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Abstract: This study investigated the suspension of poly(ε-caprolactone) nanoparticles as an 

ocular delivery system for flurbiprofen (FB-PεCL-NPs) in order to overcome the associated 

problems, such as stability, sterility, tolerance, and efficacy, with two different FB-PεCL-NP 

formulations. The formulations were stabilized with poloxamer 188 (1.66% and 3.5%) and 

submitted individually for freeze-drying and γ-irradiation with polyethylene glycol 3350 

(PEG3350) and d-(+)-trehalose (TRE). Both formulations satisfied criteria according to all 

physicochemical parameters required for ocular pharmaceuticals. The FB-PεCL-NP formulations 

showed non-Newtonian behavior and sustained drug release. Ex vivo permeation analysis using 

isolated ocular pig tissues suggested that the presence of PEG3350 results in a reduction of FB 

transcorneal permeation. Moreover, TRE improved the penetration of FB across the cornea, 

especially after γ-irradiation. In addition, both formulations did not show a significant affinity 

in increasing FB transscleral permeation. Both formulations were classified as nonirritating, 

safe products for ophthalmic administration according to hen’s egg test-chorioallantoic mem-

brane and Draize eye test. Furthermore, an in vivo anti-inflammatory efficacy test showed that 

irradiated FB-PεCL-NPs prepared with PEG3350 (IR-NPsPEG) have longer anti-inflammatory 

effects than those presented with irradiated FB-PεCL-NPs prepared with TRE (IR-NPsTRE). 

IR-NPsPEG showed a suitable physical stability after an aqueous reconstitution over .30 days. 

This study concludes that both formulations meet the Goldman’s criteria and demonstrate how 

irradiated nanoparticles, with innovative permeation characteristics, could be used as a feasible 

alternative to a flurbiprofen solution for ocular application in clinical trials.

Keywords: nanoparticles, flurbiprofen, polyethylene glycol 3350, d-(+)-trehalose, freeze-

drying, γ-irradiation

Introduction
Inflammation of the ocular surface has the highest incidence in the ophthalmology 

consultation, following injury, infection, or from chronic conditions.1 Nonsteroidal anti-

inflammatory drugs such as flurbiprofen (FB) have been used to inhibit intraoperative 

miosis during cataract surgery to reduce the risk of cystoid macular edema and postop-

erative inflammation of the anterior segment of the eye. FB, 2-(2-fluoro-4-biphenylyl) 

propionic acid, exerts its anti-inflammatory action by inhibiting the cyclooxygenase 

enzymes.2,3 The most common FB pharmaceutical presentation is an eye drop solution. 

However, it has many disadvantages, for example, the solution’s rapid elimination 

through the precorneal barriers (ie, eye blinking and tear flow), resulting in a reduced 
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duration of drug effect and consequently an increased 

regimen requiring a proportionately large volume of the 

administered eye drop.4,5

Polymeric nanoparticles (NPs) enhance the ocular bio-

availability of topically administered drugs, thus making 

a more suitable alternative. This colloidal system is well 

known to be highly adhesive to the ocular surfaces and 

forms a depot from which the drug is slowly delivered to 

the affected area. This not only reduces administration fre-

quency but also directs the drug to a specific site.4,6 In this 

context, FB NPs suspension allows a direct FB permeation 

to the ocular tissue.

The development of NPs for ophthalmic preparations, 

as well as other pharmaceutical ocular presentations, must 

satisfy the Goldmann’s criteria (stability, sterility, toler-

ance, and efficacy). Therapy efficacy is the most important 

criterion for ophthalmic preparation as it depends not only 

on the stability and tolerance of the preparation but also on 

the ocular permeability of the active ingredients.7

One major obstacle limiting the use of NPs is their insta-

bility in aqueous mediums. Freeze-drying is an industrially 

suitable method for the improvement of stability of NPs as 

it causes minimal changes in the product’s physicochemical 

properties.8 As sterility is essential, eye formulations must 

satisfy this necessity. γ-Irradiation is commercially available 

and mainly used for the sterilization of pharmaceuticals; 

however, it has been suggested that this method can change 

polymer properties and release kinetics, hence the essentiality 

of product efficacy.9,10

In order to evaluate the safety and efficacy of materials 

that may be in contact with the eye, the permeability across 

ocular tissues has been evaluated using the in vivo and in vitro 

eye models over many years. This key factor assists in the for-

mulation of candidate selection for in vivo clinical studies.11,12 

Porcine ocular tissues offer a good model system because 

they are the closest to human beings after primate; this is due 

to the absence of the tapetum layer in porcine eyes, which is 

present in many other animals such as cows, sheep, and rab-

bits. Research into other mammalian corneas, mainly those 

of farmed animals, could also aid the research of veterinary 

ophthalmic formulation development.13–15 Other notable simi-

larities between human and porcine eyes are the retinal pigment 

epithelium, photoreceptor cells, and water content. In addition, 

biomechanical studies into scleral thickness also show similari-

ties between porcine sclera and human sclera.16–18

In this research, an attempt was made to determine 

the effect of freeze-drying and γ-irradiation sterilization 

on parameters involved in topical ophthalmic formulation 

made from FB-loaded poly(ε-caprolactone) nanoparticles 

(FB-PεCL-NPs). Freeze-drying was carried out using treha-

lose and polyethylene glycol 3350 (PEG3350) as protectants. 

After physicochemical characterization, in vitro release and 

ex vivo permeation were studied. Additionally, rheology 

properties, physical stability, ocular tolerance tests, and 

anti-inflammatory efficacy tests were used to determine the 

most appropriate ophthalmic formulation.

Materials and methods
Materials
FB and poly(ε-caprolactone)  with a  molecular 

weight of ~10,000–14,000 from Sigma-Aldrich Co. (St Louis, 

MO, USA) as well as d-(+)-trehalose (TRE) and PEG3350 

were purchased. Poloxamer 188 (P188; Lutrol® F68) was 

sourced from BASF (Barcelona, Spain). Double distilled 

water was used after filtration using a Millipore® system 

(EMD Millipore, Billerica, MA, USA). All other reagents 

were of analytical grade.

Production and characterization of 
FB-PεCL-NPs
FB-PεCL-NPs stabilized with P188 were prepared by the 

solvent displacement technique described by Fessi et al.19 

Briefly, an organic solution of 49.5 mg of PεCL in 30 mL of 

acetone, containing FB (15 mg/mL), was added dropwise into 

60 mL of an aqueous P188 solution (8.3 mg/mL or 17.5 mg/

mL of P188) at pH 3.5 under moderate magnetic stirring. 

Finally, using a rotary evaporator (R-144; Buchi, Flawil, 

Switzerland), the acetone was evaporated at 35°C under 

reduced pressure and the suspension of FB-PεCL-NPs was 

concentrated to 15 mL to obtain a final concentrated suspen-

sion of FB-PεCL-NPs with 1 mg/mL of FB.

The mean particle size (Z
av

) and polydispersity index 

(PI) were determined by PCS using a Zetasizer Nano ZS 

(Malvern Instruments, Malvern, UK) at 25°C. Samples were 

previously diluted with ultrapurified water. Zeta potential 

(ZP) was calculated from electrophoretic mobility as is 

described elsewhere.4

Entrapment efficiency (EE) of FB-PεCL-NPs was esti-

mated by indirectly quantifying the amount of nonencapsu-

lated FB in the dispersion medium.9 Briefly, the amount of 

nonentrapped FB was separated by filtration/centrifugation 

technique using centrifugal filter devices (EMD Millipore) at 

14,000 rpm for 15 minutes. Prior to filtration/centrifugation, 

each sample was diluted with MilliQ water (1:20) to avoid 

deposition of free FB (possibly crystallized in the aqueous 

phase) on the surface of NPs and assessed by reversed-phase 
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high-performance liquid chromatography (RP-HPLC; Waters, 

Milford, CT, USA) applying the following equation:

 
EE

Total amount of FB Free FB

Total amount of FB
100(%) = ×

−

 
(1)

The detection wavelength was set at 247 nm in the UV 

detector, reversed-phase C18 column 4.6×150 mm, using 

a mobile phase composed of water:acetonitrile (35:60, v:v) 

acidified with orthophosphoric acid (pH 2.5). A flow rate of 

1 mL/min was used, and the retention time of the drug was 

at 3.2 minutes. Data analysis was done with the Empower 

Chromatography Software (Milford, MA, USA).

Freeze-drying process
The freeze-drying process was carried out in a Telstar Lyo-

Beta freeze dryer (Telstar, Barcelona, Spain) equipped with 

Pirani and capacitance vacuum gauges. TRE or PEG3350-

loaded FB-PεCL-NPs were prepared by adding 15 mL of 

protectant agent solution (TRE at 10% [w:v] or PEG3350 at 

16% [w:v]) to the 15 mL FB-PεCL-NPs formulations. Then 

an aliquot of 3.0 mL was transferred to an 8 mL flat-bottom 

screw cap glass vial.

The freeze-drying cycle for FB-PεCL-NPs prepared 

with TRE was as follows: holding in precooling shelf at 

+10°C for 1 hour, a freezing at −50°C for 4 hours, a primary 

drying at −3°C/0.14 mbar for 12 hours, and a secondary 

drying at 42°C for 10 hours. The FB-PεCL-NPs prepared 

with PEG3350 were freeze-dried using the following cycle: 

holding in precooling shelf at 10°C for 1 hour, a freezing 

at −50°C for 4 hours, a primary drying at 5°C/0.14 mbar 

for 12 hours, and a secondary drying at 45°C for 10 hours. 

After freeze-drying, the samples did not show any sign 

of collapse and all the freeze-dried matrix was white and 

easily rehydrated by manual shaking. They were aqueous 

reconstituted in the initial volume (volume before addition 

of protectant solution) in order to recover the initial FB 

concentration.

Table 1 describes the composition parameters of the 

optimized freeze-dried NP formulations. The component’s 

amounts were selected according to experiments satisfying 

the demands required for eye drops in terms of low Z
av

, low 

PI, high EE, appropriate osmolality, and high ZP.

Osmolality
The osmolality of ~50 µL of each FB-PεCL-NPs formula-

tion was measured by means of Advanced® Model 3320 

Micro-Osmometer (Advanced® Instruments, Inc., Nor-

wood, MA, USA).

γ-Irradiation sterilization
Freeze-dried FB-PεCL-NP powders were γ-irradiated using 
60Co as irradiation source (Aragogamma, Barcelona, Spain) 

and received a dose of 25 kGy. Although recent studies sug-

gest the possibility to use lower irradiation dose previous 

to validation,20 according to the European Pharmacopoeia, 

25 kGy represents the adequate absorbed dose for the purpose 

of sterilizing pharmaceutical products when bioburden is not 

known.9,20 Furthermore, it is considered a standard γ-irradiation 

dose recommended for terminal sterilization of medical prod-

ucts that maintain a valid sterility assurance level of 10−6.21

Rheological studies
Rheological properties of FB-PεCL-NPs suspension were 

evaluated at 25°C using a rotational rheometer HAAKE 

RheoStress 1 (Thermo Fisher Scientific, Waltham, MA, USA) 

equipped with a fixed lower plate and an upper cone plate, 

2° (Haake C60/2° Ti, 6 cm diameter). Viscosity curves 

and flow curves were recorded for 3 minutes during the 

ramp-up period from 0 seconds−1 to 100 seconds−1, 1 minute 

at 100 seconds−1 (constant share rate period), and finally, 

3 minutes during the ramp-down period from 100 seconds−1 to 

0 seconds−1. All measurements were performed in triplicate.

Stability studies
The physical stability of the FB-PεCL-NPs suspension was 

assessed after 1 day, 7 days, 15 days, 21 days, and 30 days of 

storage at 4°C in a TurbiScanLab® (Formulaction, L’Union, 

France). This instrument is able to detect destabilization, 

without dilution of the sample, much earlier than the opera-

tor’s naked eye.5,7 Each formulation (15 mL) was placed in a 

cylindrical glass measuring cell that was completely scanned 

by a pulsed near-infrared light source (λ=880 nm) with two 

Table 1 Composition of the freeze-dried optimized NPs formulation

FB-PεCL-NPs cFB (mg/mL) cPεCL (mg/mL) cP188 (mg/mL) cPA (mg/mL)

FD-NPsTRE 1.0 3.3 16.6 100
FD-NPsPEG 1.0 3.3 35.0 160

Notes: NPsTRE, formulation prepared with trehalose as a protectant agent; NPsPEG, formulation prepared with PEG3350 as a protectant agent.
Abbreviations: c, concentration; NPs, nanoparticles; FB, flurbiprofen; PεCL, poly(ε-caprolactone); P188, poloxamer 188; PA, protectant agent; FD, freeze-dried condition.
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synchronous optical detectors. The transmission detector (T) 

receives the light transmitted through the sample (0° from 

the incident radiation) and the backscattering (BS) detector 

receives the light backscattered by the sample (135° from 

the incident radiation) every 40 µm at 25°C for a period of 

60 minutes.

In this study, only BS profile was used to evaluate 

physical stability of FB-PεCL-NPs due to the opacity of the 

formulations. The obtained profile characterizes the sample’s 

stability (no variation of BS and T), particle migration (local 

peaks of variation of BS or T), and particle size variation 

(global variation of BS or T on the whole height). If the BS 

profiles have a deviation of #±2%, it can be considered that 

there are no significant variations in particle size. Variations 

more than ±10% indicate unstable formulations.22

In vitro release
In vitro release study of FB from FB-PεCL-NP formula-

tions was performed in amber glass Franz-type diffusion 

cells with a diffusion area of 0.64 cm2 for 40 hours, keep-

ing sink conditions for the entire experiment at 32°C 

under 600 rpm stirring. These cells consist of a donor 

and a receptor chamber between which a dialysis mem-

brane is positioned.23 The dialysis membrane (MWCO 

12,000–14,000 Da, Visking Dialysis Tubing; Medicell 

International Ltd., London, UK) was hydrated for 24 hours 

before being mounted in the Franz cell. In all, 400 µL of 

the test formulation was applied to the membrane in the 

donor chamber and the receptor chamber of the cell was 

filled with 6 mL of phosphate buffer solution (PBS) at 

pH 7.4. The FB-PεCL-NP formulations were compared 

with the free drug (1 mg/mL) dissolved in PBS at pH 7.4. 

At selected time intervals, 300 µL of bulk solution was 

analyzed by RP-HPLC to determine the concentration of 

the released FB. The samples withdrawn were replaced by 

300 µL of PBS maintaining sink conditions.

Four different kinetic models (zero order, first order, 

Higuchi, and hyperbola) were used to fit the experimen-

tal data obtained from drug release experiments.24 Model 

parameters were calculated using GraphPad Prism 6 software 

(GraphPad Software Inc., San Diego, CA, USA). The coef-

ficient of determination (r2) and the Akaike’s information 

criterion (AIC), which is a discrimination model parameter, 

were determined in order to select a model that best fits the 

release of each sample. A lower AIC indicated the best data-

adjusted model. The AIC was calculated by the equation:

 AIC n ln (WSSR= × +) 2 p  (2)

where n is the number of dissolution data points (Q/t), p is 

the number of parameters of the model, and WSSR is the 

weighed sum of square of residues.25

ex vivo FB permeation across isolated 
pig cornea and sclera
The ex vivo FB permeation from FB-PεCL-NP formulations 

was evaluated using isolated pig cornea and sclera using 

Franz-type diffusion cells. Fresh pig eyes were obtained from 

adult male pigs (Landrace and Large White hybrids) weighing 

45–60 kg. The pig ocular balls were recycled and supplied by 

the Faculty of Medicine at Barcelona University, Spain. All 

experiments were performed according to the statement of 

Association for Research in Vision and Ophthalmology on 

the Use of Animals in Ophthalmic and Vision Research. They 

were also approved by the Ethical Committee of the Univer-

sity of Barcelona (number 7428) and the committee of Animal 

Experimentation of the Regional Autonomous Government 

of Catalonia, Spain (Law 32/2007 of November 7, 2007, and 

“Real Decreto 1201/2005”, October 10, 2005).

The pigs were sedated with neck intramuscular admin-

istration using ketamine (3 mg/kg) + xylazine (2.5 mg/kg) +  

midazolam (0.17 mg/kg). The animals were euthanized by 

an overdose of sodium thiopental (100 mg/kg) administered 

through the marginal ear vein under deep anesthesia using 

propofol (1 mg/kg). Eyes were carefully removed and imme-

diately excised. Ocular tissues were kept moist by placing 

them in Hank’s balanced salt solution in order to maintain the 

viability of the cells.26 The excised tissue (cornea or sclera) 

was fixed between clamped donor and receptor compart-

ments of the perfusion with a diffusion area of 0.64 cm2.  

In all, 200 µL of the test formulation was applied to the tissue 

surface in the donor compartment, and the receptor compart-

ment of the cell was filled with 6 mL of PBS. A constant tem-

perature of 32°C±0.5°C and 37°C±1°C for cornea and sclera, 

respectively, was kept by a circulating water jacket and stirring 

at 600 rpm. A total of 300 µL of the test formulation was with-

drawn from the receptor solution at predetermined intervals. 

It was replaced by an equal volume of fresh buffer after each 

sample collection. All experiments were carried out under sink 

conditions. Samples were analyzed in triplicate by RP-HPLC.

The cumulative amounts of FB (mg) that had penetrated 

per surface area of the ocular membrane (cm2) were corrected 

for the sample removal and plotted versus time (hour). The 

permeation profiles were analyzed on the basis of a diffusion 

model for a finite dose condition.

Flux (J) through the ocular tissue was calculated by plot-

ting the cumulative amount of permeated FB against time in 
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steady state and determining the slope of the linear portion 

of the curve by linear regression analysis. In this plot, the lag 

time (T
L
) is the intercept with the x-axis (time). The apparent 

permeability coefficients (K
p
, cm/h) were calculated accord-

ing to the following equation:

 

K J
A Cp

0

= ×
×
60

 

(3)

where J (µg/min) is the flux across the ocular tissue, A is the 

exposed tissue surface area (cm2), C
0
 (µg/cm3) is the initial 

amount of formulation tested in the donor compartment, 

and 60 is taken as the factor to convert minute into hour. 

Experimental data were processed using GraphPad Prism and 

compared using an application of a parametric statistical assay 

(the analysis of variance [ANOVA] test) followed by Tukey’s 

multiple comparison test (P,0.05).

At the end of the permeation study, the tissue (cornea or 

sclera) was removed from the Franz cell. It was then cleaned 

with gauze soaked in a 0.05% solution of sodium lauryl 

sulfate and washed with distilled water. The permeation 

area of the tissue was excised and weighed; its FB content 

was extracted with acetonitrile:water (50:50, v:v) under 

sonication for 15 minutes using an ultrasound bath and then 

analyzed by RP-HPLC.

The corneal hydration levels were investigated by mea-

suring total water content through desiccation (gravimetric 

method). Each corneal sample was carefully removed from 

the scleral ring and weighed (W
a
). It was then desiccated at 

100°C for 6 hours to determine the corresponding dry cor-

neal weight (W
b
). The percentage of corneal hydration level 

(HL%) was defined as:

 

HL% b

a

= −






×1 100

W

W
 

(4)

In vitro ocular tolerance test
The potential ocular irritation of FB-PεCL-NP formulations 

was determined using Hen’s egg test-chorioallantoic membrane 

(HET-CAM) bioassay. Fertilized hen’s eggs weighing 50–60 g 

were obtained from Llorens SA poultry farm (Tarragona, 

Spain). The egg’s shell and the inner membrane were previ-

ously removed; therefore, the choroiallantoic membrane (CAM) 

separating the embryo from the air chamber became visible.

In order to obtain a baseline of the test, to ensure 

the assay conditions do not provide an incorrect result, 

a positive control (0.3 mL of 1% sodium dodecyl sulfate and 

0.1 N NaOH) and a negative control (0.3 mL of 0.9% NaCl 

solution) were performed. In all, 0.3 mL of FB-PεCL-NPs 

were placed over the CAM and effects such as hemorrhage, 

lysis, and coagulation were documented within 5 minutes of 

application.27 The ocular irritation index (OII) was calculated 

by the following expression:

 
OII

( h)

300

( l)

300

( c)

300
=

− ×
+

− ×
+

− ×301 5 301 7 301 9

 (5)

where h (seconds) is the time of the first appearance of blood 

hemorrhages, l (seconds) is the time of the first appearance of 

vessel lysis, and c (seconds) is the time of the first appearance 

of protein coagulation on CAM. The following classifica-

tion was used: OII #0.9, slightly irritating; 0.9, OII #4.9, 

moderately irritating; 4.9, OII #8.9, irritating; and 8.9, 

OII #21, severely irritating.

In vivo ocular tolerance test
In vivo eye irritation was evaluated in pigs (Large White–

Landrace) by the Draize eye test, which is the official tech-

nique for the evaluation of cosmetic and pharmaceutical 

products for ocular instillation by the interpretation of Kay 

and Calandra.28 A single instillation of 50 µL of each sample 

was instilled in one eye using the untreated contralateral eye 

as a control, and then readings were performed 1 hour after 

sample application and then after 1 day, 2 days, 3 days, 4 days, 

and 7 days. The opacity (cornea), congestion and swelling 

(iris), and redness and discharge (conjunctiva) were graded 

on a scale from 0 to 4, 0 to 2, and 0 to 3, respectively, after 

evaluation by slit lamp. The Draize score was determined by 

visual assessment of changes in these ocular structures. The 

mean total score (MTS) was calculated as follows:

 
MTS

n

5

n

2

n

5
= + −Σ Σ Σ

x x x
1 2 3
( ) ( ) ( )

 
(6)

where x
1
(n), x

2
(n), and x

3
(n) are the cornea, conjunctiva, and 

iris scores, respectively, and n is the number of pigs included 

in the assay.

Ocular anti-inflammatory effect
The anti-inflammatory efficacy of FB-PεCL-NP formulations 

was tested in pigs by instillation of a single dose of 50 µL of 

sample tested or 0.9% (w/v) isotonic saline solution (con-

trol) in the conjunctival sac of the left eye. The contralateral 

eye was used as an untreated control. After 60 minutes, 
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50 µL of 0.5% (w/v) sodium arachidonate solution (SAS) 

in PBS (pH 7.4) was instilled in the left eye. Inflamma-

tion was quantified from 30 minutes to 150 minutes after 

application of SAS according to a modified Draize scoring 

system.11 Ocular changes were graded according to the MTS 

aforementioned.

Results and discussion
FB-PεCL-NP particles characterization
Chemical parameters of FB-PεCL-NPs freeze-dried with 

TRE (FD-NPsTRE) and FB-PεCL-NPs freeze-dried with 

PEG3350 (FD-NPsPEG) maximize the desirable physi-

cochemical properties of NPs under certain freeze-drying 

conditions. It is important to highlight that both formulations 

are different in terms of protectant agent type, protectant 

agent concentration, and P188 concentration as shown in 

Table 1. No significant difference was observed in Z
av

 of FD-

NPsTRE and FD-NPsPEG, 191.7±1.9 nm and 190.4±1.3 nm, 

respectively. PI values of FD-NPsPEG were in the range 

of monodisperse systems (PI ,0.1), whereas FD-NPsTRE 

showed PI values .0.1. Both formulations had similar nega-

tive surface charge, as indicated ZP values. Furthermore, the 

EE for both formulations reached 85%. These results are 

summarized in Table 2.

Since these formulations have a therapeutic goal, the 

powders of FD-NPsTRE and FD-NPsPEG were γ-irradiated 

(IR-NPsTRE and IR-NPsPEG). To have a complete study 

on the effects of these processes on FB release and ocular 

permeation profile, we decided to produce FB-PεCL-NPs 

before freeze-drying and γ-irradiation sterilization. In this 

way, FB-PεCL-NP suspensions with the protectant agent 

(NPsTRE and NPsPEG) and without the protectant agent 

(F-A and F-B) were prepared and their physicochemical 

properties were evaluated as shown in Table 2.

The results obtained demonstrate that γ-irradiation did 

not seem to have any effect on Z
av

, PI, ZP, and EE of the 

optimized freeze-dried formulations. It can be observed that 

FD-NPsTRE and IR-NPsTRE showed significantly different 

PI values than FD-NPsPEG and IR-NPsPEG as evaluated 

by the statistical ANOVA (P.0.05). PI values of formula-

tions prepared with TRE after freeze-drying and sterilization 

revealed less homogenous suspension than the other samples. 

It is well known that a smaller Z
av

 and a low PI involve a 

higher and closer contact with the drug-loaded particles and 

the biological tissue. This helps to obtain a more efficient 

permeation of the drug into the tissue.29,30

It is widely known that higher ZP values, either 

positive or negative, allow greater long-term stability.31 In 

our case, all samples showed a negative ZP value ranging 

from −12.00 mV to −18.40 mV. This can be attributed to 

the presence of lactone residues on the polymeric matrix 

surface.32 Thus, all samples being assayed were considered 

to be satisfactory NP suspensions.

Hypotonic solution may cause corneal edema.33 Hyper-

tonic solution causes lachrymation, a burning sensation, and 

cell desquamation.34,35 As expected, F-A and F-B (suspension 

without therapeutic goal) showed hypo-osmolality values. 

Other samples displayed appropriate osmolality. The EE 

in the FB-PεCL-NPs was found to be 86%. No significant 

differences were observed in the EE values for all samples.

Rheological studies
Rheological behavior of IR-NPsTRE, IR-NPsPEG, FD-

NPsTRE, FD-NPsPEG, and their individual basic formula-

tions (F-A and F-B) were analyzed.

All samples presented viscosity curves that were nearly 

constant with increasing shear rate corresponding to 

Newtonian behavior. F-A, FD-NPsTRE, and IR-NPsTRE 

Table 2 Physicochemical properties and EE of FB-PεCL-NPs

FB-PεCL-NPs Zav (nm) PI EE (%) ZP (mV) Osmolality  
(mOsm/kg)

F-A 171.8±1.7 0.091±0.014 86±1 −13.10±0.57 6±1
NPsTre 170.6±3.2 0.090±0.011 87±1 −12.70±0.32 315±3
FD-NPsTRE 191.7±1.9 0.139±0.012 85±1 −12.00±0.42 296±3
IR-NPsTRE 187.5±1.2 0.131±0.015 86±0 −13.20±0.17 305±1
F-B 175.9±0.0 0.078±0.006 85±1 −17.70±0.11 9±1
NPsPeg 190.2±1.2 0.069±0.017 86±0 −18.40±0.72 310±2
FD-NPsPEG 190.4±1.3 0.087±0.014 85±1 −15.50±0.83 316±1
IR-NPsPEG 192.5±2.0 0.091±0.028 85±1 −15.30±0.37 318±1

Notes: F-A, nanoparticles’ suspension with P188 at 1.66%; NPsTRE, formulation prepared with trehalose as a protectant agent; F-B, nanoparticles’ suspension with P188 at 3.5%; 
NPsPEG, formulation prepared with PEG3350 as a protectant agent. Data presented as mean ± standard deviation.
Abbreviations: EE, entrapment efficiency; FB, flurbiprofen; PεCL, poly(ε-caprolactone); NPs, nanoparticles; Zav, mean particle size; PI, polydispersity index; ZP, zeta 
potential; FD, freeze-dried condition; IR, irradiated condition.

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2016:11 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

4099

Freeze-drying and γ-irradiation of nanoparticles

showed 1.225±0.043 mPa/s, 1.608±0.043 mPa/s, and 1.648± 
0.038 mPa/s, respectively, as viscosity values. Likewise, F-B, 

FD-NPsPEG, and IR-NPsPEG showed 1.664±0.056 mPa/s, 

5.425±0.043 mPa/s, and 6.594±0.033 mPa/s, respectively, 

as viscosity values. Viscosity was increased in freeze-dried 

formulations due to the addition of protectant agents. FD-

NPsTRE and IR-NPsTRE showed an extremely low viscosity 

in comparison with formulations prepared with PEG3350. 

IR-NPsPEG showed the greatest viscosity (P,0.05). A low 

viscosity benefits redispersion after aqueous reconstitu-

tion and makes easy dispensing of the eye drop. Likewise, 

systems with low viscosity allow good tolerance with little 

blinking pain.26

In vitro drug release
An in vitro release study of the FB from the protectant 

agent-free formulations (F-A and F-B), formulations with 

the protectant agent (NPsTRE and NPsPEG), optimized 

freeze-dried formulations (FD-NPsTRE and FD-NPsPEG), 

sterilized freeze-dried formulations (IR-NPsTRE and 

IR-NPsPEG), and free drug solution (FB, dissolved in PBS) 

was conducted.

As represented in Figure 1A, the release profile of FB from 

the free drug solution exhibited faster and complete release 

behavior after 4 hours. F-A displayed a very similar release 

profile to the F-B (P.0.05), more prolonged than exhibited 

by free drug. Similar results were obtained by Vega et al6 for 

the in vitro drug release with different amounts of P188.6

However, as seen in Figure 1B, FB release decreased when 

protectant agents were added to their respective basic formu-

lation. It was more evident in NPsPEG than NPsTRE, which 

reached 62% and 82% after 10 hours of drug release, respec-

tively. This trend was maintained in the following FB-PεCL-

NPs states (freeze-dried and sterilized). These results could 

be attributed to the fact that an increase in the viscosity of 

the dispersion medium can decrease the rate of particle 

Figure 1 In vitro FB release profiles of (A) F-A and F-B, (B) NPsTRE and NPsPEG, (C) FD-NPsTRE and FD-NPsPEG, and (D) IR-NPsTRE and IR-NPsPEG, compared with 
free drug solution (mean ± SD, n=3).
Notes: F-A, nanoparticles’ suspension with P188 at 1.66%; F-B, nanoparticles’ suspension with P188 at 3.5%; NPsTRE, formulation prepared with trehalose as protectant 
agent; NPsPEG, formulation prepared with PEG3350 as protectant agent.
Abbreviations: FB, flurbiprofen; FD, freeze-dried condition; IR, irradiated condition; h, hours; SD, standard deviation; NPs, nanoparticles.
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sedimentation (according to the equation of Stokes’ law).36 

Consequently, we can expect a slower rate of descent to ocu-

lar tissue in freeze-dried NPs with PEG3350 after aqueous 

reconstitution, thus allowing an extended dosage in the same 

proportion. The presence of Newtonian behavior ensures that 

blinking should have no effect on viscosity.37

Also, the effective control of FB released either in the 

burst effect or over 10 hours in FD-NPsPEG and IR-NPsPEG  

can be related to the compact structure of the polymeric 

matrix obtained by the addition of PEG3350 that reduces 

FB diffusion rate, especially when water is removed 

during sublimation.38

Comparative to the formulations using PEG, the samples 

with TRE added achieved a higher released amount of FB. 

Approximately 92%–94% of FB amount was released in the 

first 10 hours from FD-NPsTRE and IR-NPsTRE, respec-

tively, as shown in Figure 1C and D. TRE was reported as 

a protectant agent that induces or increases the porosity of 

NPs.39 It may open a pathway for a faster FB release from 

NPs and for its possible degradation by external factors. Two 

mechanisms of pore formation have been postulated, and 

it is probable that both contribute to the higher FB release 

rate. The surface of NPs and porosity of the final dried cake 

are strongly influenced by the freezing stage (freeze-drying 

process) due to the elimination of the ice crystals by sublima-

tion, creating an open network of pores that may affect the 

morphological characteristics of NPs. Furthermore, TRE is 

able to form more flexible hydrogen bonds with NPs; thus, 

it is removed more easily from the surface of NPs and FB is 

released in a higher amount.39,40

The literature reported the effect of γ-irradiation on PεCL 

structure; upon irradiation, the polymer displays cross-linking 

between polymeric chains or even between surfactant and 

PεCL chains.41 As can be seen in Figure 1D, the release profile 

of NPs did not significantly change after γ-irradiation. Only 

the intrinsic viscosity of FB-PεCL-NPs using PEG added 

increased from 5.425 mPa/s to 6.594 mPa/s after irradiation. 

This leads to the assumption that the release was slightly mod-

ified after sterilization, although, the γ-irradiation at 25 kGy 

did not determine cross-linking or modification reactions in 

the matrix components. Probably, this effect was reduced 

by the higher amounts of PEG3350 contained in the dried 

NPs. On the other hand, IR-NPsTRE displayed a very similar 

release rate than the free drug solution (P.0.05). Besides their 

rheological properties and the γ-irradiation effects on PεCL 

aforementioned, this may be because of easy breakdown of 

TRE coat by sterilization, facilitating a direct exposition of 

NP. Some authors reported that TRE increases drug release, 

which corroborated the profiles obtained.20,42,43

Here, it can be suggested that PEG3350 protected 

FB-PεCL-NPs more successfully than TRE at the studied 

concentration, although γ-radiation may influence the drug 

release kinetics.

The evaluation of FB degradation after irradiation was 

performed by RP-HPLC. The irradiated sample’s chromato-

grams were similar to the non-irradiated sample’s chromato-

grams and did not reveal any evidence of the drug radiolysis 

in the tested irradiation dose.

Furthermore, as shown in Table 3, all samples were 

adjusted to various kinetic models, such as zero order, 

Table 3 Parameters for kinetic models of FB-PεCL-NP formulations and free drug solution

Models Parameters Units F-A NPsTRE FD-NPsTRE IR-NPsTRE F-B NPsPEG FD-NPsPEG IR-NPsPEG Free drug

Zero order aIc – 48.176 47.546 48.385 50.614 47.643 41.204 37.034 43.442 51.021
r2 0.757 0.762 0.792 0.684 0.762 0.866 0.946 0.819 0.639

First order aIc – 22.546 29.845 23.318 27.804 13.193 18.028 11.809 26.027 38.677
r2 0.997 0.988 0.997 0.993 0.999 0.997 0.999 0.990 0.954
Kf minute−1 0.820 0.736 0.510 0.839 0.703 0.455 0.225 0.424 1.054
sD 0.051 0.097 0.040 0.079 0.022 0.033 0.013 0.062 0.217
Q∞ µg 91.90 82.81 92.40 94.17 87.22 67.02 81.70 67.25 100.90
sD 1.484 2.819 1.970 2.287 0.716 1.384 1.954 2.864 5.405
t1/2 minute 0.845 0.942 1.358 0.827 0.986 1.524 3.079 1.634 0.657
sD 0.031 0.064 0.127 0.093 0.099 0.008 0.385 0.095 0.039

Hyguchi aIc – 42.607 41.874 42.256 46.046 41.950 32.594 24.548 37.685 47.500
r2 0.904 0.907 0.931 0.853 0.908 0.968 0.993 0.931 0.799

Hyperbola aIc – 22.875 27.638 31.732 33.046 26.227 12.467 7.930 30.817 40.655
r2 0.996 0.991 0.987 0.983 0.993 0.999 0.999 0.978 0.936

Notes: F-A, nanoparticles’ suspension with P188 at 1.66%; NPsTRE, formulation prepared with trehalose as a protectant agent; F-B, nanoparticles’ suspension with P188 at 3.5%; 
NPsPEG, formulation prepared with PEG3350 as a protectant agent; r2, determination coefficient, Kf, release rate constant; Q∞, maximum amount of dissolved drug; t1/2, drug 
half-life.
Abbreviations: FB, flurbiprofen; PεCL, poly(ε-caprolactone); NPs, nanoparticles; FD, freeze-dried condition; IR, irradiated condition; AIC, Akaike’s information criterion; 
SD, standard deviation.
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first order, Higuchi, and hyperbola. In this case, the most 

of the formulations followed the first-order model, which 

was also confirmed by the coefficient of determination, 

r2 (highest value), except for NPsPEG and FD-NPsPEG 

that followed a hyperbola kinetic model. As FB is homog-

enously distributed in the polymeric matrix, the drug release 

occurs by drug diffusion mechanism. Moreover, the low 

molecular weight of FB (244.25 Da) improves the diffu-

sion mechanism.6

FB release from the irradiated samples depended on chem-

ical properties provided by the protectant agent even though 

the FB release profiles were influenced by freeze-drying. The 

release pattern was not affected by the P188 amount – even 

by size homogeneity of NPs in suspension (PI).

In order to help us to predict in vivo release behavior and 

elucidate the detailed release mechanism of this colloidal 

system, studies on drug release kinetics are fundamental. 

The corresponding biopharmaceutical parameters were deter-

mined to confirm the results observed in Figure 1. Although 

there were not statistically differences between F-A and F-B, 

it could be observed that samples with PEG (NPsPEG, FD-

NPsPEG, and IR-NPsPEG) showed a constant weak release 

rate (K
f
) against formulations containing TRE (NPsTRE, 

FD-NPsTRE, and IR-NPsTRE). The maximum concentra-

tion of released drug (Q∞) from IR-NPsTRE and IR-NPsPEG 

was 379.20±19.44 µg and 267.10±20.06 µg, respectively 

(P,0.05). It could be seen that PEG3350 increased drug 

half-life in comparison with TRE that maintained a drug 

half-life similar to the free drug solution as evaluated by the 

statistical ANOVA (P.0.05).

Ocular permeation study
The ocular permeability of drugs is clinically important as 

it is one of the major factors that determine the efficacy of 

topically applied preparations. An ex vivo permeation study 

was carried out to compare the permeation profile of FB 

from the optimized freeze-dried formulations (FD-NPsTRE 

and FD-NPsPEG), sterilized formulations (IR-NPsTRE and 

IR-NPsPEG), FB-PεCL-NPs suspensions with and without 

protectant agent (NPsTRE, NPsPEG, F-A, F-B), and free 

drug solution. Table 4 shows the permeation parameters of 

the formulations and the amount of drug retained (Q
r
). The 

results of the permeation studies were compared using a 

parametric statistical assay (the ANOVA test), followed by 

Tukey’s multiple comparison test (P,0.05).

Corneal permeation study
The transcorneal permeation profile of FB is shown in 

Figure 2. F-A showed a smaller K
p
 than F-B. It is well known 

that transcorneal permeation of a lipophilic drug, like FB, is 

higher than hydrophilic drugs. The higher amount of P188 in 

F-B probably reinforced the penetration of FB in the cornea 

as shown in Figure 2A. However, as seen in Figure 2B, the 

performance changed when a protector was added.

In freeze-dried NPs, TRE had a stronger influence on 

the permeation properties. In spite of FD-NPsPEG and IR-

NPsPEG presenting better homogeneity in morphometric 

characteristics, FD-NPsTRE and IR-NPsTRE reached a 

significantly higher K
p
. Noticeably, IR-NPsPEG displayed 

the smallest K
p
 and the largest amount of drug retained in 

the cornea, 33.95%±0.99%/cm2⋅g.

It can be seen from Figure 2C and D an increase in 

K
p
 from FD-NPsTRE to IR-NPsTRE (P,0.05), while 

K
p
 from FD-NPsPEG to IR-NPsPEG was maintained 

(P.0.05). Only the IR-NPsTRE reached similar amount 

of FB permeated through the corneal tissue to free drug 

solution, 116.03 µg/cm2 and 119.70 µg/cm2. They repre-

sented 58.02%±2.45% and 59.85%±1.95% of total exposed 

Table 4 FB corneal and scleral permeation parameters from FB-PεCL-NP formulations and free drug solution

FB-PεCL-NPs Cornea Sclera

TL (h) Kp ×10−2 (cm/h) Qr (%/cm2⋅g) TL (h) Kp ×10−2 (cm/h) Qr (%/cm2⋅g)

F-A 0.008±0.098 1.156±0.144 17.96±0.38 2.045±0.164 1.045±0.045 34.15±1.03
NPsTre 0.936±0.112 1.616±0.150 18.78±1.34 2.478±0.125 0.931±0.073 25.25±1.44
FD-NPsTRE 1.249±0.095 1.668±0.118 12.49±0.94 1.700±0.832 0.289±0.061 19.82±1.78
IR-NPsTRE 0.965±0.127 2.368±0.132 13.95±1.43 2.605±0.821 0.525±0.092 11.31±0.34
F-B 1.190±0.108 1.624±0.095 15.52±2.03 2.533±0.184 1.026±0.075 21.75±1.82
NPsPeg 0.194±0.092 1.077±0.168 14.76±1.79 1.626±0.173 0.657±0.057 14.51±2.18
FD-NPsPEG 1.554±0.132 1.134±0.128 11.18±2.45 1.748±0.184 0.410±0.088 13.30±1.63
IR-NPsPEG 1.025±0.117 0.841±0.131 33.95±0.99 1.632±0.192 0.392±0.037 15.08±1.85
Free drug 0.223±0.243 2.048±0.192 25.45±1.89 1.787±0.274 1.824±0.836 27.10±1.93

Notes: Tl, Drug lag time; Kp, permeability coefficient; Qr, amount of drug retained; F-A, nanoparticles’ suspension with P188 at 1.66%; NPsTRE, formulation prepared with 
trehalose as a protectant agent; F-B, nanoparticles’ suspension with P188 at 3.5%; NPsPEG, formulation prepared with PEG3350 as a protectant agent.
Abbreviations: FB, flurbiprofen; PεCL, poly(ε-caprolactone); NP, nanoparticle; h, hour; FD, freeze-dried condition; IR, irradiated condition.
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sample amount without significant differences. As was 

aforementioned, besides TRE lends to expose drug directly 

through pore formation, sterilization could help to break 

TRE core; thus, TRE enhances cornea permeation of FB. 

Furthermore, in spite of their intrinsic viscosity, it was noted 

that IR-NPsTRE and IR-NPsPEG took a similar time to fill 

the stratum corneum, T
L
 (P.0.05).

The results indicate that the inclusion of FB in the PεCL 

matrix with TRE as an additive can help considerably in the 

penetration of the drug across the cornea after γ-irradiation. 

Moreover, Q
r
 from IR-NPsPEG was higher than Q

r
 from 

IR-NPsTRE – this is in accordance with the low FB release 

profile presented by IR-NPsPEG.

HL is a parameter frequently used to evaluate the ideal 

cornea conditions. The normal cornea has an HL of 76%–80%. 

A hydration level that is 3%–7% above the normal value 

denotes the epithelium or endothelium damage.44 The HL 

was maintained within the accepted range (78.79%–81.35%) 

for all formulations and corroborated the lack of damage on 

the corneal tissue.

Scleral permeation study
Scleral is a fairly leaky tissue that has 20 times greater sur-

face area (potential drug depot) than the cornea tissue. The 

transscleral delivery route offers advantages over the corneal 

route, such as metabolic inactivity and high permeability to 

macromolecules.45,46 So far, FB permeation has been studied 

in the sclera.

The ex vivo permeation of FB after 6 hours through 

the scleral tissue can be seen in Figure 3. FB was able to 

traverse across sclera in spite of the transscleral pathway 

fairly permeable just to hydrophilic molecules.47 The largest 

Figure 2 Ex vivo corneal permeation profile of FB from (A) F-A and F-B, (B) NPsTRE and NPsPEG, (C) FD-NPsTRE and FD-NPsPEG, and (D) IR-NPsTRE and IR-NPsPEG, 
compared with free drug solution after 6 h (mean ± SD, n=3).
Notes: F-A, nanoparticles’ suspension with P188 at 1.66%; F-B, nanoparticles’ suspension with P188 at 3.5%; NPsTRE, formulation prepared with trehalose as a protectant 
agent; NPsPEG, formulation prepared with PEG3350 as a protectant agent.
Abbreviations: FB, flurbiprofen; FD, freeze-dried condition; IR, irradiated condition; h, hours; SD, standard deviation; NPs, nanoparticles.
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K
p
, 1,824±0.836×10−2 cm/h was displayed by the free drug 

solution, while K
p
 corresponding to F-A and F-B was 

similar (P.0.05).

However, a K
p
 decrease in samples with the addition of 

the protective agent was observed. The results showed that the 

additive influenced reduced scleral permeability. The freeze-

drying process and γ-irradiation did not have any effect on 

the K
p
 parameter (P.0.05). Moreover, FB from all samples 

took similar times to permeate the sclera (lag time). The Q
r
 

in sclera from IR-NPsTRE and IR-NPsPEG was similar and 

considerably less than Q
r
 from the free drug solution.

As illustrated in Figure 3D, IR-NPsTRE and IR-NPsPEG 

reached a similar cumulative permeated FB amount through 

the scleral tissue, 18.20 µg/cm2 and 17.70 µg/cm2, respectively. 

They represented 9.10%±0.86% and 8.85%±0.57% of total 

exposure sample amount, indicating no therapeutic efficacy 

difference (P.0.05). Moreover, the amount of FB permeated 

through sclera from the free drug solution was not as high as 

permeated from the cornea. The amount was 78.20 µg/cm2 

and represented only 39.10% of the total exposure sample 

amount. This result showed that morphometric characteristic 

(PI) and viscosity of formulations were less important than 

FB chemical affinity in the target tissues. It is clear that free 

drug solution showed upper permeation efficacy; however, 

this assay did not consider the rapid elimination of solution 

through the blinking of the eye and drainage of tear flow – 

nasolacrimal, which reduces its bioavailability to ~75%.48

In vitro and in vivo tolerance studies
After application of 0.3 mL of irradiated FB-PεCL-NPs on 

the CAM, no effect of hemorrhage, lysis, or coagulation was 

observed. An OII of 0.02±0.08 and 0.07±0.06 was obtained in 

Figure 3 Ex vivo sclera permeation profile of FB from (A) F-A and F-B, (B) NPsTRE and NPsPEG, (C) FD-NPsTRE and FD-NPsPEG, and (D) IR-NPsTRE and IR-NPsPEG, 
compared with free drug solution after 6 h (mean ± SD, n=3).
Notes: F-A, nanoparticles’ suspension with P188 at 1.66%; F-B, nanoparticles’ suspension with P188 at 3.5%; NPsTRE, formulation prepared with trehalose as a protectant 
agent; NPsPEG, formulation prepared with PEG3350 as a protectant agent.
Abbreviations: FB, flurbiprofen; FD, freeze-dried condition; IR, irradiated condition; h, hours; SD, standard deviation; NPs, nanoparticles.
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IR-NPsTRE and IR-NPsPEG, respectively. Therefore, these 

formulations were classified into the OII of “non-irritatant”, 

which indicates optimal ocular tolerance. According to Draize 

eye test, no sign of ocular inflammation, congestion, swelling, 

or lacrimation was observed (scores were zero in both cases). 

These results are in accordance with those obtained by the 

HET-CAM and thus can be classified as non-irritating, safe 

products for ophthalmic administration.

Efficacy of ocular anti-inflammatory effect
As seen in Figure 4, the ocular anti-inflammatory activity 

of irradiated FB-PεCL-NPs demonstrated a decrease in the 

ocular inflammation caused by instillation of SAS. During 

the first 60 minutes, no statistically significant differences 

were observed between IR-NPsTRE, IR-NPsPEG, and the 

free drug solution. After 90 minutes, IR-NPsPEG exhibited 

significant differences when compared to the free drug 

solution. Finally, after 120 minutes, IR-NPsPEG exhibited 

statistically higher anti-inflammatory effect than IR-NPsTRE, 

which correlated directly with the Q
r
 values in the ocular tis-

sues shown in Table 4.

Although the free drug solution showed high Q
r
 values 

of FB in the cornea and sclera, it performed a lower anti-

inflammatory efficacy compared to the NP formulations 

after 90 minutes. This anti-inflammatory efficacy of longer 

duration can be explained by the formation of FB depot by 

adhesive effect that promotes a slow drug release and con-

sequently a continuous pharmacological action.

Stability studies
The recorded transmission profiles of IR-NPsTRE and IR-

NPsPEG gave relevant information regarding the intrinsic 

suspension stability. After 15 days, a variation of BS on 

the right side of the IR-NPsTRE fingerprint (bottom vial) 

indicated a sedimentation process (Figure 5A), considered 

a reversible physical process. On the other hand, in IR-

NPsPEG, the presence of creaming, sedimentation, or floc-

culation was undetected for .30 days (Figure 5B). These 

results may be related to the strong PEG3350 influence over 

increased viscosity to stabilize this colloidal system than 

the steric stabilization given by P188. The higher ZP of 

IR-NPsPEG also has a better positive impact on the system 

stability than IR-NPsTRE.

Figure 4 Anti-inflammatory activities of FB from the IR-NPsTRE and IR-NPsPEG 
formulations, free drug solution, and control (SAS) mean ± SD, n=3.
Notes: NPsTRE, formulation prepared with trehalose as a protectant agent; 
NPsPEG, formulation prepared with PEG3350 as a protectant agent.
Abbreviations: FB, flurbiprofen; IR, irradiated condition; SAS, sodium arachidonate 
solution; min, minutes; SD, standard deviation; NPs, nanoparticles.

Figure 5 (Continued)
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The slight changes in the bottom and top are attributed 

to the meniscus of the samples forming contact with the 

glass. In parallel with these studies, possible changes in the 

mean particle size were monitored by photon correlation 

spectroscopy analysis. There were no significant differences 

in stability during the monitored time.

Conclusion
A Goldmann’s criteria analysis was performed on FB-loaded 

polycaprolactone NPs prepared with trehalose and PEG3350 

as protective agents. In vitro release profiles showed that both 

additives, trehalose and PEG3350, gave inherent character-

istics to their basic formulation components, which could 

promote or hinder FB release. Such characteristics have a 

stronger effect than the NP morphometrical characteristics 

in the permeation rate. Regarding transcorneal permeation, 

freeze-drying and γ-irradiation hindering FB release from 

formulations PEG added, while these conditions have an 

adverse effect on added formulations of TRE. However, these 

processes did not influence transscleral permeation.

Ocular irritating effects were absent in both in vitro 

and in vivo tests. In summary, both formulations could be 

employed as a controlled release formulation in preclinical 

studies; however, out of the two formulations, it must be 

noted that the PEG3350 formulation has a greater potential 

based on longer satisfactory anti-inflammatory effects.
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