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Abstract 

Background: Understanding the influence of genetic variants on DNA methylation is fundamental for the interpreta-
tion of epigenomic data in the context of disease. There is a need for systematic approaches not only for determining 
methylation quantitative trait loci (methQTL), but also for discriminating general from cell type-specific effects.

Results: Here, we present a two-step computational framework MAGAR  (https:// bioco nduct or. org/ packa ges/ 
MAGAR), which fully supports the identification of methQTLs from matched genotyping and DNA methylation data, 
and additionally allows for illuminating cell type-specific methQTL effects. In a pilot analysis, we apply MAGAR  on data 
in four tissues (ileum, rectum, T cells, B cells) from healthy individuals and demonstrate the discrimination of common 
from cell type-specific methQTLs. We experimentally validate both types of methQTLs in an independent data set 
comprising additional cell types and tissues. Finally, we validate selected methQTLs located in the PON1, ZNF155, and 
NRG2 genes by ultra-deep local sequencing. In line with previous reports, we find cell type-specific methQTLs to be 
preferentially located in enhancer elements.

Conclusions: Our analysis demonstrates that a systematic analysis of methQTLs provides important new insights on 
the influences of genetic variants to cell type-specific epigenomic variation.
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Background
Epigenetic mechanisms, including histone modifica-
tions, small RNAs, and DNA methylation, regulate gene 
expression in a tissue- and cell-type-specific manner [1]. 
DNA methylation is a critical player in such epigenetic 
gene regulation that has been implicated in various bio-
logical processes including X-chromosomal inactivation 
[2], genomic imprinting [3], and allele-specific expression 
[4, 5]. DNA methylation has been shown to be highly cell 

type-specific and can be used to reliably estimate the pro-
portions of different cell types in cellular mixtures such 
as blood or tissue samples [6, 7]. The DNA methylation 
state of a defined subset of CpGs in the human genome 
can be measured reliably across many samples using the 
Illumina Infinium microarray technologies allowing to 
perform epigenome-wide association studies (EWAS).

DNA methylation can be affected by aging [8], sex, and 
a range of environmental exposures [9, 10]. Addition-
ally, donor genotype has a strong influence on the global 
DNA methylation state (methylome), especially when a 
genetic alteration, such as a single nucleotide polymor-
phism (SNP), occurs at a CpG site. Since bisulfite-based 
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methods can generate unclear and uninterpretable data 
at annotated or predicted SNPs located at CpG dinucleo-
tides, such positions are typically removed from the anal-
ysis of DNA methylation data [11].

However, additional genetic effects that are not 
located in the CpG site but in genetic variants distant 
to the analyzed CpG can influence its DNA methyla-
tion state. Such variants influencing DNA methylation 
states are referred to as methylation quantitative trait loci 
(methQTL). These associations can range from distances 
of a few bases to several megabases resulting in long-
range interactions [12, 13]. The definition of proximal 
methQTLs varies from 500 kb to 2 mb distance between 
the CpG and the SNP [12–14]. MethQTLs co-localize 
with genetic variants associated with diseases and donor 
phenotypes (GWAS hits) including obstructive pulmo-
nary disease [14], prostate cancer risk [15], osteoarthri-
tis [16], immune-mediated disease [17], asthma [18], and 
smoking [19]. Furthermore, combining methQTLs with 
expression QTLs (eQTLs) enables the investigation of 
associations between DNA methylation and gene expres-
sion changes [20–22].

However, so far not much emphasis has been put into 
analyses to investigate if and how often methQTLs affect 
DNA methylation in a tissue- or cell-type-specific man-
ner [23]. An earlier study used cultured cells includ-
ing fibroblasts, T cells, and lymphoblastoid cell lines to 
determine largely tissue-independent methQTLs. The 
authors reported that the association of methQTLs with 
changes in gene expression was rather cell type-specific 
[24] in line with recently identified cell type-specific 
eQTLs [25]. Other studies analyzing primary human 
cells rather reported largely cell type-independent eQTLs 
[26]. One problem which may have contributed to the 
current mixed view on the distribution of methQTLs is 
that methQTLs are typically determined using statisti-
cal models and tools that have been developed for eQTL 
analysis (e.g., Matrix-eQTL [27], fastQTL [28], or GEM 
[29]). Without the consideration of the specific proper-
ties of DNA methylation data including the correlation 
of DNA methylation states of neighboring CpGs such 
approaches may lead to substantial biases in the calling 
and interpretation of methQTLs.

To alleviate this problem, we present “Methylation-
Aware Genotype Association in R” (MAGAR )—a novel 
computational pipeline that performs methQTL analysis. 
MAGAR  defines clusters of neighboring CpGs accord-
ing to their shared behavior across samples to represent 
DNA methylation haplotypes and performs methQTL 
analysis for each of the correlation blocks independently. 
MAGAR  has been implemented as an R-package and uti-
lizes existing tools such as fastQTL [28], RnBeads [30, 31], 
and PLINK [32]. Using MAGAR , we investigated sorted 

blood cell types (T cells, B cells) and composite bowel tis-
sues (ileum, rectum) of healthy individuals. The identified 
methQTLs were analyzed for cell type-specific effects 
using colocalization analysis, which showed that we 
could discern tissue-specific from common methQTLs. 
Finally, we validated and reproduced our findings in addi-
tional samples and in data from two published methQTL 
studies.

Results
Strong cell type‑specific DNA methylation signals 
identified in bowel biopsies and purified blood cell types
The data set that we used for the discovery of methQTLs 
comprised 409 samples from ileum (IL, n = 98) and 
rectum (RE, n = 95) tissue biopsies and the two FACS-
sorted blood cell types CD4-positive T cells (n = 119) and 
CD19-positive B cells (n = 97). For 29 individuals DNA 
methylation data were available for all four tissues/cell 
types within this discovery data set (Additional file 1: Fig-
ure S1). Average DNA methylation levels across all CpGs 
in genome-wide 5-kb bins revealed a strong cell type-
specific signal that discriminates the blood cell types 
from the biopsies. Overall, the tissue biopsies exhibited 
an enhanced variation in comparison to the purified 
blood cell types indicating that increased cell-type het-
erogeneity goes along with a higher variation of DNA 
methylation patterns both on genome-wide bins and on 
the single-CpG level (Fig.  1A, B). To better understand 
the origins of cellular heterogeneity within the biopsy 
samples, we estimated the overall immune cell content 
of a sample using the LUMP algorithm [33] (Fig.  1C). 
While LUMP estimates were uniformly close to one for 
the two blood cell types as expected, they substantially 
varied across the biopsy samples. In line with previous 
reports [34], significantly higher immune cell content 
was observed in ileal compared to rectal samples.

MAGAR  facilitates the analysis of genome‑wide methQTL 
effects
Understanding the relationship between DNA methyla-
tion and genetic variants can help to illuminate the asso-
ciation of genetic alterations with diseases and changes 
in gene expression. Thus, we are interested in defining 
statistically significant associations between DNA meth-
ylation and genotyping data. We call genetic variants that 
are associated with DNA methylation methQTLs. To 
alleviate the methQTL identification process, we devel-
oped the new R-based framework Methylation-Aware 
Genotype Association in R (MAGAR ) that provides a 
comprehensive suite of tools enabling methQTL analy-
sis leveraging the correlation of DNA methylation states 
of neighboring CpGs (Fig.  2A). Notably, MAGAR  is the 
first package that performs data processing of raw (i.e., 
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IDAT files) DNA methylation and genotyping data before 
returning data formatted for methQTL analysis.

In the first phase of MAGAR , raw data are converted 
and processed using the established software packages 
RnBeads [30, 31], PLINK [32] and CRLMM [35, 36]. The 
processing includes data filtering of CpGs and SNPs 
according to quality criteria (see “Methods” for details). 
The second phase of the package—the methQTL call-
ing—has been implemented as a two-stage workflow 
as follows: initially, CpGs that exhibit high correlations 
of methylation states across the samples are clustered 
into CpG correlation blocks. MAGAR  takes into consid-
eration that the DNA methylation states of neighboring 
CpGs in the same functional or regulatory unit are usu-
ally highly correlated [37], an observation that we also 
made in our data (Additional file  1: Figure S2A). This 
assumption implies that one may not need to inspect 
each CpG. In fact, doing so would generate many redun-
dant methQTLs, which becomes apparent in the asso-
ciation between methQTL statistics and the genomic 
distance (Additional file  1: Figure S2B, C). In MAGAR, 
we therefore group neighboring, highly correlated CpGs 
into correlation blocks. In the second stage of the pro-
cess, methQTLs are determined individually for each of 
the CpG correlation blocks. To this end, for each corre-
lation block, MAGAR  determines a tag-CpG represent-
ing this block and determines statistically significant 
associations for each of the tag-CpGs with all SNPs 
within a specified genomic distance (in this instance 
500  kb up- and downstream). This methQTL calling 
can either be performed using univariate, linear least 
squares or by the approach implemented in fastQTL [28]. 
The fastQTL software computes correlations between 

DNA methylation states and SNP genotypes and uses 
a permutation scheme to address the multiple testing 
problem. Comparing MAGAR ’s output with the output 
generated by fastQTL and Matrix-eQTL, we found high 
overall agreement of the methQTLs detected by the dif-
ferent tools. While fastQTL and Matrix-eQTL returned a 
number of methQTLs that were exclusively detected by 
the respective tool, the methQTLs identified by MAGAR  
were also detected by the other tools (Additional file  1: 
Figure S3). This indicates that MAGAR ’s results are 
more reliable. We leave it to the user to decide whether 
to use the default linear modeling or fastQTL for the 
second stage of MAGAR . In general, MAGAR  provides 
various options for customizing the analysis, including 
options for defining the CpG clustering, for defining the 
tag-CpG per correlation block, and for the methQTL 
calling approaches to be employed (linear modeling or 
fastQTL). Reasonable default values for the parameters 
were selected using simulation experiments (Additional 
file 1: Text, Figure S4). MAGAR  returns a list of associa-
tions and corresponding statistics, which can be filtered 
further by the user to define methQTLs or which can be 
used in downstream analyses. In the analysis presented 
here, MAGAR ’s output was used as input to colocaliza-
tion analysis for defining tissue-specific and tissue-inde-
pendent methQTLs.

Using MAGAR, we analyzed the ileal, rectal, T cell, 
and B cell methylation data (659,464 CpGs) jointly with 
genotype data from 5,436,098 SNPs and calculated 
methQTL statistics for each cell type/tissue indepen-
dently. To determine significant methQTLs, we selected 
a Bonferroni-corrected genome-wide P-value cutoff of 
8.65 ×  10–11 (see “Methods” for details). As a result, we 

Fig. 1 Cell type-specific DNA methylation patterns in the discovery data set. A Heatmap (blue low, red high DNA methylation levels) of the 1000 
most variably methylated genome-wide bins of size 5 kb. Hierarchical clustering of samples and bins was performed using Euclidean distance and 
complete linkage. B PCA plot of genome-wide DNA methylation data at the single-CpG level. The first two principal components are displayed. 
C Boxplots depicting the distributions of LUMP estimates for the overall immune cell content of the different cell types/tissues. The P-value was 
computed using a two-sided t-test
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found 696, 2508, 1010, and 868 methQTLs for CD19+ 
B cells, CD4+ T cells, ileal, and rectal biopsies, respec-
tively (Fig. 2B, Additional file 2: Table S1). To validate the 
methQTLs, we used additional samples from monocytes 
and transverse colon from the same cohort (Additional 
file  1: Figure S5). Additionally, we obtained published 
methQTLs from two studies (blood [12] and fetal brain 
[38]) and compared them with the identified methQTLs. 
Note that the validation cohort and the published stud-
ies used DNA methylation data generated using the 450k 
microarray, which comprises fewer CpG sites than the 
EPIC array. Thus, we excluded those methQTLs from 
the comparison that associated with a CpG site that is 
exclusively present on the EPIC array. We identified some 
of the methQTLs found in the discovery cohort using a 
different, validation P-value cutoff (see “Methods”) in 
the validation cohort (Fig. 2C) and in the published data 

(Fig.  2D). Notably, the overlap between the identified 
and the published methQTLs was significantly higher 
than expected by chance (Additional file  3: Table  S2). 
As expected, the overlap of the methQTLs identified in 
B and T cells with the methQTLs identified using whole 
blood was higher than with those identified in fetal brain 
samples (Fig. 2D).

Colocalization analysis identifies common methQTLs
Next we applied colocalization analysis that uses sum-
mary statistics from two association studies (here 
methQTLs in two different tissues) to determine if an 
association of two traits (here CpG methylation states) 
to the same genetic region is significant and is likely to 
be caused by the same pleiotropic genetic variant. Colo-
calization was examined using Summary-data-based 
Mendelian Randomization (SMR) analysis followed by 

a b

c

d

Fig. 2 Overview of MAGAR  and methQTL results. A MAGAR  is an R-package utilizing a two-stage protocol. After data import via established software 
packages, CpGs are clustered into CpG-correlation blocks in a four-step procedure. In the second stage, methQTLs are called for each correlation 
block separately. B Number of methQTLs identified by MAGAR  for T cells, B cells, ileum, and rectum samples. Overlap between the methQTLs 
identified per tissue/cell type with methQTLs identified in the validation cohort (C) and in published methQTLs from blood [12] and fetal brain 
samples [38] (D). The methQTLs were reduced to those methQTLs affecting CpGs present on the 450k microarray



Page 5 of 17Scherer et al. Epigenetics & Chromatin           (2021) 14:44  

the Heterogeneity in Dependent Instruments (HEIDI) 
test [39]. The SMR test indicates whether the two traits 
are significantly associated with the same locus and the 
HEIDI test interrogates whether the data are compatible 
with the hypothesis that both traits are affected by the 
same underlying functional SNP.

We only included methQTLs in the analysis that 
were significant at P-value lower than 8.65 ×  10–11 in at 
least one tissue. The analysis is anchored at the tissue 

where the methQTL exhibited a significant associa-
tion and the methQTL statistics were compared with 
those in the other tissues. In total, 4253 colocalization 
tests were performed (Additional file 4: Table S3) based 
on the number of significant methQTLs. We defined 
those methQTLs as shared between two tissues/cell 
types that had an FDR-adjusted P-value of the SMR 
test lower than 0.05 and that had a HEIDI test nomi-
nal P-value larger than 0.05 (Additional file 4: Table S3). 

a

b

c

Fig. 3 Common and tissue-specific methQTLs identified through colocalization analysis. A To define tissue specificity, we employed MAGAR  on 
the four tissues/cell types independently to obtain methQTL statistics. These were used in pairwise colocalization analyses to define common and 
tissue-specific methQTL, as well as methQTLs shared across several tissues. B Number of tissue-specific methQTLs per tissue and methQTLs shared 
across different tissues according to the colocalization analysis. Common methQTLs were shared according to the colocalization analysis and had 
methQTL P-values below the cutoff in all tissues. C Examples of four common methQTLs located in vicinity to PON1, LGR6, LCE3D, and RIBC2 
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These methQTLs are likely driven by the same genetic 
variant and the shared association is likely caused by 
a single pleiotropic variant rather than by two linked 
variants. Colocalization analysis was conducted for all 
pairs of cell types/tissues (Fig. 3A) and we define three 
classes of methQTLs:

1. Common methQTLs are shared across all investi-
gated pairs of tissues/cell types according to the colo-
calization analysis and pass the methQTL P-value 
cutoff 8.65 ×  10–11 in all tissues.

2. Shared methQTLs are shared across all the investi-
gated pairs of tissues/cell types according to the colo-
calization analysis.

3. Tissue-specific methQTLs are only present in one of 
the tissues/cell types and not shared in any pairwise 
comparison according to the colocalization analysis.

We found that 16 methQTLs were shared across all of 
the pairwise comparisons and lay below the methQTL 
P-value cutoff of 8.65 ×  10–11 in all tissues and are thus 
common methQTLs (Fig. 3B, Additional file 5: Table S4). 
The common methQTLs included well established 
methQTLs and eQTLs, such as the ones present in the 
PON1 [40], LGR6 [41], and RIBC2 [42] loci (Fig.  3C). 
We found substantially more methQTLs shared across 
different tissues than tissue-specific methQTLs. Most 
(254) tissue-specific methQTLs were exclusively found in 
CD4+ T cells (Fig.  3B, Additional file  6: Table  S5), and 
similar numbers of tissue-specific methQTLs (78, 75) 
were identified for ileal and rectal biopsies, respectively. 
Due to the definition above, common methQTLs are a 
subset of the shared methQTLs.

We used the validation cohort to validate the identi-
fied common and shared methQTLs further. Notably, the 
validation cohort samples were assayed using the 450k 
array and only 10 (of 16) and 689 (of 1470), respectively, 
of the common and shared methQTLs associated with a 
CpG present on the 450k array. We found that most of 
the common (9/10, Fisher test P-value: 1.6 ×  10–4) and 
some of the shared QTLs (178/689, Fisher test P-value: 1) 
were also present in at least one of the two tissues (Addi-
tional file  1: Figure S6A,B). Additionally, four of the 10 
overlapping common methQTLs (rs2272804, rs705379, 
rs55901738, rs10021193) were also identified in an inde-
pendent study of blood samples [12] (Additional file  1: 
Figure S6C).

Common methQTL at PON1 locus identified 
in independent samples using ultra‑deep bisulfite 
sequencing
To rule out potential technology-dependent artifacts, we 
used local deep amplicon sequencing for the validation 

of a common methQTL. We selected the methQTL at 
the PON1 locus (comprising rs705379, cg19678392, 
cg17330251, and cg01874867), since both the SNP and 
the CpGs could be included into a single amplicon of size 
462 base pairs. Thus, we were able to capture the geno-
type of the SNP and the DNA methylation state of mul-
tiple CpGs simultaneously. Notably, we associated the 
genotype with the CpG methylation state at the single-
molecule level, since each sequencing read represents a 
single molecule. The results indicated a strong relation-
ship between the genotype of rs705379 and the methyla-
tion states at all CpGs present in the amplicon, while the 
effect was stronger in those CpGs that were closer to the 
SNP (Fig. 4A). In this setting, the A genotype was asso-
ciated with a high DNA methylation state of more than 
50%, while the G genotype leads to a decrease of the 
methylation level below 25% for some CpGs (Fig.  4B). 
Notably, there was no one-to-one relationship between 
the genotype and the DNA methylation state and G gen-
otypes co-occurred with methylated CpGs and A geno-
types with unmethylated CpGs at the single-molecule 
level. The effect of the SNP on the DNA methylation 
state was consistent across all samples within a genotype, 
and the standard deviations across the samples within 
the different genotype groups were comparable (T cells: 
AA: 0.054, AG: 0.046, GG: 0.058; B cells: AA: 0.042, AG: 
0.058, GG: 0.06, Fig.  4C). Notably, rs705379 had a high 
minor-allele frequency of 0.46 for the B cell and 0.47 
for the T cell samples in our cohort. To further investi-
gate whether the effects that we detected are also pre-
sent for methQTLs beyond the 16 common methQTLs, 
we constructed two additional amplicons to capture the 
methQTLs shared across different cell types/tissues at 
the ZNF155 (Additional file  1: Figure S7) and NRG2 
(Additional file  1: Figure S8) loci. In accordance with 
the results obtained in the PON1 amplicon, we found a 
strong association of the genotype with DNA methyla-
tion states.

Tissue‑specific methQTLs are preferentially located 
in proximal enhancer elements
To determine characteristic properties of tissue-spe-
cific methQTLs, we compared all 452 tissue-specific 
methQTLs with 1470 methQTLs shared across multiple 
tissues (Additional file  7: Table  S6). While the distance 
between the CpG and the SNP that significantly corre-
lates with the DNA methylation state was not different 
in the two classes of methQTLs, we found both stronger 
effects on the DNA methylation state with respect to 
effect size and lower P-values for the shared methQTLs 
than for the tissue-specific methQTLs (Fig. 5A). To deter-
mine whether the CpGs or the SNPs of the shared and 
cell type-specific methQTLs are preferentially located 
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in particular functional regions of the genome, we per-
formed enrichment analysis for various functional anno-
tations such as gene promoters and proximal enhancers. 
We found that methQTL SNPs were depleted in regions 
of active transcription such as transcriptional start 
sites (TSS) and gene bodies for the shared methQTLs 
(Fig. 5B). No significant enrichment of a functional cate-
gory was detected for the shared methQTLs. In contrast, 
the tissue-specific methQTLs were preferentially located 
in proximal enhancer elements according to the Ensembl 
Regulatory Build [43] further pointing toward the impor-
tant regulatory role of enhancers in establishing cellu-
lar identity. Further indication for this hypothesis was 
obtained by the LOLA [44] enrichment of tissue-specific 
methQTLs in enhancer elements and transcription factor 
binding sites indicating an enhancer element in B cells 

and in the B lymphocyte cell line GM12878 (Fig.  5C). 
Analogously, we associated the tissue-specific and shared 
methQTL SNPs and CpGs with overlapping gene bod-
ies. For those overlapping genes, we performed Gene 
Ontology (GO) enrichment analysis [45] and detected an 
enrichment of the shared methQTLs towards the biologi-
cal process “cell development” (P-value = 0.0069, Addi-
tional file 8: Table S7).

We aimed to validate the tissue-specific methQTLs in 
the validation cohort and in independent studies. While 
some of the ileum- and rectum-specific methQTLs iden-
tified earlier were present in the transverse colon sam-
ples, only two of them were present (at validation P-value 
cutoff 9.84 ×  10–6) in the monocytes. Similarly, two of the 
T-cell-specific methQTLs were also found in transverse 
colon. However, more (seven for T cells, one for B cells) 

Fig. 4 Validation of methQTL at PON1 locus using ultra-deep bisulfite sequencing. A Bisulfite sequencing read pattern maps for three individuals 
with genotypes homozygous for the reference allele (AA), heterozygous (AG), or homozygous for the alternative allele (GG) for B cells and T cells, 
respectively. Each line is a sequencing read, where the red color indicates a cytosine, i.e., a methylated cytosine before bisulfite conversion, and 
blue a thymine, i.e., an unmethylated cytosine before bisulfite conversion. All cytosines within the amplicon are shown in the pattern map and 
the CpG and CpA dinucleotides are marked. The genotype at rs705379 per sequencing read is indicated on the right. Shown is the common 
methQTL at the PON1 locus at chr7:94,953,722–94,954,184 (hg19). B Average DNA methylation levels across all samples of the same genotype and 
standard deviations across the samples. The barplots are shown for all 22 CpGs present in the amplicon. C Average DNA methylation levels across all 
sequencing reads per sample for the three CpGs that were associated with the SNP genotype in the microarray data analysis for B cells and T cells
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were found in the CD14-positive monocytes (Additional 
file 1: Figure S6A). To validate whether T-cell- and B-cell-
specific methQTLs actually capture effects specific to 
blood cell types, we compared the methQTL effect sizes 
in the monocytes and in transverse colon. We detected 
significantly higher effect sizes for the T-cell-specific 
methQTLs in the monocytes in comparison to trans-
verse colon (Additional file  1: Figure S6B). Notably, not 
all methQTLs detected in the discovery cohort could be 
found in the validation cohort, since the latter has been 
assayed using the Infinium 450k technology. Similarly, 
more of the T- and B-cell-specific methQTLs were pre-
sent in the methQTL study on blood samples in compari-
son to fetal brain samples (Additional file 1: Figure S6C).

Discussion
Patient stratification according to mutational signatures, 
i.e., genotype-based markers, is already well-accepted in 
the clinic [46]. Recently, DNA methylation-based bio-
markers are also becoming relevant in a clinical setting 
[47] and may contribute to clinical decision-making. 
The relationship between genotype and DNA methyla-
tion variation is only just beginning to be understood. 
As a first step towards the joint characterization of DNA 

methylation patterns and genotypes, methylation quan-
titative trait loci (methQTL) have been identified in 
healthy individuals. To facilitate standardized analyses 
of DNA methylation and genotyping data, we developed 
the R-package MAGAR  that supports processing of raw 
data and integrates with established bioinformatic tools. 
MAGAR  is the first package providing a start-to-finish 
workflow for microarray-based methQTL studies and 
supports bisulfite sequencing data, without specifically 
using the information on co-methylation of neighbor-
ing CpGs present in the sequencing reads. For bisulfite 
sequencing data, specialized methods are available such 
as IMAGE [48]. Notably, MAGAR  performs methQTL 
analysis while accounting for the correlation structure of 
neighboring CpGs, and is a first step toward associating 
genetic haplotypes with DNA methylation haplotypes. 
We also found that MAGAR’s results are concordant with 
results generated by alternative software tools indicating 
that the identified methQTLs are highly reliable. Group-
ing together CpGs into clusters is an approach that has 
also been used earlier [49, 50] in contexts different from 
methQTL analysis. The earlier approaches to group 
CpGs into correlation blocks, however, either do not take 
into account the genomic distance between two CpGs or 

Fig. 5 Properties of methQTLs shared across the tissues and tissue-specific methQTLs. A Distance between the CpG and the SNP, the effect size 
(slope of the regression) of the methQTL, and the negative common logarithm of the methQTL P-value are visualized. MethQTLs were classified as 
either shared or tissue-specific. B Enrichment analysis of shared (top) or tissue-specific methQTLs (bottom) in different functional annotations of the 
genome. Visualized is the common logarithm of the odds ratio and the associated Fisher exact test P-value was computed. P-values below 0.01 are 
indicated by a bold outline. C LOLA [44] enrichment analysis of the methQTL SNPs for the shared and tissue-specific methQTLs, respectively. ESC 
embryonic stem cell, AML acute myeloid leukemia



Page 9 of 17Scherer et al. Epigenetics & Chromatin           (2021) 14:44  

are restricted to either microarray or bisulfite sequencing 
data.

It remains elusive whether methQTLs are inherently 
cell type-specific or tissue-independent. In this study, 
we systematically investigated cell-type specificity of 
methQTLs in sorted blood cell types (CD19+ B cells, 
CD4+ T cells) and bowel biopsies (ileum, rectum). We 
found fewer tissue-specific methQTLs than methQTLs 
that were shared across tissues. We validated tissue spec-
ificity in additional CD14+ monocyte and transverse 
colon samples. Since DNA methylation is a cell type-spe-
cific epigenetic mark, it is likely that methQTLs are also 
cell type-specific. It remains to be shown whether these 
cell type-specific methQTLs preferentially co-occur with 
other cell type-specific epigenetic marks such as open 
chromatin or histone modifications. Previous methQTL 
studies [12, 38] identified a partially overlapping list of 
methQTLs, some of which were also detected in this 
study. Notably, the previous studies used a different strat-
egy for identifying methQTLs (Merlin [51] in the blood 
study and Matrix-eQTL [27] in the fetal brain samples). 
While these strategies do not account for the properties 
of DNA methylation data, we found a substantial overlap 
with the methQTLs that we identified.

We found that cell type-specific methQTLs were pref-
erentially located in enhancer elements, which further 
emphasizes the importance of enhancers to establish cel-
lular identity. However, methQTL effects were weaker in 
cell type-specific methQTLs compared to those shared 
across different cell types. It remains to be shown how 
methQTLs affect gene expression states in our samples. 
In subsequent analyses, the overlap between methQTLs 
and eQTLs can be explored to further understand the 
relationship between genome, epigenome, and transcrip-
tome. Since the cell type-specific methQTLs were associ-
ated with the CpG methylation states to a lower extent 
than shared methQTLs, cell type-specific methQTLs 
could modulate transcript abundance in a more fine-
grained manner. We would also like to point out that this 
observation may be due to technical rather than biologi-
cal reasons. Using colocalization analysis for determining 
shared effects of methQTLs across tissues, a bias towards 
stronger effects can be introduced. Since we define 
tissue-specific methQTLs as those that are not shared 
according to the colocalization analysis, they could be 
weaker than the shared ones by definition.

There are some aspects of methQTLs, which remain 
to be investigated. It would be relevant to study cell-type 
specificity of methQTLs in purified cell types outside of 
the hematopoietic system, such as in neurons, epithelial 
cells, and hepatocytes. To that end, the identified com-
mon methQTLs could be further validated to determine 
whether they are truly tissue- and cell-type-independent. 

Furthermore, MAGAR  groups together CpGs into CpG 
correlation blocks, which reduces the number of redun-
dant methQTLs detected. However, methQTLs affect-
ing single CpGs may be missed using this method. It is 
well-established that genetic associations with a disease 
(GWAS hits) are preferentially located in non-coding 
regions of the genome [52]. The functional impact of 
such genetic variants, which can be modulated by QTLs 
(methQTLs, eQTLs), remains to be investigated. Addi-
tionally, DNA methylation data can be used to reli-
ably estimate the proportions of different cell types in 
the samples, either using a reference data set [6] or in a 
reference-free way [11]; an analysis strategy known as 
deconvolution. Given the cell-type specificity of a subset 
of methQTLs identified within this study, a combination 
of DNA methylation-based deconvolution and identifica-
tion of methQTLs could be implemented along the line 
of published, transcriptome-based approaches [25, 53]. 
By using such a method, it will be possible to investigate 
methQTL effects in bulk tissues without considering cell 
type-specific signals. Preferably, novel analysis methods, 
such as colocalization analysis and the integration of 
methQTL and DNA methylation-based deconvolution, 
are implemented in an easy-to-use software package such 
as MAGAR . To overcome the issue of cell-type specific-
ity, DNA methylation can be assayed at the single-cell 
level and associated with genotype information from the 
same cell. Alternatively, more readily accessible single-
cell RNA-seq data sets can be jointly analyzed with bulk 
methQTL studies to understand gene regulation at the 
single-cell level. Finally, long-read sequencing allows for 
simultaneously profiling the genotype and DNA meth-
ylation state of the same molecule over distances up to 
10 kb, which enables associating genetic haplotypes with 
DNA methylation haplotypes.

Conclusions
In summary, the relationships between genetic and epi-
genetic variations are currently underexplored. To facili-
tate the joint analysis of genotype and DNA methylation 
data, we present MAGAR  as a novel software tool that 
accounts for the properties of DNA methylation data. In 
combination with colocalization analysis, we identified 
tissue-specific and common methQTLs with unique bio-
logical properties and genomic location. Tissue-specific 
and shared methQTLs identified using MAGAR  were 
validated in both independent samples and were verified 
using an alternative local deep sequencing approach.
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Methods
MAGAR  R‑package
MAGAR  package overview
We developed “Methylation-Aware Genotype Asso-
ciation in R” (MAGAR ) as a new computational frame-
work to determine methQTLs from DNA methylation 
and genotyping data. MAGAR  supports both sequenc-
ing-based assays including whole-genome (bisulfite) 
sequencing and microarray-based data. It is the first 
computational framework for performing methQTL 
analysis starting from raw DNA methylation and geno-
typing microarray data. The pipeline implemented within 
MAGAR  comprises the following phases:

 i. Data import and preprocessing using established 
software packages such as PLINK [32], RnBeads 
[30, 31], and CRLMM [35, 36]. Additional modules 
for quality control and standard processing using 
these packages are available to the user. MAGAR  
supports automated imputation using the Michi-
gan Imputation Server [54].

 ii. MethQTL calling, i.e., computing associations 
between genotype and a DNA methylation state. 
A two-stage approach is employed: (i) Define CpG 
correlation blocks as groups of CpGs that are highly 
correlated across the samples to mimic DNA meth-
ylation haplotypes. (ii) From each of these correla-
tion blocks, a tag-CpG is selected as a representa-
tive of the block and associations are computed 
with all SNPs up to a given distance using either 
a linear modeling strategy or using external soft-
ware tools (e.g., fastQTL [28]). All SNP-CpG pairs 
that have a P-value below a user-defined cutoff are 
returned.

Data import and preprocessing
DNA methylation data For DNA methylation data, we 
use the RnBeads software package for data handling and 
processing. RnBeads supports most DNA methylation 
assays yielding single-CpG methylation calls, including 
whole-genome/reduced-representation bisulfite sequenc-
ing (RRBS/WGBS) and the Illumina microarray series. 
Microarray data can be provided as raw intensity data 
(IDAT files) and is checked for data quality using RnBeads’ 
reporting functionality. Further processing steps, such 
as CpG and sample filtering (e.g., SNP removal, cross-
reactive site removal) and data normalization, can be 
performed within RnBeads. Although we recommend 
RnBeads for data handling, MAGAR  supports the output 
of further data processing tools if they provide single-CpG 
methylation calls.

Genotyping data MAGAR  accepts microarray and 
sequencing data as input. Sequencing data have to be 
preprocessed using genotyping pipelines [55] and con-
verted into a format that is readable through PLINK 
(e.g., VCF files). For microarray data, MAGAR  supports 
raw intensity data files as input and computes genotype 
calls through the CRLMM R-package [35, 36]. As an 
optional step, genotyping data can be imputed using the 
Michigan Imputation Server [54]. Additional data pro-
cessing, such as filtering SNPs with many missing val-
ues or Hardy–Weinberg equilibrium filtering, are con-
ducted through PLINK.

MethQTL calling
MethQTL calling within MAGAR  follows a two-stage 
workflow (Fig. 2A):

 i. CpGs with highly correlated methylation states 
across the samples are grouped to form CpG-cor-
relation blocks.

 ii. A tag-CpG per CpG-correlation block is associ-
ated with all SNPs in a given genomic distance to 
compute associations between SNP genotypes and 
DNA methylation states.

We elaborate on the two stages in more details below.

Correlation block calling To compute distinct CpG cor-
relation blocks, i.e., groups of CpGs that exhibit high cor-
relations of their methylation states across the samples, 
from a DNA methylation data matrix we developed a 
four-step framework:

1. To obtain a similarity matrix, compute the (Pearson) 
correlation coefficients between the DNA methyla-
tion states of any pair of CpGs across the samples 
using the bigstatsR R-package [56] for each chromo-
some separately. Similarities of two CpGs with cor-
relation lower than 0.2 (package parameter: cluster.
cor.threshold) are set to zero. Since matrices can 
grow too large to fit into main memory of stand-
ard machines, the CpGs are split per chromosome 
into equally sized smaller groups until a maximum 
number of CpGs per computation is achieved (here 
40,000 CpGs, parameter: max.cpgs).

2. Weight the similarities according to the genomic 
distance between any CpG and the remaining CpGs 
using a Gaussian centered at the CpG of interest with 
standard deviation 3000  bp (parameter: standard.
deviation.gauss). Additionally, the similarity between 
any pair of CpGs further apart than 500 kb is set to 
zero (parameter: absolute.distance.cutoff). Optionally, 
functional annotations such as the Ensembl Regula-
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tory Build [43] or DNA methylation-based segmen-
tation [57] can be used to re-define the similarities.

3. Construct the associated weighted graph from the 
similarity matrix, where the edge weights correspond 
to the similarities between the two CpGs.

4. Employ Louvain clustering [58] using the igraph 
R-package [59] on the weighted graph to obtain clus-
ters of CpGs that are highly correlated. The obtained 
clusters are defined as the CpG correlation blocks.

The parameters presented here are available as pack-
age options to the user. The default parameters have 
been evaluated using simulations for EPIC and 450k data 
(Additional file 1: Text, Figure S4).

Associating SNPs with CpG-correlation blocks To deter-
mine whether the DNA methylation state of a CpG-cor-
relation block is associated with the SNP, we first deter-
mine a tag-CpG per correlation block as the medoid of 
all CpGs in the correlation block. To compute the medoid 
CpG, we compute the median for each CpG in the cor-
relation block across the samples. Then, we select the 
CpG that is the median of the vector of medians across 
the samples as the tag-CpG. Alternative tag-CpG selec-
tion methods are available through the package param-
eter representative.cpg.computation. In the next step, all 
SNPs closer than 500 kb to the tag-CpG are considered 
and a univariate, least squares regression (lm R func-
tion) model is created using the genotypes (encoded as 
0 = homozygous reference/major allele, 1 = heterozygous, 
2 = homozygous alternative/minor allele) as the features 
and the CpG methylation state as the response. Further 
covariates can be included as additional inputs into the 
linear model. Alternatively, fastQTL [28] can be used to 
compute associations between tag-CpGs and SNPs. The 
obtained P-values and slopes (referred to as effect sizes or 
beta in this work) of the linear model are used for further 
analysis.

Package options and modularity
MAGAR  is a modular software package that allows for 
easy integration with additional tools. Different vari-
ants of the analysis can be specified by the package’s rich 
option settings. For instance, CpG correlation blocks 
depend on various parameters including the correlation 
threshold between two CpGs or the standard deviation 
of the Gaussian distribution. We used simulation experi-
ments to determine reasonable default parameter settings 
for the most widely used technologies 450k array, EPIC 
array, and bisulfite sequencing (Additional file  1: Text, 
Figure S4). However, the option setting can be tailored 
to the data set at hand. CpG correlation block calling can 

be deactivated, resulting in the analysis scheme imple-
mented by most published methQTL studies, i.e., asso-
ciating each CpG with a SNP individually. Additionally, 
MAGAR  allows for setting the parameters of the differ-
ent software tools that are internally used (e.g., RnBeads, 
PLINK). To facilitate analyses of large-scale data sets, 
MAGAR  supports multi-core processing and automatic 
distribution of jobs across the nodes of a high-perfor-
mance computing (HPC) cluster. MAGAR  comes with 
different export options, including a direct export into 
the format accepted by GWAS-MAP (see section “Deter-
mining tissue-specific methQTLs”). MAGAR  is publicly 
available from Bioconductor (https:// bioco nduct or. org/ 
packa ges/ MAGAR).

Data sets
The data sets used throughout this study have been 
generated in the context of the SYSCID project (http:// 
syscid. eu/). The Correlated Expression Disease Associa-
tion Research (CEDAR) [60] cohort data set comprises 
164 individuals and we had microarray-based genotyp-
ing data available for 163 individuals as described ear-
lier [60]. More specifically, healthy individuals were 
recruited at the University Hospital in Liège and bowel 
biopsies as well as blood draws were collected. The biop-
sies were obtained from rectum (RE) and ileum (IL), and 
blood cells were FACS-sorted into CD4-positive T cells 
and CD19-positive B cells. We used this data set as the 
discovery cohort within this study. In addition, we used 
a second data set from the CEDAR cohort compris-
ing additional 197 donors (16 overlapping with the ear-
lier ones) including transverse colon biopsies (n = 191) 
and CD14-positive monocytes (n = 192) as a validation 
cohort.

DNA methylation profiling
DNA methylation profiling of the samples in the CEDAR 
cohort was performed using the Illumina EPIC array. Per 
sample 500 ng of genomic DNA were bisulfite converted 
using the EZ-96 DNA methylation Gold Kit (Zymo 
research, Irvine, USA) according to the kit’s manual, 
except that the final elution volume was reduced to 12 µl. 
Then, four µl of bisulfite converted DNA was used to run 
on an Infinium Methylation EPIC array (Illumina, San 
Diego, USA) according to the manufacturer’s protocol.

DNA methylation data for the validation cohort were 
generated earlier using the Illumina 450k microarray 
according to the standard protocol. Due to the small 
overlap of donors from the EPIC and 450k data set and 
due to the reduced number of CpGs available on the 450k 
array, we decided to analyze the data sets separately.

https://bioconductor.org/packages/MAGAR
https://bioconductor.org/packages/MAGAR
http://syscid.eu/
http://syscid.eu/
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Genotyping microarrays
Genotyping of the CEDAR cohort has been performed 
as described earlier [60]. Additional 23 donors have been 
genotyped using the Illumina Infinium OmniExpress-
24v1.3 microarray at the GIGA-Institute Genomics core 
facility.

MAGAR  analysis of the CEDAR cohort
DNA methylation data
We used MAGAR , which internally uses RnBeads, for 
processing raw IDAT files obtained on the CEDAR 
cohort samples. A subset of samples (13 B-cell samples, 
1 T-cell sample) was removed from the discovery cohort, 
since the samples exhibited substantially lower technical 
quality. CpGs were filtered for annotated SNPs in dbSNP 
[61], for sites on the sex chromosomes, and for poten-
tially cross-reactive sites [62]. Further quality-based fil-
tering of CpGs was conducted using RnBeads’ Greedycut 
algorithm [30]. Data were normalized using the “dasen” 
method from the wateRmelon R-package [63]. As out-

come of the filtering procedure, 659,464 CpGs were 
retained for the analysis. The immune cell infiltration 
was estimated using the LUMP algorithm [33] based on 
44 CpGs that are particularly hypomethylated in immune 
cells, 34 of which were available in the CEDAR data set. 
For the validation cohort (450k), we used analogous pro-
cessing options, removed one sample from the 383 sam-
ples due to lower technical quality, and retained 353,388 
from the 485,777 CpGs available on the microarray.

Genotyping data
Genotyping microarray data were imported into MAGAR  
and genotypes called using the “KRLMM” algorithm 
implemented in the CRLMM R-package [35, 36] using 
default parameters. Genotypes were imputed using the 
Michigan Imputation Server [54] using Minimac4 and 
the following parameters: Reference panel: “hrc-r1.1”, 
phasing method: “shapeit”, population: “eur”. Imputation 
was performed for all 163 unique donors simultaneously 
and the outcome of the procedure yielded 39,127,678 
SNPs. Imputed data were exported to PLINK [32] for 
further processing. We filtered for SNPs with a Hardy–
Weinberg equilibrium exact test P-value below 0.001, a 
maximum number of missing values across the samples 
of 10%, and with minor-allele frequency below 5%. Addi-
tionally, we removed samples with more than 5% missing 
genotypes. Finally, 5,436,098 SNPs and all samples were 
retained.

MethQTL analysis
We employed MAGAR  on an HPC cluster to compute 
methQTLs for each of the tissues/cell types of the discov-
ery data set independently (Fig. 3B). Notably, we used sex 
(categorical), age (continuous), BMI (continuous), smok-
ing state (categorical), alcohol intake (categorical), ethnic-
ity (categorical), and the first two principal components 
(continuous) computed on the genotype data as covari-
ates in the analysis. MAGAR  returns a table of methQTL 
summary statistics (i.e., slope of the regression, standard 
deviation of the estimate, P-value), which can be further 
filtered according to a P-value cutoff. Throughout this 
analysis, we termed methQTLs significant, if they have a 
P-value below a genome-wide Bonferroni-adjusted cut-
off of 8.65 ×  10–11 in the summary statistics returned by 
MAGAR . We computed the P-value cutoff as follows: we 
identified 82,271, 69,219, 75,779, and 76,109 correlation 
blocks for T cells, B cells, ileum, and rectum samples, 
respectively. On average, each CpG was tested for asso-
ciation with 1905 SNPs, which results in:

For each CpG that was affected by more than one 
methQTL, we selected the SNP with the lowest P-value 
as the lead-SNP.

Determining tissue‑specific methQTLs
To determine whether the effects observed in the four 
tissues independently were shared across the differ-
ent samples, we employed colocalization analysis. More 
specifically, we used Summary-data-based Mendelian 
Randomization (SMR) and Heterogeneity in Dependent 
Instruments (HEIDI) analysis [39] implemented in the 
GWAS-MAP software tool. Briefly, SMR is a statistical 
test that indicates whether two traits (here CpG meth-
ylation states in two tissues) are significantly associated 
with the same genetic locus. The test is an extension of 
Mendelian Randomization (MR), which is used to test 
for a causal relationship between two traits using an 
instrumental variable. While classical MR requires that 
the two traits are measured on the same samples, these 
can be investigated in distinct samples or studies using 
SMR. The input to the SMR test are methQTL statistics 
(i.e., P-values, slopes of the regression line) obtained in 
two scenarios, and it returns a test statistic that indicates 
whether the effect observed in the two scenarios is signif-
icantly associated with the same SNP. Thus, SMR analysis 
determines whether the same genetic effect leads to the 
methQTL results that we obtained in the two tissues, but 
cannot discern pleiotropy (the same SNP influences two 
traits) from linkage (two highly correlated SNPs influence 

0.05

(82,271+ 69,219+ 75,779+ 76,109)× 1905
= 8.65× 10

−11
.
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the traits independently). Thus, for the SNPs that pass the 
SMR test, we employed the HEIDI test in a second step 
to test whether the observed effects are likely driven by 
pleiotropy. Briefly, the HEIDI test utilizes linkage (cor-
relation) information of SNPs from a reference panel to 
determine whether the observed heterogeneity in the 
methQTL statistics is more likely caused by linkage than 
by pleiotropy. By using colocalization analysis through 
SMR and HEIDI, we were able to determine whether the 
methQTLs identified in the four tissues/cell types inde-
pendently were shared or tissue-specific. We employed 
colocalization analysis for all pairs of tissues/cell types to 
determine shared methQTLs (Fig. 3B).

We selected those CpGs for colocalization analysis, 
which were selected as tag-CpGs in at least two tissues 
and that had a significant association with a lead-SNP 
(P-value below 8.65 ×  10–11) at least in one tissue. Then, 
anchoring the analysis on the tissue showing the signifi-
cant association, we performed the SMR test to detect if 
the same lead-SNP is associated with the same CpG in 
any of the other tissues. In case the same lead-SNP was 
identified in more than one tissue, the tissue/cell type 
with the lowest P-value was used as the starting point of 
the SMR analysis. In total, we performed 4253 SMR tests. 
The SMR P-values were adjusted for multiple testing 
using the Benjamini–Hochberg [64] method and we used 
a P-value cutoff of 0.05. In case the methQTLs measured 
in two tissues are significant according to the SMR test, 
this is an indication that the CpG methylation states are 
significantly correlated with the same SNP in the two 
tissues. Thus, we use the P-value of the SMR test as an 
indication of the shared effect of methQTLs in the two 
tissues.

For CpGs that passed the SMR test, we applied the 
HEIDI test to discern pleiotropy from linkage. We defined 
all those pairs of methQTLs with a P-value higher than 
0.05 as pleiotropic interactions. The results for a differ-
ent P-value cutoff (0.001) are shown in Additional file 4: 
Table  S3. The methQTLs that had an SMR test P-value 
below the cutoff and had a HEIDI test P-value higher 
than the threshold were defined as shared across the two 
tissues. The methQTLs shared across all pairwise com-
parisons according to the colocalization analysis were 
termed shared methQTLs. Additionally, those shared 
methQTLs with a methQTL P-value below 8.65 ×  10–11 
in all tissues were termed common methQTLs.

The methQTLs that either fail the SMR test or that pass 
the SMR test, but also pass the HEIDI test were defined 
as tissue-specific methQTLs (Additional file 4: Table S3). 
Tissue-specificity was defined for each tissue individu-
ally. Finally, three classes of methQTLs were defined: 
tissue-specific, shared, and common methQTLs. SMR 
and HEIDI analysis was performed using GWAS-MAP 

(https:// www. polyk nomics. com/ solut ions/ gwas- map- 
bioma rker- and- inter venti on- target- disco very- platf orm).

Characterizing tissue‑specific and common methQTLs
We merged the methQTLs from the four tissues and 
compared the effect sizes, P-values, and the distance 
between the CpG and SNP of the tissue-specific with the 
methQTLs shared across the tissues. Additionally, we 
selected different functional annotations of the genome, 
such as Ensembl genes (version 75), associated promoter 
regions (defined as 1.5  kb upstream and 0.5  kb down-
stream of the TSS), and different functional categories 
according to the Ensembl regulatory build [43]. Then, we 
overlapped the shared/tissue-specific methQTLs with 
those annotations using the GenomicRanges [65] R-pack-
age and computed odds ratios and (one-sided) Fisher 
exact test P-values to investigate enrichment towards the 
functional annotations in comparison to all identified 
methQTLs. Last, we used the LOLA tool [44] to compute 
enrichments towards various additional functional anno-
tations from databases such as Cistrome [66], CODEX 
[67], or ENCODE [68]. In contrast to the annotation 
enrichment analysis, we performed LOLA enrichment 
analysis using all CpGs/SNPs that were analyzed as the 
background for the enrichment.

Validation of methQTLs
Validation using independent data sets
For further validation of the methQTLs identified above, 
we used 191 transverse colon and 192 monocyte sam-
ples from the CEDAR cohort assayed using the Infinium 
450k microarray. Genotyping and DNA methylation data 
were processed analogously to the discovery cohort and 
methQTLs were called at the P-value cutoff 9.84 ×  10–6. 
We aimed to replicate the 2508, 696, 1010, and 868 
methQTLs that we identified in the four tissues/cell types 
and thus computed the P-value cutoff as:

We used sex (categorical), age (continuous), BMI (con-
tinuous), smoking (categorical), alcohol intake (categori-
cal), ethnicity (categorical), and the first two principal 
components (continuous) computed on the genotype 
data as covariates. The resulting methQTLs were com-
pared with the common and tissue-specific methQTLs 
detected in the discovery cohort, respectively. Addition-
ally, we obtained methQTL data in tabular form from 
two studies identifying methQTLs in peripheral blood 
[12] and fetal brain samples [38], respectively. The two 
studies identified 52,918 (blood) and 16,811 (fetal brain) 
methQTLs. We only used unique SNPs with a P-value 

0.05

2508+ 696+ 1010+ 868
= 9.84 × 10

−6
.

https://www.polyknomics.com/solutions/gwas-map-biomarker-and-intervention-target-discovery-platform
https://www.polyknomics.com/solutions/gwas-map-biomarker-and-intervention-target-discovery-platform
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lower than 8.65 ×  10–11 to match our criteria. To deter-
mine whether the detected overlap was larger than 
expected by chance, we used Fisher’s exact test using all 
SNPs that have been used as input to the methQTL call-
ing as the background set.

Validation using local deep sequencing
For validation of the common methQTLs at the PON1 
locus, as well as the shared methQTLs at the ZNF155, 
and NRG2 loci, we performed local deep sequencing 
using independent samples from the CEDAR cohort. 
500  ng of genomic DNA were bisulfite converted using 
the EZ-96 DNA methylation Gold Kit (Zymo research, 
Irvine, USA) according to the kit’s manual. PCRs were 
set-up in 30 µl reactions using three µl of 10 × HotStar-
Taq buffer (Qiagen, Hilden Germany), 2.4  µl of 10  mM 
d’NTPs (Fisher Scientific, Pittsburgh, USA), 1.5  µl of 
25  mM  MgCl2 (Qiagen), 0.3  µl each of 10  µM forward 
and reverse primers (Table 1), 0.5 µl of five U/µl HotStar-
Taq Polymerase (Qiagen), two µl of bisulfite converted 
DNA, and 20 µl of aqua bidest. PCRs were performed in 
an ABI Veriti thermo-cycler (Life Technologies, Karls-
bad, USA) using the following program: 95 °C for 15 min, 
40 cycles of 95 °C for 30 s, 1.5 min of 56 °C, and one min 
at 72 °C, followed by five min of 72 °C and hold at 12 °C. 
PCR products were cleaned up using Agencourt AMPure 
XP Beads (Beckman Coulter, Brea, USA) and concentra-
tion was measured. All amplified products were diluted 
to four nM and NGS tags were finalized by a second PCR 
step (five cycles) with primers matching to the NGS-
compatible tags and carrying a sample-specific barcode 
(forward 5′-3′: CAA GCA GAA GAC GGC ATA CGA GAT 
XXXXXXGTG ACT GGA GTT CAG ACG TGT GCT CTT 
CCG ATCT; reverse 5′-3′: AAT GAT ACG GCG ACC ACC 
GAG ATC TACACXXXXXXTCT TTC CCT ACA CGA 

CGC TCT TCC GATC; ‘X’s refer to the sample barcode 
position) followed by a clean-up (AMPure XP). Finally, 
all samples (set to ten nM) were pooled, loaded on an 
Illumina MiSeq sequencing machine and sequenced for 
2 × 300 bp paired-end reads with a MiSeq reagent kit V3 
(Illumina) to ca. 10 k–20 k fold depth.

Quality control of the raw data files was performed 
using the FastQC software (https:// www. bioin forma tics. 
babra ham. ac. uk/ proje cts/ fastqc/). Adaptor trimming and 
filtering for excluding low-quality bases was conducted 
through cutadapt [69] and Trim Galore! (https:// www. 
bioin forma tics. babra ham. ac. uk/ proje cts/ trim_ galore/). 
Paired reads were joined with the FLASh tool [70]. Next, 
reads were sorted in a two-step procedure by (i) the NGS 
barcode adaptors to assign samples to identifiers and (ii) 
the initial 15 bp to assign data to the amplicons. Subse-
quently, the sorted data were input to BiQAnalyzer HT 
[71] using the following settings: ‘analyzed methylation 
context’ was set to “C”, ‘minimal sequence identity’ was 
set to 0.9, and ‘minimal conversion rate’ was set to 0.95. 
The filtered high-quality reads were used to compute 
methylation levels of the respective CpGs. Finally, each 
read was tagged by its base call at the respective SNP 
position in the amplicon (PON1@173, ZNF155@329, 
NRG2@255).
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The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13072- 021- 00415-6.

Additional file 1: Additional text including method descriptions and 
additional figures S1-S10.

Additional file 2: Table S1. MethQTLs identified in the four tissues/cell 
types using MAGAR .

Additional file 3: Table S2: Enrichment P-values according to Fisher’s 
exact test for validation of the identified methQTLs in independent 

Table 1 Details on bisulfite amplicons screened in the study

a Capital letters are NGS-compatible tags
b Absolute methylation change of homozygote minor versus major individuals

Gene locus chr SNP position
ID

PCR primers (5′–3′)a CpG ID MethQTL 
distance 
(bp)

MethQTL  deltab

EPIC, NGS

PON1 7 94,953,895
rs705379

TCT TTC CCT ACA CGA CGC TCT TCC GATCTgattggtggttttt  
  gaagagtgttagtttt
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCTccat 
  aatcaaactactaaatctctctaaaac

cg01874867, cg20119798 164
249

+ 14.9%, + 39.7%

ZNF155 19 44,488,352
rs62116613

TCT TTC CCT ACA CGA CGC TCT TCC GATCTggttgataggt 
  tagaatttataggttt
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCTcacat 
  acttaactcaaaccacctt

cg23456212, cg20451226 182
171

+ 7.8%, + 13.3%

NRG2 5 139,340,779
rs6580323

TCT TTC CCT ACA CGA CGC TCT TCC GATCTtttatgaatttt 
  gaagaagttgttaggt
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCTcacata 
  caaaactaaaacctaaatcc

cg22710094 85 − 5.1%, − 20.1%

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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Page 15 of 17Scherer et al. Epigenetics & Chromatin           (2021) 14:44  

samples (monocytes, transverse colon) and independent studies (blood 
and fetal brain).

Additional file 4: Table S3: Results of the colocalization analysis for differ-
ent P-value cutoffs of the HEIDI test (0.05 and 0.001).

Additional file 5: Table S4: Common methQTLs across the four tissues/
cell types.

Additional file 6: Table S5: Tissue-specific methQTLs for the four tissues/
cell types.

Additional file 7: Table S6: MethQTLs shared across the tissues/cell types 
according to the colocalization analysis. The table comprises 1912 rows 
and we focus on the 1470 unique SNPs in the analysis.

Additional file 8: Table S7: GO enrichment analysis results for the shared 
and tissue-specific methQTLs.
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