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Summary

 

Lipopolysaccharide (LPS) from gram-negative bacteria causes polyclonal activation of B cells
and stimulation of macrophages and other APC. We show here that, under in vivo conditions,
LPS also induces strong stimulation of T cells. As manifested by CD69 upregulation, LPS in-
jection stimulates both CD4 and CD8

 

�

 

 T cells, and, at high doses, stimulates naive (CD44

 

lo

 

)
cells as well as memory (CD44

 

hi

 

) cells. However, in terms of cell division, the response of T
cells after LPS injection is limited to the CD44

 

hi

 

 subset of CD8

 

�

 

 cells. In contrast with B cells,
proliferative responses of CD44

 

hi

 

 CD8

 

�

 

 cells require only very low doses of LPS (10 ng). Based
on studies with LPS-nonresponder and gene-knockout mice, LPS-induced proliferation of
CD44

 

hi

 

 CD8

 

�

 

 cells appears to operate via an indirect pathway involving LPS stimulation of
APC and release of type I (

 

�

 

, 

 

�

 

) interferon (IFN-I). Similar selective stimulation of CD44

 

hi

 

CD8

 

�

 

 cells occurs in viral infections and after injection of IFN-I, implying a common mecha-
nism. Hence, intermittent exposure to pathogens (gram-negative bacteria and viruses) could
contribute to the high background proliferation of memory–phenotype CD8

 

�

 

 cells found in
normal animals.

 

C

 

D4

 

�

 

 and CD8

 

�

 

 T cells can be subdivided into naive
and memory cells on the basis of various surface mark-

ers, especially CD44, CD45RB, and CD62L (

 

l

 

-selectin) (1).
Thus, naive T cells express a CD44

 

lo

 

 CD45RB

 

hi

 

 CD62L

 

hi

 

phenotype, whereas most memory cells are CD44

 

hi

 

 CD45-
RB

 

lo

 

 CD62L

 

lo

 

. T cells with a naive phenotype are resting
cells and show a very slow turnover as measured by incor-
poration of the DNA precursor, bromodeoxyuridine (BrdU)
(2, 3). By contrast, the majority of memory–phenotype cells
have a rapid turnover.

T cells with a memory–phenotype are presumed to be
the progeny of naive T cells responding to specific antigen.
Why these cells show a high rate of turnover is unclear.
The most obvious possibility is that memory–phenotype
cells are engaged in chronic, low level proliferative re-
sponses to residual depots of specific antigen and/or to
cross-reactive environmental antigens (4, 5). In addition to
such TCR-mediated stimulation, memory–phenotype cells
may also be subject to nonantigen–specific stimulation via
cytokines. In support of this idea, infection of mice with vi-
ruses such as lymphocytic choriomeningitis virus (LCMV)

 

1

 

causes an intense T proliferative response, which appears to
be predominantly nonantigen specific (6–8). This bystander
response preferentially affects memory–phenotype (CD44

 

hi

 

)
CD8

 

�

 

 cells and can be mimicked by injection of type I (

 

�

 

,

 

�

 

) interferon (IFN-I) and by Poly I:C, an inducer of IFN-I
(9). These findings suggest that the constant proliferation of
memory–phenotype T cells seen in normal animals may be

mediated in part by IFN-I and other cytokines released
during contact with various infectious agents. If so, any mi-
croorganism capable of stimulating IFN-I production in
vivo would be expected to cause bystander stimulation of
T cells.

To assess this possibility, we have examined the effects of
injecting mice with LPS, a component of the cell wall of
gram-negative bacteria (10). LPS (endotoxin) is well known
for its capacity to cause polyclonal activation of B cells.
However, in addition, LPS is strongly stimulatory for APC
such as macrophages, and induces these cells to release var-
ious cytokines, e.g., IFN-I, TNF-

 

�

 

, and IL-12 (11–13).
Hence, the production of these cytokines might be ex-
pected to stimulate T cells. In line with this prediction, ev-
idence is presented that even small doses of LPS cause
marked proliferation of CD44

 

hi

 

 CD8

 

�

 

 cells in vivo.

 

Materials and Methods

 

Mice and Treatments.

 

C57BL/6J (B6) mice were purchased from
either the rodent breeding colony at The Scripps Research Insti-
tute or The Jackson Laboratory (Bar Harbor, ME). C3H/HeOuJ,
C3H/HeJ, B cell–deficient (

 

�

 

MT), and IFN-

 

�

 

–deficient (IFN-

 

�

 

�

 

/

 

�

 

) mice were purchased from The Jackson Laboratory. 129/
SvEvTacfBR (129) mice were purchased from Taconic Farms
(Germantown, NY). 129 background mice defective in IFN-

 

�

 

/

 

�

 

receptor function (IFN-IR

 

�

 

/

 

�

 

) (14) were originally purchased
from B&K Universal (North Humberside, UK) and were main-
tained and bred in the animal facility at The Scripps Research In-
stitute. Where indicated, mice were injected intravenously with
LPS (from 

 

Escherichia coli

 

 serotype 055:B5, prepared by trichloro-
acetic acid extraction) (Sigma Chemical Co., St. Louis, MO) or

 

1
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Poly I:C (Sigma Chemical Co.) dissolved in 0.2 ml PBS. For bro-
modeoxyuridine (BrdU) treatment, mice were given sterile drinking
water containing 0.8 mg/ml BrdU (Sigma Chemical Co.). BrdU-
containing drinking water was changed daily.

 

Spleen Cell Transfer.

 

Spleens from C3H/HeOuJ mice were
disrupted using a tissue homogenizer and the resulting cell sus-
pension was depleted of T cells by treatment with anti-CD8 and
anti-CD4 mAbs plus complement (15). After antibody and com-
plement treatment, cells were washed three times and resus-
pended in PBS. Cells were injected intravenously in a final vol-
ume of 0.5 ml (2.3 

 

�

 

 10

 

8

 

 cells/recipient) into C3H/HeJ mice.

 

Flow Cytometry.

 

mAbs used for cell surface staining were the
following: anti-CD8–PE (GIBCO BRL, Gaithersburg, MD),
anti-CD4–PE (Collaborative Biomedical Products, Bedford, MA),
anti-Ly-6C–biotin (PharMingen, San Diego, CA), anti-B220–PE
(PharMingen), anti-CD69–biotin (PharMingen), anti-CD44–
FITC (PharMingen), and anti-CD44–biotin (IM7.8.1).

Biotinylated antibodies were detected with RED670–strepta-
vidin (GIBCO BRL). Staining for BrdU with anti-BrdU–FITC
(Becton Dickinson, Mountain View, CA) was done as described
(3). Stained cells were analyzed on a FACScan

 



 

 flow cytometer
(Becton Dickinson).

 

Results

 

Effects of LPS on Normal Mice.

 

To examine the effects of
LPS on T cell turnover, normal adult C57BL/6 (B6) mice
were injected intravenously with graded doses of LPS and
immediately placed on BrdU water. After 3 d, suspensions
of spleen and LN cells were stained for expression of cell
surface markers, fixed, and then stained for BrdU incorpo-
ration (see Materials and Methods). The data shown below
are representative of at least two separate experiments.

As expected, LPS injection caused significant prolifera-
tion of B cells, especially in spleen (Fig. 1). However, rela-
tive to the background proliferation in uninjected mice,
BrdU incorporation by B cells was only seen after injection
of relatively high doses of LPS (

 

	

 

10 

 

�

 

g). For T cells, LPS
injection had minimal effects on CD4

 

�

 

 cells. Thus, even
high doses of LPS had no effect on naive (CD44

 

lo

 

) CD4

 

�

 

cells and caused only a slight increase in the high (30%) back-

ground rate of proliferation of memory–phenotype (CD44

 

hi

 

)
cells. Quite different results applied to CD8

 

�

 

 cells. As for
CD4

 

�

 

 cells, LPS injection did not alter the slow turnover
of CD44

 

lo

 

 cells. However, even very low doses of LPS (10
ng) caused substantial proliferation of CD44

 

hi

 

 CD8

 

�

 

 cells,
both in spleen and LN; with higher doses of LPS, BrdU la-
beling of CD44

 

hi

 

 CD8

 

�

 

 cells reached 70% (compared with
20% in uninjected mice). Significantly, LPS injection caused a
considerable increase in Ly6C expression on CD8

 

�

 

 cells.
Upregulation of Ly6C expression on (total) CD8

 

�

 

 cells is
prominent in mice injected with Poly I:C and IFN-I and is
reported to be controlled specifically by IFN-I (16). Hence,
the upregulation of Ly6C on CD8

 

�

 

 cells after LPS injec-
tion signified the production of IFN-I.

 

Role of B Cells.

 

To examine whether stimulation of CD8

 

�

 

T cells by LPS required B cells, we examined the effects of
injecting LPS into B cell–deficient 

 

�

 

MT mice. As shown
in Fig. 2, BrdU labeling of CD44

 

hi

 

 CD8

 

�

 

 cells after LPS
injection was almost as high in B6 

 

�

 

MT mice as in normal
B6 mice. These data indicate that stimulation of CD8

 

�

 

cells by LPS does not require the presence of B cells.

 

T Cell Responses in LPS-nonresponder Mice.

 

In the case of
B cells, the C3H/HeJ strain of mice is largely refractory to
stimulation by LPS (17). To test whether the LPS-nonre-
sponder status of C3H/HeJ mice applies to T cells, we ex-

Figure 1. Effect of LPS injection on T and
B cell proliferation in vivo. Graded doses of
LPS were injected intravenously into B6
mice. Mice were immediately given BrdU
in their drinking water, and LN and spleen
cells were analyzed 3 d later. The three left-
most columns show percent BrdU labeling
for CD44hi (�) and CD44lo (�) CD8� and
CD4� cells and total B220� cells (�), while
the right hand panel shows the percentage
of total CD8� cells expressing high levels of
Ly-6C (Ly-6Chi). The data represent mean
values from two or three mice per point
(
 SD).

Figure 2. LPS induction of T cell proliferation in B cell–deficient mice.
PBS or LPS (12.5 �g) was injected intravenously into B6 or �MT mice,
and mice were given BrdU in their drinking water for 3 d. Percent BrdU
labeling is shown for CD8� CD44hi and CD8� CD44lo LN (left) and
spleen (right) cells. Data represent mean values from two mice (
 SD).
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amined the effects of injecting LPS into C3H/HeJ versus
LPS-responder C3H/HeOuJ mice; injection of Poly I:C
was used as a control. As shown in Fig. 3, BrdU labeling of
CD44

 

hi

 

 CD8

 

�

 

 cells after injection of a relatively high dose
of LPS (12.5 

 

�

 

g) was prominent in C3H/HeOuJ mice but
virtually undetectable in C3H/HeJ mice; similar findings
applied to upregulation of Ly6C expression. By contrast,
injection of Poly I:C caused BrdU labeling of CD8

 

�

 

 cells
and Ly6C upregulation in both strains of mice. These data
indicate that the defective response of C3H/HeJ mice to
LPS applies to T cells.

If T cell stimulation induced by LPS injection reflects
cytokine production by APC rather than direct binding of
LPS to T cells, reconstituting C3H/HeJ mice with normal
LPS-responder APC would be expected to restore the re-
sponse of T cells to LPS. To examine this question, C3H/
HeJ mice were injected intravenously with large numbers
of T-depleted spleen cells taken from normal C3H/HeOuJ
mice 

 




 

 LPS. As shown in Fig. 4, the presence of normal
spleen APC at the time of LPS injection led to significant
stimulation of the host C3H/HeJ CD44

 

hi

 

 CD8

 

�

 

 cells, es-
pecially in spleen. The failure of LPS-nonresponder T cells
to proliferate after LPS injection could thus be restored by
coinjecting normal APC.

 

Role of Receptors for IFN-I.

 

The above findings suggest
that stimulation of T cells after LPS injection requires a di-
rect action of LPS on APC, presumably leading to the pro-
duction of stimulatory cytokines. To examine whether
IFN-I is required for LPS-induced T cell proliferation, we
examined the effects of injecting LPS into mice lacking re-
ceptors for IFN-I (IFN-IR

 

�

 

 mice); mice lacking the gene
for IFN-

 

�

 

 (IFN-

 

�

 

�

 

 mice) were used as a control. As shown
in Fig. 5, injecting an intermediate dose of 1 

 

�

 

g of LPS

caused prominent proliferation of CD44

 

hi

 

 CD8

 

�

 

 cells in
IFN-

 

�

 

�

 

 hosts (Fig. 5 

 

B

 

) but virtually no proliferation in
IFN-IR

 

�

 

 hosts (Fig. 5 

 

A

 

). However, a higher dose of 12.5

 

�

 

g LPS did cause substantial proliferation of CD8

 

�

 

 cells in
IFN-IR

 

�

 

 mice, as well as in IFN-

 

�

 

�

 

 mice. These findings
indicate that IFN-I production does play a crucial role in
LPS stimulation of T cells, though only with a moderate
dose of LPS. It should be noted that LPS-induced prolifer-
ation of B cells was not reduced in IFN-IR� mice, imply-
ing that the response of B cells does not require IFN-I (data
not shown).

Figure 3. Failure of LPS to in-
duce T cell proliferation in LPS-
nonresponder mice. PBS (�),
LPS (12.5 �g) (�), or Poly I:C
(100 �g) ( ) was injected intra-
venously into C3H/HeOuJ
(LPS-responder, left) or C3H/
HeJ (LPS-nonresponder, right)
mice. Mice were given BrdU in
their drinking water for 3 d, then
CD8� LN (upper) and spleen
(lower) cells were assayed for
BrdU labeling and Ly-6C ex-
pression. Data represent the mean
values from two mice (
 SD).

Figure 4. LPS induction of CD8� T cell proliferation in LPS-non-
responder mice supplemented with T-depleted spleen cells from LPS-
responder mice. T-depleted C3H/HeOuJ spleen cells (2.3 � 108 cells/re-
cipient) were injected intravenously into C3H/HeJ mice. 1 d later, the
recipients were injected with PBS (�) or 12.5 �g LPS ( ) and then
given BrdU water for 3 d. Data represent mean values from two mice
(
 SD).
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Stimulation of Naive T Cells. In all of the above experi-
ments, the capacity of LPS injection to stimulate T cells
was restricted to the CD44hi subset of CD8� cells. How-
ever, this finding refers only to T cell proliferation. To ex-
amine other parameters of cell activation, T cells from
LPS-injected mice were examined 1 d later for upregula-

tion of CD69 expression, a highly sensitive indicator of T
(and B) cell activation (18). The results shown in Fig. 6 A
make three points. First, high doses of LPS caused upregu-
lation of CD69 not only on CD8� cells and B cells (as ex-
pected from the BrdU labeling studies) but also on CD4�

cells. Second, based on the results of injecting graded doses
of LPS, the sensitivity of CD8� cells, B cells, and CD4�

cells to LPS-induced CD69 upregulation seemed to be re-
markably similar. Third, with high doses of LPS, CD69
upregulation applied to a high proportion (60–80%) of total
CD4� and CD8� cells, suggesting that the LPS-stimulated
cells included naive T cells. In support of this possibility,
CD69 upregulation was clearly apparent on both CD44lo

and CD44hi T cell subsets, both for CD4� cells and CD8�

cells (Fig. 6 B). Although CD44hi cells were more sensitive
to CD69 upregulation than CD44lo cells, injection of a
high dose of LPS induced CD69 expression on �50% of
CD44lo cells, both for CD4� and CD8� cells.

Discussion

Although LPS-induced proliferation of lymphoid cells is
thought to be primarily restricted to B cells, there are a
number of reports that LPS can stimulate T cells. Thus, it is
well established that LPS can act as a powerful adjuvant for
T cell responses to specific antigen (19–21). It has also been
found that LPS can stimulate certain T cell clones and a
small proportion (1–3%) of splenic T cells in vitro (22).
However, quantitative information on the capacity of LPS
to stimulate normal T cells in vivo has not been reported.

Figure 5. Role of IFN-I in LPS-induction of CD8� T cell proliferation.
(A) Comparison of the T cell–proliferative response to LPS in control
(129) mice versus mice deficient for the IFN-IR. (B) Comparison of the
T cell proliferative response to LPS in control (B6) mice versus mice defi-
cient for IFN-�. 1 �g (left) or 12.5 �g (right) LPS was injected intrave-
nously and mice were given BrdU water for 3 d. The results shown are
for CD8� spleen cells. Data represent mean values for 2–4 mice per point
(
 SD).

Figure 6. Expression of CD69
on T and B cells after LPS injec-
tion. (A) CD69 expression on
total CD4�, CD8� and B220�

LN (left) and spleen cells (right) 1 d
after injection of either PBS or 1,
10, or 100 �g LPS. Data repre-
sent mean values from two mice
per point (
 SD). (B) CD69 ex-
pression on CD8� (upper) or
CD4� (lower) LN T cells express-
ing different levels of CD44 after
injection of either PBS or 1 or
100 �g LPS. The percent label-
ing shown on the right in B was
derived from an independent ex-
periment from that in A, and the
data represent mean values from
two mice per point. In both ex-
periments, PBS or LPS was in-
jected intravenously into B6 mice,
and LN and spleen cells were an-
alyzed 1 d later.
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We show here that injecting LPS into normal mice
placed on BrdU water induced substantial proliferation of
T cells. Whereas proliferation of B cells required quite high
doses of LPS (10 �g), even very low doses of LPS (10 ng)
were sufficient to cause T cell proliferation. At all doses of
LPS tested, the proliferative response of T cells was re-
stricted to a single subset of T cells, namely CD44hi CD8�

cells. However, in terms of CD69 upregulation, LPS injec-
tion led to activation of nearly all T cells, including naive
(CD44lo) CD8� and CD4� cells.

The strong proliferation of CD44hi CD8� cells induced
by LPS injection correlated closely with the selective pro-
liferation of CD44hi CD8� cells seen previously in viral in-
fections and in mice injected with IFN-I or Poly I:C (9).
Hence, it is highly likely that LPS-induced proliferation of
CD44hi CD8� cells requires the production of IFN-I, pre-
sumably via a direct action of LPS on APC. A critical role
for APC is apparent from the finding that the failure of LPS
to stimulate T cell proliferation in LPS-nonresponder mice
could be overcome by coinjecting normal T-depleted
spleen cells as a source of APC. Although LPS can stimu-
late APC to produce a spectrum of different cytokines (11–
13, 23–25), it is notable that T cell stimulation after LPS
injection was substantially reduced in IFN-IR� mice,
though only with limiting doses of LPS. Therefore, the im-
plication is that LPS stimulation of CD8� cells is strongly
dependent on IFN-I production but only at moderate or low
doses of LPS. At higher LPS doses, IFN-I production is ap-
parently no longer essential, and T cell proliferation is con-
trolled by a different mechanism. Two obvious questions arise:

Does IFN-I act directly on T cells? This possibility is un-
likely because we have found no evidence that IFN-I is ca-
pable of causing proliferation of purified T cells in vitro
(our unpublished data). Moreover, based on studies with
bone marrow chimeras constructed with a mixture of nor-
mal and IFN-IR� stem cells, the inability of IFN-IR� T cells
to proliferate after IFN-I (Poly I:C) injection can be over-
come by providing a source of normal APC (our unpub-
lished data). These findings suggest that IFN-I induces T cell
proliferation by an indirect pathway involving APC. The
simplest possibility is that IFN-I stimulates APC to produce
other cytokines, which then act directly on T cells.

Which cytokines elicit T cell proliferation in vivo? Be-
cause a wide variety of different cytokines are capable of
stimulating activated T cells in vitro, defining which partic-

ular cytokines stimulate T cells after LPS injection in vivo
is a formidable task. IL-12 is a logical candidate because this
cytokine is synthesized by APC in response to LPS (13).
Moreover, we have observed strong stimulation of CD44hi

CD8� cells in mice injected with rIL-12 (our unpublished
data). Nevertheless, we have seen only minimal prolifera-
tion of T cells after culture with IL-12 in vitro. Hence, as
with IFN-I, it is doubtful whether IL-12 acts directly on T
cells. In considering other cytokines, IL-15 is of special in-
terest because this IL-2–like cytokine is produced by APC
and, like IL-2, IL-15 is directly stimulatory for activated T
cells in vitro (25, 26). Experiments with IL-15 (and various
other cytokines) are currently underway.

Because LPS is a major component of gram-negative
bacteria, one would expect to see prominent evidence of T
cell proliferation during bacterial infections. In fact, as with
LPS, we have found that injecting mice with killed Brucella
abortus causes marked proliferation of CD44hi CD8� cells
(our unpublished data). However, in contrast with LPS, B.
abortus induces T cell proliferation in both normal and
LPS-nonresponder mice, indicating that T cell stimulation
by bacteria is not controlled solely by LPS. Hence, bearing
in mind that bystander stimulation of CD44hi CD8� cells is
also conspicuous in viral infections (9), it would seem quite
likely that many different products of infectious micro-
organisms have the capacity to stimulate memory-pheno-
type T cells in vivo. However, in normal animals it is notable
that the background rate of proliferation of memory–phe-
notype T cells is substantially higher for CD4� cells than
for CD8� cells (3). This is surprising because the stimula-
tion of CD44hi cells induced by viruses, LPS, and killed B.
abortus is heavily skewed to CD8� cells. Therefore, the im-
plication is that stimulation of CD44hi CD4� cells is con-
trolled by a separate mechanism. In this respect, prelimi-
nary work has shown that certain bacteria induce poor
proliferation of CD44hi CD8� cells in vivo but strong pro-
liferation of CD44hi CD4� cells (our unpublished data).
Which cytokines control the proliferation of CD44hi CD4�

cells has yet to be resolved.
As a final comment, it is striking that high doses of LPS

caused marked CD69 upregulation on CD44lo (naive) cells
as well as on CD44hi cells, both for CD4� cells and CD8�

cells. How LPS induces activation of naive T cells but
without causing these cells to enter cell cycle is unknown.
Future work will be needed to resolve this paradox.
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