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Abstract Several genes have been implicated in genetic
forms of nephrotic syndrome occurring in children. It is
now known that the phenotypes associated with mutations
in these genes display significant variability, rendering
genetic testing and counselling a more complex task. This
review will focus on the recent clinical findings associated
with those genes known to be involved in isolated steroid-
resistant nephrotic syndrome in children and, thereby,
propose an approach for appropriate mutational screening.
The recurrence of proteinuria after transplantation in
patients with hereditary forms of nephrotic syndrome will
also be discussed.
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Introduction

The annual incidence of idiopathic nephrotic syndrome
(NS) in children in the USA and in Europe has been
estimated to be 1–3 per 100,000 children, with a cumulative
prevalence of 16 per 100,000 children [1, 2]. About 90% of
patients are steroid responsive [3], with a favorable long-
term prognosis. The remaining 10% of children who do not
respond to corticosteroids are particularly at risk for
extrarenal complications of NS and the development of
end-stage kidney disease (ESKD), which occurs in 30–40%
of children with steroid-resistant NS (SRNS) after a follow-
up of 10 years [4–6]. It has been suggested that steroid-
sensitive NS, as well as a subset of SRNS, particularly
those with a response to immunosuppressive agents and/or
recurrence of proteinuria after kidney transplantation, have
an underlying immune defect that may imply an unrecog-
nized proteinuric circulating factor whose production seems
to follow T cell dysfunction [7]. Some authors have found
that the serum of patients with focal segmental glomerulo-
sclerosis (FSGS) increases glomerular permeability to
albumin when incubated with rat glomeruli in vitro [8, 9].
In contrast to these immune forms of NS, recent studies
have shown that inherited structural defects of the glomer-
ular filtration barrier are responsible of a large proportion of
SRNS cases, thereby emphasizing the crucial role of the
podocyte in the pathogenesis of glomerulopathies. Indeed,
mutations in genes highly expressed in podocytes have
been found in two thirds of patients presenting with SRNS
in the first year of life [10]. To date, mutations in seven
genes (NPHS1, NPHS2, CD2AP, PLCE1, ACTN4, TRPC6
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and INF2) [11–17] have been implicated in different forms
of nonsyndromic SRNS. Nephrin, podocin and CD2AP,
encoded by NPHS1, NPHS2 and CD2AP, respectively, are
the main structural elements of the slit diaphragm [18].
Nephrin, a transmembrane protein of the immunoglobulin
superfamily, interacts through its C-terminal part with
podocin, a harpin-like scaffolding protein. Nephrin also
interacts with CD2AP, an adapter protein found on the
surface of T-cells and natural killer cells. PLCε1, encoded
by PLCE1, is a phospholipase that catalyses the hydrolysis
of membrane phospholipids to generate the second mes-
senger molecules inositol 1,4,5-triphosphate (IP3) and
diacylglycerol (DAG), thereby initiating intracellular path-
ways of cell growth and differentiation [19]. Additionally,
PLCε1 interacts with IQGAP-1 [16], a podocyte cell
junction-associated protein and interacting partner of
nephrin implicated in cell adhesion [20]. TRPC6 encodes
the calcium channel TRPC6, which is localized in the
membrane lipid supercomplex together with podocin and
regulates mechanosensation sensed at the slit-diaphragm,
while ACTN4 and INF2, encoding α-actinin-4 and a
member of the formin family of actin-regulating proteins,
respectively, are both involved in cytoskeletal dynamics.

Syndromic forms of SRNS, which are far less frequent,
may be due to mutations in genes coding transcriptional
factors (WT1, LMX1B) [21, 22], glomerular basement
membrane components (LAMB2, ITGB4) [23, 24], lyso-
somal (SCARB2) [25] and mitochondrial (COQ2, PDSS2,
MTTL1) [26–30] proteins or a DNA-nucleosome restructur-
ing mediator (SMARCAL1) [31]. However, mutations in the
WT1 gene, encoding the Wilms tumour 1 protein and
typically leading to Denys–Drash syndrome (male pseudo-
hermaphroditism, progressive glomerulopathy and Wilms
tumour) or Frasier syndrome (male pseudohermaphrodi-
tism, progressive glomerulopathy and gonadoblastoma),
can also cause isolated SRNS. In addition, mutations in
LAMB2, encoding laminin-β2 and implicated in Pierson
syndrome (a rare autosomal recessive disorder character-
ized by microcoria and other complex ocular abnormalities
in association with NS of congenital onset), have been
found in one family with isolated congenital NS (CNS).

MYH9, a podocyte-expressed gene encoding nonmuscle
myosin IIA, has been identified as the disease-causing gene of
the rare giant-platelet disorders, which may comprise Alport-
like syndrome manifestations [32]. However, the particular
interest of MYH9 resides in its role as a susceptibility gene in
the development of kidney diseases. Indeed, it has recently
been shown that common MYH9 genetic variants, although
not directly pathogenic, confer a greater risk of FSGS and
ESKD in African Americans [33–35].

Mutations in NPHS1 are responsible for most of cases of
CNS [11], while mutations in NPHS2 are responsible for
most of the early-onset SRNS cases [12]. Recent findings,

however, including the identification of NPHS1 mutations
in childhood-onset SRNS [36] or the implication of the
NPHS2 p.R229Q variant in adult-onset NS [37], have
broadened the spectrum associated with mutations in these
genes. With the rapidly increasing number of genes known
to be implicated in NS and the significant phenotypic
variability observed, genetic testing is now a more complex
task which needs to be based on different clinical
information, including the type of renal histological lesions.
Indeed, the approach taken during genetic testing will be
different depending on the identification of diffuse mesan-
gial sclerosis (DMS), a particularly severe renal lesion
characterized by mesangial expansion and sclerosis that
evolves toward obliteration of the capillary lumen and
contraction of the glomerular tuft, or FSGS, a lesion
characterized by sclerosis and foot process effacements in
only some of the glomeruli and a part of each entire
glomerulus.

This review will focus on the recent clinical findings
associated with those genes known to be involved in
isolated SRNS and, thereby, propose an approach for
appropriate mutational screening. It has to be stressed that
corticotherapy was not attempted in a significant number of
patients with very early-onset NS and in patients already in
ESKD at the time of the first medical evaluation, as the
probability that they would have been refractory to therapy
was high. Nevertheless, in order to enhance the clarity of
our review, these patients are also classified as SRNS cases
in this paper. Finally, the controversial issues concerning
the recurrence of proteinuria post-transplantation in patients
with hereditary forms of NS will be discussed.

Nonsyndromic steroid-resistant nephrotic syndrome

Congenital nephrotic syndrome

Congenital nephrotic syndrome has been arbitrarily defined
as the occurrence of NS in patients <3 months of age,
although congenital actually means that the disease is
present from birth. The most common type of CNS is
congenital nephrotic syndrome of the Finnish type (CNF), a
recessively inherited disorder characterized by massive
proteinuria detectable at birth, a large placenta, marked
edema and characteristic radial dilatations of the proximal
tubules. These histological lesions are detected more
frequently after 3 months of age, but they have also been
identified in fetuses [38–41]. They are also considered to be
an inconstant feature. Mesangial expansion and capillary
obliteration are also evident in a significant proportion of
CNF cases [42, 43]. It has been shown that hypoperfusion
of glomerular and tubulointerstitial capillaries and rarefac-
tion of the latter may explain the rapid development of
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fibrosis in these patients [41]. The incidence of CNF in
Finland has been estimated to be 1 in 8,200 live births [44],
and a high incidence has also been reported among the Old
Order Mennonites in Lancaster, Pennsylvania [45]. NPHS1
has been identified as the major gene involved in CNF
[11] with the Fin-major (p.L41fsX91) and Fin-minor
(p.R1109X) mutations accounting for 78 and 16% of the
mutated alleles among Finnish patients, respectively [11].
The Fin-major and Fin-minor mutations have rarely been
found in other ethnic groups. Among non-Finnish cases
with a CNF phenotype, the NPHS1 mutation detection rate
approaches 66% [46]. To date, more than 140 different
NPHS1 mutations have been identified, comprising non-
sense, missense, frameshift insertion/deletion and splice-site
mutations.

It has now become clear that not all NPHS1 mutations
cause severe CNS or a severe clinical course. In one study
involving patients bearing the p.R1160X NPHS1 mutation
in the homozygous state (resulting in a truncated protein
lacking the C-terminal 82 amino acids implicated in the
interaction with podocin), about half of the patients had a
milder phenotype, in that although they presented with
severe NS in the first 3 months of life, their further renal
course was relatively benign with spontaneous partial or
complete remission in childhood [47]. Histological find-
ings, where available, were consistent with CNF. The
clinical variability was apparently influenced by gender,
as the majority of the mildly affected cases were female.

Although NPHS1 is the main gene that has been
identified in patients presenting NS in the first 3 months
of life, it has also been shown that CNS may be caused by
mutations in several other genes, including NPHS2.
Mutations in this latter gene have been detected in patients
with a classically severe CNF phenotype [47] and have
been shown to account for up to 51% of all mutations in
Central European patients with CNS [10]. It has to be
pointed out that the median age at onset of CNS in the latter
study was relatively late (median age 4 weeks), which may
induce a bias toward a greater prevalence of NPHS2
mutations instead of NPHS1 mutations. Indeed, in our
large worldwide cohort of CNS patients, which mostly
presented proteinuria in the first few days of life, NPHS1
mutations were detected in more than half of all cases
(unpublished data). Mutations in the PLCE1 gene [16, 48–
50], and the WT1 gene [48, 51–55] have also been detected
in patients presenting isolated CNS with DMS on renal
histology; mutations in these two genes will be discussed in
more detail in the next section.

These observations suggest that, for patients presenting
nonsyndromic CNS, the NPHS1 gene should be tested first
in those presenting NS shortly after birth as well as in those
with typical proximal tubular radial dilatation. Molecular
analysis of NPHS2 should be the next step whenever

mutations in NPHS1 are not detected. Patients presenting
later in the congenital period (particularly if renal biopsy
shows FSGS or minimal glomerular changes) should
probably be initially screened for NPHS2 mutations,
followed by NPHS1. In cases for which renal histological
findings are available and DMS is determined, genetic
testing of the WT1 and PLCE1 genes should initially be
performed.

Infantile nephrotic syndrome and childhood nephrotic
syndrome

The term infantile NS has been proposed for patients that
develop NS between the ages of 4 and 12 months. NPHS2
mutations are responsible for most of these cases [12], and
they have also been found in a significant proportion of
patients with childhood-onset SRNS. Mutations in this gene
occur in about 40% of familial and 6–17% of sporadic
SRNS cases (Table 1) [55–59]; patients typically present
NS from birth to 6 years of age and reach ESKD before the
end of their first decade of life [10, 55–57, 59, 60]. Renal
histology of such patients reveals either minimal glomerular
changes (if biopsied early) or FSGS. The identification of
mutations is important as it may enable the treating
physicians to avoid (or discontinue) prescribing immuno-
suppressive therapies for these patients, sparing them the
significant side-effects associated with these drugs. Indeed,
considering that access to genetic testing is now easier than
it has been in the past and that sequencing of the NPHS2
gene is relatively fast as it comprises only eight exons,
screening for NPHS2 mutations in patients presenting the
renal phenotype described above should be performed prior
to the initiation of additional—potentially deleterious—
therapy. To date, more than 100 pathogenic NPHS2
mutations and 25 variants of unknown significance have
been reported, including a full spectrum of protein-
truncating nonsense and frameshift mutations, splice-site
variants and missense changes, involving all coding exons.
Patients with frameshift, nonsense or the homozygous
p.R138Q missense mutations manifest symptoms at a
significantly earlier age [57, 59]. The p.R138Q mutant,
which accounts for up to 32% of all mutant alleles, is
retained in the endoplasmic reticulum (ER), where it
essentially functions as a null allele and fails to recruit
nephrin to lipid rafts [61, 62]; this may explain the
phenotype severity associated with this mutation. In
contrast, the p.R229Q variant has been shown to lead to
late-onset NS [37, 63], when found in association with one
pathogenic NPHS2 mutation. This variant represents the
most frequently reported nonsynonymous NPHS2 variant in
Caucasians and is particularly common among Europeans,
in whom the observed frequency of heterozygotes ranges
from 0.03 to 0.13 [55, 59, 63–66]. In vitro studies have
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demonstrated decreased binding of the p.R229Q mutant
protein to nephrin, providing a likely explanation for its
pathogenic role [63].

It has recently been shown that mutations in NPHS1 also
account for a nonnegligible proportion of infantile and
childhood-onset SRNS cases. Two studies found NPHS1
mutations in 7–14% of the patients presenting SRNS at
least 3 months after birth [age at onset of NS in mutated
patients 0.5–8 years (mean 3 years) and 0.7–27 years (mean
8 years), respectively] [36, 67] with minimal glomerular
changes, FSGS or mesangioproliferative lesions on renal
biopsies. These percentages are, however, overestimated as
these studies included patients for which mutations in the
NPHS2 gene were excluded. The presence of at least one
“mild” mutation likely explains the later onset and milder
course of the disease among these cases. As such, missense
mutants retaining their abilities to traffic in the cell
properly, a splice-site mutation allowing some correct
splicing and a protein-truncating mutation involving only
the very C-terminal end of the protein may be designated as
“mild” because partial function of nephrin is maintained.
Similarly, NS with spontaneous partial remissions and
repeated relapses concurrently with respiratory infections
has been described in two siblings bearing nephrin
mutations [68]. Both infants, who presented NS at birth
and at 10 months of age, respectively, were compound
heterozygous for the p.C265R and p.V822M mutations
with minimal glomerular changes observed on the renal
biopsy. The p.C625R mutant protein was predominantly
trapped within the ER, while the p.V822M variant protein
reached the plasma membrane, probably explaining the
milder phenotype seen in these patients. Modifier genes or
environmental factors may also play a role in renal
phenotype variability, as the same two NPHS1 mutations
(p.R827X and p.R976S) have been identified in one adult
patient diagnosed with FSGS at 27 years of age with
unimpaired renal function after 2 years of follow-up [67]
and in one patient with infantile-onset NS [36].

In addition to NPHS2 and NPHS1, PLCE1 is involved in
some infantile and childhood-onset SRNS cases and is the

main gene causing DMS. PLCE1 mutations have been
detected in 28.6% of families with isolated DMS [48], with
the clinical onset of reported cases of DMS varying from
few days of life to 4 years of age [16, 48–50] and all
patients having truncating mutations. The results of one
study suggested that homozygous PLCE1 missense muta-
tion (found in only two siblings) may lead to a milder
phenotype of FSGS with a relatively late age at onset of
proteinuria (in this study, 8.8 years and 2.0 years, respec-
tively). However, in our cohort, truncating or missense
mutations were detected in both DMS and FSGS patients,
leading to a similar renal evolution (in press). Nevertheless,
PLCE1 mutations remain an infrequent cause of FSGS: a
Dutch study did not find PLCE1 mutations in 19 cases of
childhood-onset FSGS [69] nor were mutations in this gene
found in 69 families (median age of disease onset 26 years,
range 1–66 years) with idiopathic or hereditary FSGS [70].

WT1 mutations may account for about 9% of patients
with nonfamilial isolated SRNS [54], and they have been
identified in patients with isolated DMS, with a clinical
onset varying from a few days of life up to 2 years of age,
as well as in isolated FSGS (1–14 years of age) [48, 51, 54,
71–74]. Almost all cases were those of phenotypically
female patients, and the mutations occurred mainly in exons
8 and 9, which code for zinc finger domains 2 and 3,
respectively [54].

Based on these observations, NPHS2 followed by NPHS1
remain the first genes to be tested in nonsyndromic patients
presenting SRNS associated with minimal glomerular
changes/FSGS in the infantile or childhood period. In the
remaining patients with the same histological lesions, genetic
testing for WT1 mutations (exons 8 and 9 in phenotypically
female patients) should be performed, while screening for
PLCE1 mutations may be considered in some cases (mainly
in familial cases). However, the probability of identifying a
PLCE1 mutation in this patient category is low, and the
molecular analysis of this large 33-exon gene is expensive
and time-consuming; thus, these factors should be taken into
account in the decision on genetic screening. In cases of
isolated DMS, PLCE1 is the most frequently involved gene

Table 1 Rate of detection of two pathogenic NPHS2 mutations in SRNS cases

References Sporadic cases (n) Percentage Familial cases (n) Percentage Age at onset (years) Age at ESKD (years)

Caridi et al. [56] 14/120 11.7 – – 2.3 9.2

Weber et al. [59] 11/172 6.4 31/81c 38.3 3.4 –

Berdeli et al. [60] 41/254 16.1 9/32 28.1 3.8 9.4

Hinkes et al. [57]a 64/381b 16.8 9/23 39.1 2.6 –

ESKD, End-stage kidney disease
a Subgroups of patients in this study had been included in the analysis by Ruf et al. (2004) [55] and Hinkes et al. (2007) [10]
b Represents families with only one affected member
c Defined as families with either two or more affected children, or one (or more) affected individual in consanguineous families
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but, for cost-effective reasons, genetic testing of exons 8 and
9 of WT1 (especially in phenotypically female patients) may
be performed prior to PLCE1.

Mutations in the CD2AP, ACTN4 and TRPC6 genes
have been anecdotically reported in young patients,
precluding any suggestion of systematic mutational screen-
ing of these genes in children—unless there is an autosomal
dominant familial history of FSGS, which would warrant
the molecular analysis of the two latter genes. To date, the
clear pathogenic implication of CD2AP in NS has been
shown in only one study: a homozygous mutation (p.R612X)
was identified in a 10-month-old nephrotic child who
presented global glomerular sclerosis on renal biopsy;
the truncated protein displayed a dramatic reduction of actin
binding efficiency in vitro [75]. Heterozygous expression of
the CD2AP mutation in both parents did not lead to any
kidney pathology. Nevertheless, the insignificant role of
recessive CD2AP mutations has been emphasized in a
recent study that did not find homozygous CD2AP
mutations in a cohort of 42 children (35 families) with
SRNS for whom the NPHS1, NPHS2, PLCE1 and WT1
mutations had been previously excluded [76]. On the other
hand, carrying a heterozygous mutation in the CD2AP gene
has been reported to be a predisposing factor towards
developing FSGS. To date, five different CD2AP heterozy-
gous mutations have been identified in pediatric (and adult)
FSGS patients [14, 69, 77], associated with reduced
expression of CD2AP or defective CD2–CD2AP interaction
in lymphocytes and down-regulation of CD2AP, nephrin
and podocin glomerular expression on kidney biopsies.
Unfortunately, as complete segregation data are not
available in all of these cases, neither penetrance nor
inheritance can be assessed with certitude. In addition,
heterozygous CD2AP mutations have been found in
clinically unaffected patients. Therefore, there is still some
doubt surrounding the direct causal link between heterozy-
gous CD2AP mutations and FSGS; it is possible that
CD2AP haploinsufficiency has a role in the susceptibility to
develop glomerular disorders instead [14]. Mutations in
ACTN4 and TRPC6 have been implicated in the rare
autosomal dominant FSGS and account for approximately
4 and 6% of familial FSGS, respectively [78, 79]. Patients
with ACTN4 mutations usually present proteinuria in their
teenage years or later, with a slow progression to ESKD in
their fifth decade of life [13, 80]. Similarly, disease onset in
patients with TRPC6 mutations has initially been reported
to vary between 17 and 57 years [15, 81]. However, de
novo ACTN4 mutations have been reported in three
children (two families) from 3 to 5 years of age who
presented rapid progression to chronic kidney disease/
ESKD [78, 82]. We have detected a de novo TRPC6
missense mutation in one patient that presented NS
secondary to FSGS at 6.5 years of age and reached ESKD

few months later (unpublished data), while TRPC6 mis-
sense mutations have also recently been identified in two
FSGS patients with disease onset at 7 and 9 years of age,
respectively; the first patient showed a partial response to
cyclosporine A and mycophenolate mofetil (MMF), and the
mutation was also found in her asymptomatic 40-year old
father [79, 83]. Therefore, similarly to CD2AP heterozy-
gous mutations, TRPC6 may contribute to glomerular
disease in a multi-hit setting. Finally, mutations in INF2
have also been found very recently in 11 families present-
ing moderate proteinuria and FSGS lesions in early
adolescence or adulthood, thereby explaining about 12%
of familial FSGS cases with an apparent autosomal
dominant inheritance [17]. If the significant role of INF2
as a genetic cause of NS is confirmed by further studies,
screening for mutations in this gene will also need to be
recommended in the near future in patients with an
autosomal dominant familial history of FSGS.

A summary of the mutational screening approach
suggested in patients with nonsyndromic SRNS is given
in Fig. 1.

Genetic counselling

Genetic counselling should be offered to any patient and
his/her family affected with an inherited disorder. Informa-
tion that needs to be shared will vary according to the
mutations found. Therefore, clinicians should be aware of
the specific aspects that should be discussed with patients,
particularly in cases involving mutations in the NPHS2,
WT1 and PLCE1 genes.

In SRNS patients with NPHS2 mutations who are
considering having children, genetic testing for the
p.R229Q variant, which is found in a high frequency in
some populations, should be proposed to their asymptom-
atic spouses. Indeed, if the p.R229Q variant is identified in
the spouse, there is up to a 50% risk of disease (a juvenile
or adult-onset form of SRNS) transmission to their progeny.
In addition, heterozygous carriers, such as patient siblings,
also have a non-negligible risk of disease transmission to
their children if the spouse carries the p.R229Q variant.

Special considerations also apply for patients bearing
mutations in the WT1 gene. Although most of the WT1
mutations are de novo, XX female patients with isolated
DMS/FSGS secondary to the WT1 mutation have normal
genital development and may become pregnant; therefore,
these patients have a 50% risk of transmitting the mutated
gene to their children. The phenotype of the progeny will
depend on its karyotype; a 46 XY child may develop
complete Denys–Drash syndrome or Frasier syndrome,
while a 46 XX child will not present ambiguous genitalia.
A case report well illustrates the clinical implications of
familial WT1 mutation transmission: the index case’s
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mother had typical FSGS (clinical onset at 6 years of age)
with normal external and internal genitalia, while the index
case presented with early DMS and XY pseudohermaphro-
ditism [73]. Therefore, a female bearing a WT1 mutation
and planning to be pregnant should be informed that her
children may develop a phenotype significantly different
(and more severe) from her phenotype.

Variability in the renal phenotype should also be
discussed with families in which PLCE1 mutations are
present. Indeed, it has been suggested that PLCE1
mutations are not always sufficient to cause DMS [49] as
a same homozygous truncating mutation has been found in
an asymptomatic father and his affected children with
DMS. We have also identified three asymptomatic adults
from three unrelated families bearing homozygous muta-
tions with at least one affected sibling haploidentical to the
unaffected cases (in press). We may speculate that modifier
genes or environmental factors play a role in the renal
phenotype variability observed in individuals bearing
PLCE1 mutations. These observations need to be consid-
ered in the ensuing discussion with the patients on renal
prognosis.

Finally, prenatal diagnosis should be offered to families
with a known risk for severe NS, such as CNS, and to
patients for whom elevated measurements of alpha-
fetoprotein (AFP) in the maternal serum and amniotic fluid
have been detected. In the first scenario, it has to be
stressed that although results can be obtained relatively
quickly when the causative mutations have previously been
identified in the family, prenatal genetic testing may be
more time-consuming in other cases. This highlights the
importance of referring these families to a geneticist—

ideally before conception or, if not possible, very early
during pregnancy. An early genetic consultation may not
only provide the background for a discussion of the risk of
disease transmission and ethical questions related to
medical termination of pregnancy (MTP), it may also allow
the appropriate diagnostic procedures (trophoblastic biopsy
or amniocentesis) to be planned within an adequate time-
frame. In the second scenario involving families in which
elevated AFP have been unexpectedly found, genetic
counselling is also required as this finding may suggest
CNS secondary to nephrin mutations (assuming that
anomalies such as fetal anencephaly or omphalocoele have
been ruled out). However, this diagnosis needs to be
confirmed by mutation analysis prior to considering MTP
as AFP elevations have been observed in NPHS1 hetero-
zygous fetal carriers and in a fetus with Denys–Drash
syndrome [84, 85].

Recurrence of proteinuria after renal transplantation

Most patients with genetic forms of NS are resistant to
immunosuppressive agents [10, 55, 86] and are therefore at
high risk of ESKD [4–6]; renal transplantation may be the
treatment of choice in these cases. In patients with SRNS
requiring transplantation, the recurrence of NS in kidney
grafts raises significant concerns as it is observed in
approximately 30–50% of FSGS cases [87–89]. However,
in contrast to patients with an immune form of NS, those
with an inherited structural defect of the glomerular
filtration barrier represent a subset of patients for whom
the primary disease cannot a priori recur. Surprisingly,

ONSET RENAL HISTOLOGY GENE

Radial dilatation of PT NPHS1
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Fig. 1 Genetic approach in children with isolated steroid-resistant
nephrotic syndrome. Asterisk In patients with minimal glomerular
change/focal segmental glomerulosclerosis (MGC/FSGS) who present
in the congenital period, those with nephrotic syndrome (NS) onset
very shortly after birth should probably be screened first for NPHS1
mutations followed by NPHS2 mutations. Cross Only nonsyndromic

forms of NS associated with WT1 mutations are included. Most of the
WT1 mutations in patients with isolated steroid-resistant NS (SRNS)
have been found in phenotypically female patients. PT, proximal
tubules, DMS diffuse mesangial sclerosis, AR autosomal recessive, AD
autosomal dominant
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recurrence of proteinuria post-transplantation has been
reported in some patients bearing mutations in the NPHS1,
NPHS2, ACTN4 and WT1 genes [55, 59, 78, 90–95], and
the mechanism of recurrence remains unsolved for a
significant proportion of these cases.

The most often provided explanation for recurrence of
NS is the development of antibodies. In a study of cases
with NPHS1 Fin-major/Fin-major mutations (mutations
leading to the absence of nephrin in the native kidney),
recurrence occurred in 25% of patients at a mean time of
12 months post-transplantation (range 5 days to 48 months),
and antinephrin antibodies were detected in almost half of
these cases [96]. Because recurrence in these patients may
be considered as an immune process against the “neo-
antigen” nephrin present in the graft, it is not surprising that
treatment with steroids, cyclophosphamide and plasmaphe-
resis may lead to remission; however, the percentage of
graft loss remains significant [96, 97]. On the other hand,
antipodocin antibodies have never been found [59, 90, 91].
As podocin is a harpin-like protein with two intracellular
ends but no extracellular domain, one may speculate that
antibodies against this “hidden” protein cannot be pro-
duced. This hypothesis may also explain the absence of
post-transplantation recurrence in nephronophtisis or cysti-
nosis, two diseases for which the involved proteins are only
intracellular. In addition, renal transplantation should
stimulate the production of antibodies only when mutations
lead to the absence of the encoded protein (or at least a part
of it) in the native kidney. Therefore, the development of
antibodies cannot explain the recurrence of proteinuria in
some patients with NPHS2 missense mutations as well as in
the reported cases of two children with either a missense
(p.W54R) ACTN4 mutation [78] or a splice-site (IVS9 +
4C>T) WT1 mutation [95].

Data on the risk of proteinuria recurrence in patients with
podocin mutations may be confusing as patients without true
pathogenic mutations were included in some studies. In the
reports of Bertelli et al., post-transplantation recurrence was
stated to occur in five of 13 (38%) patients with homozygous
(n=9) or heterozygous (n=4) podocin mutations compared
to 15 of 40 (44%) non-NPHS2 FSGS patients [91]. However,
among the five patients described as having NPHS2
mutations and recurrence, three had only heterozygous
variants for which a pathogenic role is very unlikely (the
Polyphen software program predicted the p.S221T variant
would be benign, and the p.P20L variant is clearly a
polymorphism [55]). When only patients with two patho-
genic NPHS2 mutations are taken into account, the risk of
recurrence significantly decreases, thereby being more in
agreement with the low recurrence rate of 3–8% reported in
other studies [55, 59] (Table 2). Finally, it has also to be
stressed that several etiologies, including drug side-effects,
may explain the occurrence of proteinuria after transplanta- T
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tion, even in patients with inherited SRNS. One possible
example is the reported case of an 18-year-old female
patient, compound heterozygous for NPHS2 mutations, with
recurrence 10 years post-transplant after conversion from
cyclosporine A to sirolimus; however, one may also argue
that proteinuria was induced by sirolimus and/or that the
FSGS lesions documented on the graft biopsy were
secondary to the long course of cyclosporine administration
[94]. Considering these cases as “true” recurrence may lead
to overestimation of the risk.

Altogether, the risk of recurrence in patients bearing two
pathogenic NPHS2 mutations is low. The absence of a clear
explanation for post-transplantation recurrence in these
cases raises interesting pathophysiological questions that
should be addressed in further studies. Indeed, the
determination of high serum glomerular permeability
activity in two patients with homozygous NPHS2 mutations
at the time of recurrence episodes may suggest the
additional potential role of a circulating permeability factor
in some cases of hereditary SRNS [93]. Further studies on
the impact of donor-dependant genetic factors on renal graft
function are also warranted, as it has been suggested that
variants in the donor NPHS2 promoter may affect podocin
expression, thereby determining the outcome of proteinuria
[98, 99], and that potential donor-recipient MYH9 genotype
interactions may influence the occurrence of NS after
pediatric kidney transplantation [100].

Finally, before considering living related donor trans-
plantation in cases with inherited SRNS, particular issues
should be discussed with the families. It is worth reporting
that three patients (bearing the NPHS2 p.L347X [55, 92],
p.R138X [59] and p.R138Q-IVS 4-1 G>T [94] mutations,
respectively, in the homozygous or compound heterozygous
state) receiving a kidney from their respective mother, who
was an obligatory healthy heterozygous carrier, presented
recurrence of NS after transplantation. Despite recurrence,
renal outcome was favourable in most of these cases. One
may speculate that the graft may be more susceptible for the
late development of FSGS and that the donor with one
kidney may be at risk of developing FSGS. However, the
number of recurrence cases (which remains low in the
literature) should be compared to the total number of
transplants performed before clear guidelines are drawn on
living related donor transplantation in genetic forms of
SRNS.

In conclusion, genetic disorders account for most of the
cases of NS that start within the first year of life and a
considerable proportion of those with childhood-onset NS.
It is important to differentiate between NS due to an
underlying genetic defect and other cases of SRNS, as the
pathophysiology, clinical course and response to therapy
are different. The identification of mutations may also
modify the approach taken to counselling patients, partic-

ularly on the risk of recurrence after renal transplantation.
Although the clinical course is dependant on the gene(s)
involved, significant phenotypic variability has been dem-
onstrated in patients bearing mutations in the same gene
and even in patients bearing the same mutation. Therefore,
a systematic step-wise approach for appropriate mutational
screening is required in patients with SRNS. When a
hereditary disorder is suspected, at least three main criteria
should be considered in order to better determine the
appropriate(s) gene(s) to test: (1) age at onset of NS, (2)
presence of extrarenal abnormalities and (3) type of renal
histological lesions. Careful clinical and biochemical
investigations, including a search for ocular abnormalities,
ambiguous genitalia/male pseudohermaphroditism, skeletal
abnormalities, neurological symptoms and thrombocytope-
nia, need to be performed prior to the initiation of genetic
testing. The country of origin of the patients may also orient
the genetic testing; indeed, while NPHS1 mutations are
more frequently found in Finland, the prevalence of NPHS2
mutations in SRNS cases is higher in Europeans and
Turkish patients than in Asian children [57, 101]. Never-
theless, for some patients with SRNS, genetic testing will
fail to detect mutations in the known genes involved in NS.
Although an immune etiology or a complex genetic
inheritance is probably responsible for most of these cases,
the ongoing identification of novel gene loci in families
with SRNS indicates that there are additional genetic causes
of SRNS that still need to be identified. Further promising
strategies, including high-throughput sequencing and copy
number analysis-based strategies, may lead to the identifi-
cation of novel genes in the near future.
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