fragments were paired-
end sequenced with 2 × 284-bp cycles using the MiSeq system 
with MiSeq Reagent Kit version 3 (600 cycle) chemistry. Paired-
end sequencing reads were merged using the fastq-join tool with 
the default settings [29]. The FASTX-Toolkit was used to extract 
only joined reads with a quality value score of ≥20 for more than 
99% of the sequence [30]. The chimeric sequences were deleted 
with usearch6.1 [31, 32].

Operational taxonomic units clustering
Identification of sequence reads in sequence analyses was 

performed manually using the Ribosomal Database Project 
(RDP) Multiclassifier tool ver 2.11, which is available on the RDP 
website (http://rdp.cme.msu.edu/classifier/) [33]. Identification 
of bacterial species from sequences was performed using the 
Metagenome@KIN Ver 2.2.1 analysis software (World Fusion, 
Japan) and the TechnoSuruga Lab Microbial Identification 
database DB-BA 13.0 (TechnoSuruga Laboratory, Shizuoka, 
Japan), with homology for ≥97% [34].

Statistical analysis
Continuous variables are expressed as means and standard 

deviations and categorical variables are expressed as numbers 
and percentages. The Mann-Whitney U test was used to compare 
continuous variables, and Fisher’s exact test was used to compare 
categorical variables. QIIME2 packages were used to calculate 
α-diversities and perform principal component analysis (PCA). 
An R package was used to draw the figures. Statistical analyses 
were performed using JMP Pro (version 14; SAS Institute, Cary, 
NC, USA). Statistical significance was set at p<0.05.

RESULTS

Baseline characteristics of the study population
This study included 37 patients with an average age of 

73.9 years old. There were 21 (56.8%) males and 16 (43.2%) 
females. Twenty-three (62.2%) patients had hypertension, 23 
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(62.2%) had diabetes, and 14 (37.8%) had cerebral infarction. 
The CB group included 14 (37.8%) patients who received the 
probiotic. The control group consisted of 23 (62.2%) patients who 
did not receive the probiotic. The patient demographic data are 
shown in Table 1. There were no differences in age (p=0.381), sex 
(p=0.733), or body mass index (p=0.984) between the two groups. 
Serum albumin levels were significantly higher in the CB group 
than in the control group (p=0.006). There are no differences in 
Kt/V (p=0.087) or β2MG (p=0.355) between the two groups.

Clostridium butyricum related to gut microbial diversity in 
ESRD

According to the α-diversity index, the CB group had a 
significantly higher number of operational taxonomic units 
(OTUs) than the control group (p=0.04; shown in Fig. 1A, B). 
A PCA, based on the distribution of OTUs, was performed to 
characterize the microbiome space in various samples (shown in 
Fig. 1C). The relative abundances and distributions of the OTUs 
at the phylum levels are shown for the two groups in Fig. 2.

The gut microbiota included five main phyla: Firmicutes, 
Actinobacteria,  Bacteroidetes,  Proteobacteria,  and 
Verrucomicrobia. The relative abundance of the Firmicutes 
phylum was 69.8% in the CB group and 66.6% in the control 
group. The relative abundance of the Bacteroidetes phylum 
was 8.5% in the CB group and 9.8% in the control group. The 
Firmicutes/Bacteroidetes (F/B) ratio of the CB group was 11.7, 
and that of the control group was 11.1; there was no difference 
between the two groups (p=0.731; Fig. 3).

Correlation between gut microbiota and systemic inflammation
As shown in Table 2, there were no differences in trace 

elements between the two groups. The rapid turnover protein 
transferrin was significantly more abundant in the CB group 
(p=0.043). The effector to target cell (E/T) ratio was higher in the 
CB group (p=0.021). IL-6 levels were significantly lower in the 
CB group (p=0.001).

DISCUSSION

The α-diversity index indicated that the gut microbiota was 
more abundant in patients who received CB than in patients who 
did not receive CB. In addition, in the CB group, the albumin 
level, transferrin level, and E/T ratio were higher, while the IL-6 
level was lower, indicating better nutritional and immunological 
statuses.

Systemic edema due to fluid overload, which is a common 
complication in patients with ESRD, leads to edema of the intestinal 
wall, and aggressive ultrafiltration by hemodialysis results in 
intestinal ischemia due to hypotension [35]. The mechanical 
mechanism of ESRD is the impairment of the intestinal epithelial 
barrier as a result of intestinal edema and intestinal ischemia, 
causing endotoxinemia and systemic inflammation. In addition, 
indoxyl sulfate and p-cresol sulfate have been identified as colon-
derived uremic toxins produced in response to changes in the 
composition and function of the gut microbiota and are reported 
to be an independent predictor of cardiovascular events [36]. A 
strong association between ESRD and uremia has been reprted, 
and changes in the intestinal biochemical environment specific 
to patients with ESRD contribute to systemic inflammation, 
malnutrition, and other complications.

Compared with healthy controls, the diversity of the gut 
microbiota of patients with ESRD was significantly reduced, 
indicating that the human gut microbiota changes significantly 
as patients leavs from a healthy state in ESRD [37]. The current 
study found that the gut microbiota was more abundant in the CB 
group, and changes in the diversity of the gut microbiota induced 
by probiotics may have beneficial effects on the kidneys [18]. It 
was confirmed that the administration of probiotics to patients 
with stage III-IV chronic kidney disease altered the composition of 
the microbial flora and resulted in a decrease in serum urea levels 
[38]. Probiotics favor urea hydrolysis, and they have been shown 
to be urea-targeted drugs that carry out “intestinal dialysis” [39]. 
In addition, biomarkers of inflammation are inversely correlated 
with renal function [40], and the assistance of renal function with 
probiotics helps to control chronic inflammation by reducing urea 
levels [41]. Therefore, the administration of probiotics alters the 
environment of the gut microbiota and replaces the renal function 
by eliminating uremic retention solutes that are associated with 
increased ESRD mortality [42, 43].

Probiotics are thought to exert anti-inflammatory effects by 
increasing the level of SCFAs [44]. Patients with ESRD have 
been shown to have low serum and fecal short chain fatty acid 
(SCFA) levels [45]. It has also been shown that the administration 
of CB increases butyric acid levels and restores the composition 
of the gut microbiota, thereby suppressing the production of 
uremic toxins [46]. Butyric acid has been shown to slow the 
progression of disease into ESRD [45], and acetic acid has been 
shown to reduce the incidence of acute kidney injury [47]. After 
the administration of probiotics, single-cell RNA sequencing 

Table 1. Baseline characteristics

Control, N=23 (62.2) CB, N=14 (37.8) p-value
Age 74.93 ± 9.33 72.24 ± 9.78 0.381
Sex M/F 14/9 (60.9/39.1) 7/7 (50.0/50.0) 0.733
BMI 19.06 ± 2.37 19.27 ± 2.71 0.984
HT 14 (60.8) 9 (64.3) 0.709
DM 14 (60.8) 9 (64.3) 0.709
Stroke 9 (39.1) 5 (35.7) 1
TP 5.96 ± 0.71 6.12 ± 0.61 0.626
Alb 2.82 ± 0.53 3.31 ± 0.38 0.006
T. Bil 0.39 ± 0.23 0.38 ± 0.17 0.572
AST 19.65 ± 13.79 15.01 ± 5.42 0.396
ALT 16.43 ± 10.27 12.71 ± 6.01 0.329
CK 82.86 ± 115.69 38.57 ± 26.48 0.204
UN 47.35 ± 18.34 41.93 ± 16.24 0.372
Cr 5.77 ± 2.19 5.74 ± 1.75 0.707
UA 5.36 ± 1.56 4.79 ± 1.19 0.355
β2MG 26.83 ± 4.61 27.85 ± 5.39 0.259
Kt/V 1.69 ± 0.41 1.99 ± 0.48 0.097
TG 102.73 ± 53.21 96.85 ± 46.99 0.742
HDL 47.04 ± 13.43 49.92 ± 10.95 0.339
LDL 79.82 ± 28.01 79.64 ± 25.62 0.975

CB: Clostridium butyricum; Alb: albumin; AST: aspartate aminotransferase; 
ALT: alanine aminotransferase; β2MG: beta-2 microglobulin; BFR: blood 
flow rate; BMI: body mass index; CK: creatin kinase; Cr: creatin; DM: 
diabetes mellitus; HDL: high-density lipoprotein; HT: hypertension; LDL: 
low-density lipoprotein; T. Bil: total bilirubin; TG: triglyceride; TP: total 
protein; UN: urea nitrogen.
Data are presented as means and standard deviations for continuous vari-
ables and as numbers and percentages for categorical variables.
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at SCFA-related receptors showed a higher expression of anti-
inflammatory and regeneration-related genes [44], indicating that 
the protective effect of probiotics is associated with the SCFA-
mediated regulation of inflammatory responses.

Uremic inflammation has been shown to be associated with 
protein-energy wasting (PEW) [48]. PEW is found in many 
patients with ESRD and causes skeletal muscle depletion 
[49]. Inflammation promotes PEW, and an overproduction of 
inflammatory factors is associated with increased metabolism 
and decreased body mass [50]. IL-6 is involved in the sarcopenic 
process by inhibiting the secretion of insulin-like growth factor-1, 
leading to the development of PEW and muscle catabolism [51]. 
In addition, diarrhea is one of the causes of malnutrition due 
to impaired intestinal barrier function in patients with ESRD 
[35, 52]. CB can be used clinically for diarrhea, constipation, 
and other symptoms associated with disruption of the intestinal 
microflora [53]. Furthermore, it enhances enterocyte integrity 
[18]. In the CB group in this study, IL-6 levels were significantly 
lower and albumin and transferrin levels were significantly 
higher. The administration of CB may restore the diversity of 
the gut microbiota in patients with ESRD, which would allow 
for the metabolism of urea, leading to less inflammation. It also 

protects the mucosal epithelium by alleviating nutrient absorption 
disorders, resulting in an improved nutritional status.

Patients in both groups in this study exceeded the Kt/V 
value recommended by the Kidney Disease Outcomes Quality 
Initiative Guidelines [54], and there was no difference in β2MG 
between the two groups, thus dialysis efficiency did not affect 
uremia. Indoxyl sulphate and p-cresyl sulphate, which are other 
intestinal uremic toxins that are positively correlated with IL-6 
[55], may have been reduced in the CB group. However, further 
investigations are required to determine the levels of these toxins 
in patients with ESRD receiving CB.

Probiotics have been shown to enhance both innate and 
adaptive immunity of the host immune system by reducing the 
presence of pathogens [56]. Some probiotic strains promote 
B cell differentiation, and thereby increase the production of 
immunoglobulin A, which is useful in preventing the invasion 
of pathogenic microorganisms [18]. In this study as well, the E/T 
ratio was higher in the CB group, indicating that innate immunity 
was activated.

Next-generation sequencing technology has shown that the 
human gut microbiota is mainly composed of seven phyla: 
Firmicutes, Bacteroides, Proteobacteria, Actinobacteria, 

Fig. 1. Gut microbial diversity in patients administered Clostridium 
butyricum (CB) increased. (A) Rarefaction analysis between the 
number of samples and the numbers of operational taxonomic units 
(OTUs). As the number of samples increased, the number of OTUs 
approached saturation in the control group (n=23) and CB group 
(n=14). The number of OTUs in the CB group was significantly 
increased compared with the control group. (B) Gut microbial 
diversity was significantly increased in the CB group compared 
with the control group, as estimated by α-diversity (p=0.04). (C) 
Non-metric multidimensional scaling based on the main coordinate 
analysis distribution showed that the taxonomic composition of the 
intestine was significantly different between the control group and 
the CB group.
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Fusobacteria, Verrucomicrobia, and Cyanobacteria [57]. The 
two most predominant phyla in the human gut are Firmicutes 
and Bacteroides [58]; however, in this study, Actinobacteria 
and Firmicutes were the two most predominant phyla. The 
increase in Firmicutes with CB administration is consistent 
with previous reports [59]. Antibiotics, such as streptomycin 
and vancomycin, have been discovered in Actinobacteria [60]. 
Since microbiota that survive and compete for nutrients and 
living space produce antibacterial compounds [61], changes in 
the gut microbiota in patients with ESRD may have an effect 
on the increase in Actinobacteria. The increased abundance 
of Firmicutes and Bacteroides indicates microbial imbalance 
[62]. The administration of CB did not alter the gut microbiota 
composition of Firmicutes and Bacteroides, and the F/B ratio was 
not significantly different between the two groups. CB increased 

the amount of gut microbiota, but did not appear to affect the 
proportions.

This study was not without limitations. It was a retrospective, 
observational study that included a small number of patients. A 
prospective, randomized controlled trial with a large number of 
patients is needed to determine the relationships between ESRD 
and the gut microbiota.

In conclusion, the α-diversity index suggests that the 
gut microbiota was more abundant in patients undergoing 
maintenance dialysis who received CB than in those who did 
not receive CB. CB positively affects the gut microbiota and 
nutritional and immunological statuses of patients with ESRD 
undergoing HD.

Fig. 2. Phylogenetic profiles of the gut microbiome. The relative abundance of the bacterial community at the phylum level.
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Ferrum 48.21 ± 23.61 55.35 ± 29.75 0.481
Copper 89.56 ± 29.61 79.01 ± 35.02 0.331
Selenium 87.34 ± 21.23 86.42 ± 15.06 0.826
Zinc 52.13 ± 13.62 50.14 ± 6.65 0.937
Transferrin 158.91 ± 47.01 190.64 ± 46.94 0.043
Prealbumin 19.84 ± 8.01 23.87 ± 8.31 0.158
IgG 1420.78 ± 543.45 1608.28 ± 538.99 0.246
IgA 328.01 ± 127.59 303.85 ± 171.41 0.323
C3 79.73 ± 20.29 86.57 ± 25.32 0.433
C4 25.73 ± 6.28 26.37 ± 5.76 0.863
CD4 42.34 ± 8.44 36.13 ± 11.27 0.058
CD8 34.58 ± 10.75 33.21 ± 7.97 0.695
CD4/8 1.23 ± 0.53 1.42 ± 0.65 0.398
IL-6 23.35 ± 17.48 8.89 ± 7.91 0.001
E/T ratio

10:1 10.35 ± 6.16 14.59 ± 3.54 0.033
20:1 19.75 ± 13.56 27.71 ± 7.59 0.021

CB: Clostridium butyricum; C: complement; CD: cluster of differentiation; 
E/T ratio: effector cells/target cells ratio; Hb: hemoglobin; Ig: immuno-
globulin; IL-6: interleukin-6; Ly: lymphocyte; NK cell: natural killer cell; 
sIL-2R: soluble interleukin-2 receptor; WBC: white blood cell.
Data are presented as means and standard deviations for continuous vari-
ables and as numbers and percentages for categorical variables.
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