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Abstract Childhood and adolescence are critical stages of the human lifespan, in which funda-
mental neural reorganizational processes take place. A substantial body of literature investigated 
accompanying neurophysiological changes, focusing on the most dominant feature of the human 
EEG signal: the alpha oscillation. Recent developments in EEG signal-processing show that conven-
tional measures of alpha power are confounded by various factors and need to be decomposed 
into periodic and aperiodic components, which represent distinct underlying brain mechanisms. 
It is therefore unclear how each part of the signal changes during brain maturation. Using multi-
variate Bayesian generalized linear models, we examined aperiodic and periodic parameters of 
alpha activity in the largest openly available pediatric dataset (N=2529, age 5-22 years) and repli-
cated these findings in a preregistered analysis of an independent validation sample (N=369, age 
6-22 years). First, the welldocumented age-related decrease in total alpha power was replicated. 
However, when controlling for the aperiodic signal component, our findings provided strong 
evidence for an age-related increase in the aperiodic-adjusted alpha power. As reported in previous 
studies, also relative alpha power revealed a maturational increase, yet indicating an underestima-
tion of the underlying relationship between periodic alpha power and brain maturation. The aperi-
odic intercept and slope decreased with increasing age and were highly correlated with total alpha 
power. Consequently, earlier interpretations on age-related changes of total alpha power need to 
be reconsidered, as elimination of active synapses rather links to decreases in the aperiodic inter-
cept. Instead, analyses of diffusion tensor imaging data indicate that the maturational increase in 
aperiodic-adjusted alpha power is related to increased thalamocortical connectivity. Functionally, our 
results suggest that increased thalamic control of cortical alpha power is linked to improved atten-
tional performance during brain maturation.

Editor's evaluation
This is an important paper that is methodologically compelling to investigate changes in α oscilla-
tions with development. The manuscript usefully addresses a timely debate regarding methodolog-
ical limitations when analyzing periodic independently of aperiodic activity.

Introduction
Childhood and adolescence are critical stages of the human lifespan, in which the brain undergoes 
various and complex micro- and macroscopic changes (Giedd et  al., 1999; Lebel et  al., 2008). 
The typical emergence of mental illnesses during childhood and adolescence (Kessler et al., 2005) 
further indicates fundamental maturational reorganization. It is therefore particularly important to 
understand these maturational changes in brain structure and function, which are accompanied by 
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neurophysiological changes. A substantial body of literature has focused on investigating these 
neurophysiological changes with electroencephalography (EEG) (for reviews, see Anderson and 
Perone, 2018; Segalowitz et al., 2010). Cognitive functions such as attention and memory, which 
undergo critical changes during maturation, have frequently been associated with EEG alpha activity 
(Foxe and Snyder, 2011; Klimesch, 1997; Klimesch, 2012; Niedermeyer, 1999). This lead to the 
notion that developmental changes in alpha activity reveals mechanisms of cortical manifestations of 
cognitive function. Indeed, numerous studies have investigated developmental changes in this alpha 
oscillation and reported evidence of an increase in the individual alpha frequency (IAF) at around 
7–14 years of age (Cragg et al., 2011; Díaz de León et al., 1988; Klimesch, 1999; Lindsley, 1939; 
Marcuse et al., 2008; Niedermeyer, 1999; Somsen et al., 1997). However, the evidence is less 
clear about the amplitude of this alpha oscillation, termed alpha power. Absolute power was found 
to decrease with increasing age in some studies (Díaz de León et al., 1988; Gasser et al., 1988; 
Harmony et al., 1995; Lindsley, 1939; Whitford et al., 2007) but not in others (Clarke et al., 2001; 
Somsen et  al., 1997). A potential confound is the utilization of fixed-frequency boundaries (e.g. 
8–13 Hz), which neglects the slowing of the IAF during development. For instance, peak frequency in 
childhood is around 6 Hz but increases to 10 Hz in adolescents. Hence, age-related power decreases 
are underestimated when the slower alpha oscillation of younger children is not properly captured 
by predefined frequency limits, which leads to lower power values. Consequently, individualized 
alpha frequency bands need to be extracted, which are centered on the individual IAF of each 
subject (see also Donoghue et al., 2021 for simulations visualizing confounding effects of the peak 
frequency on band power). In addition, thickening of the skull and other maturational processes that 
are unrelated to changes in neural activity manifest as changes in overall neural power. Thus, they 
pose a crucial confound in interpreting the relationship between alpha power and age. To overcome 
this latter limitation, studies have examined alpha power as relative to the overall power of the 
spectrum, relative alpha power, which has yielded more consistent results indicating an increase 
of alpha power with increasing age (Clarke et al., 2001; Cragg et al., 2011; Díaz de León et al., 
1988; Harmony et al., 1995; John et al., 1980; Somsen et al., 1997). However, relative power 
measures of different frequency bands are by definition highly interdependent, as the frequency 
band of interest is normalized by the power of all the other frequency bands measured (Gómez 
et al., 2017; Somsen et al., 1997). For example, power changes in other frequency bands, such as 
the theta band, manifest as changes in relative alpha power, even though the true oscillatory alpha 
power may remain stable (see Appendix 1—figure 1A). Additionally, non-oscillatory changes in the 
power spectrum introduce confounds in the analysis of relative band power measures (see simulated 
example in Appendix 1—figure 1B). This was previously observed by simulations in previous studies 
showing that non-oscillatory changes affect both relative band power measures Donoghue et al., 
2021 and band power ratio measures (Donoghue et al., 2020a). Therefore, the extent to which 
these earlier works on alpha power and brain maturation are in effect confounded by changes in 
other frequency bands, by non-oscillatory variations, or by a slowing of the IAF remains unclear. To 
address this question, true alpha oscillatory power needs to be separated from other, non-oscillatory 
signal components.

Recent methodological developments have provided a means by which this separation can be 
achieved. These new approaches decompose measured power into periodic and aperiodic signal 
components (see Figure 4; Donoghue et al., 2020b; Hughes et al., 2012a; Wen and Liu, 2016). The 
aperiodic signal (i.e. ‘1/f signal’) is characterized by its intercept and slope, as its amplitude decreases 
with higher frequencies f. The aperiodic signal contains important physiological information (see He, 
2014 for a comprehensive review of the functional significance and potential generative mechanisms 
of aperiodic activity). More specifically, the aperiodic slope has been linked to the synchronicity of 
activity in the underlying neural population (Miller et al., 2009; Usher et al., 1995) and its balance 
between excitatory and inhibitory activity (Gao et al., 2017). Importantly, the aperiodic slope is also 
modulated by task performance and sensory stimulation (e.g. He, 2014). Conversely, the aperiodic 
intercept has been linked to general spiking activity (Voytek and Knight, 2015). Overall, the aperi-
odic signal needs to be considered during the analysis of spectral power rather than measuring power 
relative to the absolute zero (e.g. Donoghue et al., 2020b). Applying this new approach of spectral 
decomposition allows to extract an aperiodic-adjusted measure of alpha power, which is independent 
of oscillatory activity in other frequency bands and changes in overall power and aperiodic activity.

https://doi.org/10.7554/eLife.77571
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Recent studies adopted this methodology and found age-related changes in the aperiodic signal 
(i.e., decreased intercept and flattened slope) during childhood and adolescence (Cellier et al., 2021; 
Hill et  al., 2022) and from childhood to middle age (Donoghue et  al., 2020a; He et  al., 2019). 
These results further pointed out the importance of considering the aperiodic signal in the investi-
gation of alpha power during brain maturation. However, it remains largely unknown how aperiodic-
adjusted alpha power evolves during this critical phase of life. The few studies performed so far 
have not found any significant association between aperiodic-adjusted alpha power during child-
hood and adolescence (Cellier et al., 2021; Hill et al., 2022) and from childhood to middle age (He 
et al., 2019). Due to comparatively small sample sizes in these studies, it remains unclear whether the 
aperiodic-adjusted alpha power truly remains stable in this period of life or whether too little statistical 
power was provided to detect changes in this newly emerging measure of alpha power. Furthermore, 
conventional measures of total and relative alpha power were either not reported (Cellier et al., 2021; 
Hill et al., 2022), or did not show any relation to age (He et al., 2019). Hence, comparisons and inte-
gration of these results with the large body of literature investigating maturational changes in total 
and relative alpha power remain limited.

To overcome limitations of previous studies, we analyzed the currently largest openly available 
pediatric EEG data set (N=2529), comprising children adolescents and young adults aged between 
5 and 22 years (Alexander et al., 2017) and validated the results in a second, preregistered analysis 
(https://osf.io/7uwy2) of a dataset consisting of 369 children, adolescents, and young adults aged 
between 6 and 22 years.

Based on animal studies investigating cortical and subcortical neural generators of alpha activity 
in adult animals (Bishop, 1936; Lopes da Silva, 1991; Steriade et al., 1990), it is generally assumed 
that the thalamus and thalamocortical interactions strongly modulate cortical alpha activity. It can thus 
be hypothesized that changes in the alpha oscillation in the maturing brain are driven by structural 
changes of the thalamus and thalamocortical connectivity. However, to the best of our knowledge, no 
study investigated the relationship between anatomical maturation of the thalamus and its connec-
tivity and alpha oscillatory power during childhood and adolescence. To close this gap, we further 
examined how thalamic structural changes relate to the observed changes in the different measures 
of alpha power. We employed magnet resonance images (MRI) to operationalize changes in the thal-
amus in terms of thalamic volume, and diffusion tensor imaging (DTI) to estimate thalamocortical 
connectivity by white matter integrity of the thalamic radiation. This was done in a subsample of the 
larger main dataset, for which magnet resonance images (MRI) and diffusion tensor imaging (DTI) data 
were additionally available.

Taken together, the present study aims to delineate the role of alpha oscillations during brain 
maturation by investigating conventional and newly emerging alpha oscillatory parameters, aperiodic 
signal components (see Table 7) and its underlying anatomical basis in a large sample of children, 
adolescents and young adults. Our first goal is to replicate previous literature that reported an age-
related increase of the IAF, increased relative alpha power and decreased total alpha power during 
brain maturation. However, we hypothesize that the relation of alpha band power and brain matura-
tion is no longer present when adjusting alpha power for the aperiodic signal component and for the 
age-related increase of the IAF. Additionally, based on previous literature we expect a decrease in 
the aperiodic intercept and a flattening of the aperiodic slope during brain maturation. Finally, as the 
aperiodic-adjusted individualized alpha power is unbiased by changes in other frequency bands and 
the aperiodic signal component, and therefore is likely to provide the most accurate reflection of the 
true oscillatory activity, we hypothesize that this measure shows a significant association with thalamic 
anatomical measures.

Results
Main analysis
The relation of age to the various parameters estimated in the Bayesian regression model are shown 
in Figure 1.

The Bayesian regression model provided significant evidence for a reduction of total individualized 
alpha power during brain maturation (b=–0.31, CI = [-0.38,–0.24]). In contrast, a significant increase 
with increasing age was observed for aperiodic-adjusted alpha power (b=0.23, CI = [0.16, 0.30]). 

https://doi.org/10.7554/eLife.77571
https://osf.io/7uwy2
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Relative alpha power also showed a significant increase with increasing age (b=0.14, CI = [0.06, 0.22]). 
The model further provided significant evidence for an age-related decrease in both the aperiodic 
slope (b=–0.44, CI = [-0.51,–0.38]) and the aperiodic intercept (b=–0.54, CI = [-0.61,–0.48]). Females 
showed overall less power in total, relative, and aperiodic-adjusted individualized alpha and a lower 
aperiodic intercept in slope. The statistical models controlled for the heterogeneity of the full sample 
by adding a categorical diagnosis variable. The categorical diagnosis predictor did not show any 
significant effect on any of the outcomes. Table 1 summarizes the results of the Bayesian regression 
model. A control analysis, in which we divided the ADHD diagnosis into two sub diagnoses of inat-
tentive type and combined type, did not change any results (see Supplementary file 2). Most impor-
tantly, a control analysis including only the subsample without any given diagnosis, showed results 
highly consistent with those of the full sample (see Figure 1—figure supplement 2 and Supplemen-
tary file 2A).

Analyses of canonically defined alpha power measures demonstrated a significant negative 
age effect on total canonical alpha power (b=–0.10, CI = [-0.17,–0.12]). Its effect size was signifi-
cantly smaller than that of the age effect on total individualized alpha power (CI is non-overlapping: 

Figure 1. Visualization of data of the main HBN sample used in the Bayesian regression model. Solid lines represent fitted regression lines. The 
schematic head on the right indicates the location of the electrode cluster from which data was aggregated. The results revealed a decrease in total 
individualized alpha power with increasing age. Importantly, this relationship inverts when individualized alpha power is adjusted for the aperiodic 
signal, which then shows an age-related increase in power. Furthermore, relative individualized alpha power exhibits a positive relationship to brain 
maturation. An age-related increase of the IAF and a decrease of the aperiodic intercept and slope are also indicated (bottom row).

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure supplement 1. Distribution of age and gender in the final included sample plotted in Figure 1 and used for the statistical analyses.

Figure supplement 2. Visualization of data of the HBN subsample without any given diagnosis used in the Bayesian regression models.

Source data 1. Numerical data for each scatterplot displayed in Figure 1.

https://doi.org/10.7554/eLife.77571
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[-0.38,–0.24]). Relative and aperiodic-adjusted canonical alpha power showed consistent significant 
age-related increases. See Supplementary file 2C for detailed results on canonical alpha power.

Figure 2 illustrates the age-related changes in the PSD during brain maturation. For visualization 
purposes, and in contrast to the statistical model, which used a continuous age variable, the grand 
averages for the youngest 20% (5.04–7.75  years) and oldest 20% (13.68–21.90  years) participants 
were plotted across the parieto-occipital electrodes. Figure 2A indicates an age-related decrease 
in alpha power in the total power spectrum, caused by lower total power values in young adults in 
the lower frequency range of the alpha band (here ~7–10 Hz). Figure 2B visualizes the altered group 
differences when adjusting the power spectrum for the aperiodic signal. Here, an increase is observed 

Table 1. Bayesian regression model results of full sample with categorical diagnosis predictor.

Outcome

βpredictor [CI]

age gender diagnosis: ADHD diagnosis: Other age*gender

alpha peak frequency 0.42 [0.34 0.49] –0.08 [–0.15 –0.02] –0.09 [–0.19 0.01] –0.07 [–0.17 0.04] –0.04 [–0.15 0.08]

total individualized alpha power –0.31 [–0.38 –0.24] –0.37 [–0.43 –0.31] 0.01 [–0.09 0.10] 0.01 [–0.09 0.12] 0.13 [0.01 0.25]

Relative individualized alpha power 0.14 [0.06 0.22] –0.35 [–0.41 –0.28] –0.01 [–0.11 0.10] 0.01 [–0.10 0.12] –0.05 [–0.17 0.07]

aperiodic-adjusted individualized 
alpha power 0.23 [0.16 0.30] –0.39 [–0.45 –0.33] –0.04 [–0.14 0.05] –0.02 [–0.13 0.08] –0.06 [–0.17 0.06]

aperiodic intercept –0.54 [–0.61 –0.48] –0.37 [–0.42 –0.32] –0.02 [–0.10 0.07] –0.02 [–0.10 0.08] 0.08 [–0.02 0.19]

aperiodic slope –0.44 [–0.51 –0.38] –0.39 [–0.44 –0.33] –0.04 [–0.12 0.05] –0.03 [–0.12 0.06] –0.05 [–0.15 0.06]

Note: Credible Interval (CI)=99.17%.

The online version of this article includes the following source data for table 1:

Source data 1. Numerical values of the statistical values displayed in Table 1.

Figure 2. Visualization of age-related changes during brain maturation in (A) the measured power spectrum (i.e., 
total power spectrum), (B) the periodic (i.e. aperiodic-adjusted) power spectrum, and (C) the aperiodic signal. 
Younger children represent the 20% youngest children in the sample, young adults the 20% oldest participants. 
This split of the sample was only done for visualization purposes and not used in any statistical analysis.

The online version of this article includes the following source data for figure 2:

Source data 1. Numerical averaged data of the periodic and aperiodic signal of both age groups.

https://doi.org/10.7554/eLife.77571
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in aperiodic-adjusted alpha power. The periodic signal shows a decreased intercept and flattened 
slope in age (Figure 2C).

To investigate the inherent associations between the different measures of alpha power and aperi-
odic activity, we further conducted a post hoc correlational analysis. This analysis aimed to illumi-
nate the differences and similarities between the three measures of alpha power and the potential 
confounding effects of the aperiodic signal. The two aperiodic indices, intercept and slope, were 
highly interlinked, and both exhibited high correlations with total individualized alpha power. At the 
same time, both aperiodic-adjusted and relative individualized alpha power indicated a considerably 
weaker association with the aperiodic indices. Furthermore, whereas relative and aperiodic-adjusted 
alpha power were highly related, this association was weaker between relative and total alpha power 
and aperiodic-adjusted and total alpha power. Table  2 summarizes the result of the correlational 
analysis.

Validation analyses
Results of the validation analyses were mostly consistent with those obtained from the main HBN 
sample. In terms of age effects, all results were replicated; however, the age-related decrease of 
relative individualized alpha power failed to reach significance. Here, neither gender nor the ADHD 
diagnosis showed any significant effect on the outcome measures. Table 3 summarizes the results of 
the statistical models using uninformative Cauchy priors.

Figure 3 visualizes age trajectories of the outcome measures in the full validation subsample.
Importantly, the control analysis, which included only the healthy subsample, showed results highly 

consistent with those of the full sample (see Figure 3—figure supplement 2 and Supplementary file 
3A).

As an additional analysis, we applied Bayesian sequential updating to accumulate evidence across 
the different datasets. This procedure allows to increase statistical power and to produce more 

Table 2. Pearson correlation coefficients between the measures of alpha power, aperiodic intercept and slope and age.

Total 
individualized 
alpha power

Relative individualized 
alpha power

Aperiodic-adjusted 
individualized alpha 
power Aperiodic intercept Aperiodic slope

Total individualized alpha power 0.66 0.64 0.84 0.64

Relative individualized alpha power 0.88 0.34 0.35

Aperiodic- adjusted individualized 
alpha power 0.34 0.36

Aperiodic intercept 0.89

The online version of this article includes the following source data for table 2:

Source data 1. Numerical values of the correlations displayed in Table 2.

Table 3. Bayesian regression model results of the full validation sample with categorical ADHD predictor.

Outcome

βpredictor [CI]

Age Gender ADHD diagnosis Age*gender

Alpha peak frequency 0.34 [0.15 0.53] –0.05 [–0.21 0.11] –0.04 [–0.20 0.12] 0.04 [–0.25 0.33]

Total individualized alpha power –0.44 [–0.61 –0.27] –0.05 [–0.19 0.11] 0.04 [–0.11 0.19] –0.07 [–0.33 0.30]

Relative individualized alpha power 0.20 [0.00 0.39] 0.05 [–0.12 0.22] –0.02 [–0.18 0.15] –0.10 [–0.40 0.20]

Aperiodic-adjusted individualized alpha power 0.33 [0.14 0.52] –0.02 [–0.18 0.13] –0.04 [–0.21 0.12] –0.06 [–0.35 0.24]

Aperiodic intercept –0.76 [–0.88 –0.65] –0.10 [–0.19 0.00] 0.00 [–0.10 0.09] –0.07 [–0.25 0.11]

Aperiodic slope –0.60 [–0.77 –0.45] –0.08 [–0.21 0.05] –0.06 [–0.19 0.06] –0.13 [–0.36 0.10]

Note: CI = 98.97% Credible Interval, gender variable is dummy coded: 1=female, 0=male.

The online version of this article includes the following source data for table 3:

Source data 1. Numerical values of the statistical values displayed in Table 3.

https://doi.org/10.7554/eLife.77571
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generalizable research outcome, which is less specific to each of the investigated samples. Therefore, 
informative priors extracted from the statistical results of the main sample were applied. Age effects 
on the six outcome variables in this analysis showed evidence consistent with the results obtained 
from the separate data sets. Gender showed significant effects on the three measures of alpha power 
and the aperiodic signal components here, although no gender effects were observable in the vali-
dation analyses using uninformative Cauchy priors. Because of the large difference between sample 
sizes (Nmain = 1770, Nvalidation = 310), the extracted priors had a strong influence on the results; thus, it 
remains unclear how these gender effects generalize to other datasets. Clinical diagnosis of ADHD 
did not show any significant influence in the main and the validation analysis, however, in this analysis 
combining evidence across the two dataset, there was a significant negative relationship between 
ADHD diagnosis and aperiodic-adjusted alpha power, but not with total or relative alpha power. See 
Supplementary file 3B for detailed results.

Relation of alpha power and the aperiodic signal to anatomical thalamic 
measures
Table 4 summarizes the results of the analysis on the relation of white matter integrity of the left/
right thalamic radiation (derived from DTI data), thalamus volume and total intracranial volume (both 
extracted from and T1-weighted MRI data) with the different measures of alpha power and aperiodic 

Figure 3. Visualization of data of the validation sample used in the Bayesian regression model. Solid lines represent fitted regression lines. The 
schematic head on the right indicates the location of the electrode cluster from which data was aggregated.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Figure supplement 1. Distribution of age and gender in the final included validation sample plotted in Figure 3 and used for the statistical analyses.

Figure supplement 2. Visualization of data of the healthy validation subsample used in the Bayesian regression models.

Source data 1. Numerical data for each scatterplot displayed in Figure 3.

https://doi.org/10.7554/eLife.77571
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activity. No relation was observed between thalamus volume and any outcome variable. Both the left 
and right thalamic radiation showed significant associations with aperiodic-adjusted individualized 
alpha power, which did not reach significance level with total individualized alpha power. Relative 
alpha power showed similar results to those observed with aperiodic-adjusted alpha power. No signif-
icant associations were found between the aperiodic intercept and slope and the thalamic radiations.

Relation to Flanker task scores
Post hoc analyses were performed to investigate the relation between the different measures of alpha 
power and performance in a visual spatial attention task: the Flanker task of the National Institutes 
of Health Toolbox Cognition Battery (Gershon et  al., 2013). Both relative and aperiodic-adjusted 
individualized alpha power showed a significant positive association with task performance while the 
effects of age and gender were controlled for. The effect of Flanker task performance on total alpha 
power showed a considerably smaller effect size (standardized β dropped by a factor of 1.7 compared 
to aperiodic-adjusted alpha power) and failed to reach significance level when adjusting for multiple 
comparisons. Table 5 summarizes the results of the linear models.

Table 4. Summary table of the Bayesian regression model results on the influence of anatomical thalamic measures on the three 
different measures of alpha power (total, relative and aperiodic-adjusted) and on aperiodic signal components.

Outcome

βpredictor [CI]

Left thalamic 
radiation

Right thalamic 
radiation Thalamus volume

Total intracranial 
volume Age Gender

Total 
individualized 
alpha power 0.06 [–0.02 0.14] 0.07 [–0.01 0.15] 0.03 [–0.23 0.29] –0.01 [–0.14 0.13] –0.23 [–0.31 –0.15] –0.35 [–0.43 –0.27]

Aperiodic-
adjusted 
individualized 
alpha power 0.15 [0.07 0.23] 0.15 [0.07 0.23] 0.07 [–0.19 0.33] –0.04 [–0.18 0.10] 0.22 [0.14 0.30] –0.39 [–0.47 –0.31]

Relative alpha 
power 0.11 [0.04 0.20] 0.14 [ 0.06 0.22] 0.00 [–0.27 0.27] –0.01 [–0.15 0.13] 0.14 [0.07 0.22] –0.35 [–0.43 –0.27]

Aperiodic 
intercept 0.04 [–0.04 0.10] 0.02 [–0.05 0.09] –0.01 [–0.24 0.23] 0.03 [–0.09 0.15] –0.51 [–0.58 –0.44] –0.35 [–0.42 –0.28]

Aperiodic slope 0.07 [0.00 0.14] 0.03 [ –0.03 0.11] –0.11 [–0.34 0.13] –0.03 [–0.13 0.17] –0.48 [–0.55 –0.41] –0.39 [–0.45 –0.31]

Note: CI = 98.52% Credible interval, gender variable is dummy coded: 1=female, 0=male. Credible intervals and β estimates of the covariates (total 
intracranial volume, age, and gender) showed minor deviations across the three models (see 4.4.3, models 4, 5 & 6), due to non-deterministic sampling 
in the Bayesian model estimation. Therefore, here they were averaged across the three models.

The online version of this article includes the following source data for table 4:

Source data 1. Numerical values of the statistical values displayed in Table 4.

Table 5. Linear models determining the influence of Flanker total task scores on total, relative, and aperiodic-adjusted individualized 
alpha power.

Outcome

standardized βpredictor (standard error)

Flanker total score Age Gender

Aperiodic-adjusted individualized alpha power 0.073 (0.022), p=0.001 0.23 (0.022), p<0.001 –0.75 (0.045), p<0.001

Total individualized alpha power 0.044 (0.022), p=0.046 –0.23 (0.022), p<0.001 –0.74 (0.045), p<0.001

Relative individualized alpha power 0.068 (0.023), p=0.002 0.14 (0.023), p<0.001 –0.68 (0.047), p<0.001

Adjusted significance level: P=0.0264.

The online version of this article includes the following source data for table 5:

Source data 1. Numerical values of the statistical values displayed in Table 5.

https://doi.org/10.7554/eLife.77571
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Discussion
This study investigated the role of alpha oscillations during brain maturation. Our results replicated 
the well-documented finding of an increasing IAF in this developmental phase of life from childhood 
to adolescence. The main aim of the study was to delineate the developmental trajectory of the power 
of the alpha oscillation by considering changes in the individual alpha frequency and aperiodic signal 
components in a large sample size. A significant decrease of total individualized alpha power was 
observed with increasing age across samples. However, when correcting for the aperiodic signal, the 
results changed considerably. The aperiodic-adjusted individualized alpha power increased signifi-
cantly from childhood to adolescence, which is consistent with the results obtained from relative 
alpha power in the present study and in previous literature (Clarke et al., 2001; Cragg et al., 2011; 
Díaz de León et al., 1988; Harmony et al., 1995; John et al., 1980; Somsen et al., 1997). The 
aperiodic signal showed a decreased intercept during brain maturation and a flattened slope. Results 
were largely consistent across the subsample of the HBN dataset without any given diagnosis, the full 
HBN dataset, and the validation analyses. However, in the validation dataset and the HBN subsample 
without any given diagnoses, aperiodic-adjusted but not relative alpha power showed significant age-
related increases, indicating a risk of false-negative results when investigating relative alpha power in 
brain maturation. The covariates of psychiatric diagnoses did not show any significant influences on 
oscillatory alpha or aperiodic signal parameters in the two datasets. Only in the Bayesian sequential 
updating analysis, combining both datasets, ADHD was associated with decreased aperiodic-adjusted 
alpha power. Future research is needed to investigate possible relations between psychiatric diseases 
and periodic and aperiodic EEG signal components in more detail, which is beyond the scope of the 
present report. Gender effects on alpha power and aperiodic signal components were found in the 
HBN dataset; however, these effects did not generalize on the validation sample. Importantly, when 
relating alpha power measures to anatomical measures derived from DTI, only aperiodic-adjusted and 
relative alpha power showed a significant relation to the white matter integrity of the thalamic radia-
tions, but total alpha power did not.

Age related changes in IAF and total canonical alpha power
The often-replicated increase of IAF from childhood to adolescence was also observed here. Higher 
IAF was previously linked to better sensorimotor abilities (Mierau et al., 2016) and increased memory 
performance (Klimesch, 1999). It was hypothesized that the mechanism underlying the increased 
memory performance is an increase in the speed of information processing, which was directly linked 
to the IAF by various studies investigating reaction time paradigms (Jin et al., 2006; e.g. Klimesch 
et al., 1996; Surwillo, 1961; Surwillo, 1961). This matches the findings of generally increased speed 
of information processing from childhood to adolescence (Kail, 2000). Thus, the increasing IAF 
observed during brain maturation may represent the neurophysiological correlate of increased speed 
of information processing. It has further been hypothesized that this is related to developmental 
increases in myelination and axon size (Cragg et al., 2011; Segalowitz et al., 2010).

In terms of alpha power analyses, the IAF increase induces a bias when alpha power is investigated 
with the canonical fixed-frequency bands, as was predominantly done in earlier investigations Clarke 
et al., 2001; Díaz de León et al., 1988; Gasser et al., 1988; Harmony et al., 1995; Klimesch, 2012; 
Somsen et al., 1997; Whitford et al., 2007. Although some of these studies, Díaz de León et al., 
1988; Gasser et  al., 1988; Harmony et  al., 1995; Whitford et  al., 2007, found an age-related 
decrease in this total canonical alpha power measure, the present study only demonstrated a signif-
icant relationship between canonical alpha power and age in the large samples consisting of both 
healthy children, adolescents and young adults and those diagnosed with ADHD or other psychiatric 
disorders. In contrast, the age effect on the alpha power adjusted for changes in IAF (i.e. total individ-
ualized alpha power) was significant across all datasets. It showed an effect size three times larger than 
that of the total canonical alpha power. Thus, the developmental decrease on total alpha power may 
be underestimated when using canonical frequency bands. This is because the slower alpha oscillation 
of younger children is not properly captured by predefined band limits and thus yields a lower alpha 
power value. Thus, we highly recommend refraining from using canonical fixed-frequency bands when 
investigating age-related changes in alpha power.

Even after accounting for the age-related changes in IAF, interpreting changes in total individual-
ized alpha power still remains problematic. As noted earlier (e.g. Benninger et al., 1984; John et al., 
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1980; Matthis et al., 1980), a relative alpha power measure should be preferred over total alpha 
power, as the latter is more dependent on non-neurophysiological changes such as skull thickness and 
skin conductivity and is consequently less reliable (John et al., 1980).

Relative vs. aperiodic-adjusted individualized alpha power
Relative individualized alpha power exhibited a positive relation to age in the full HBN sample, in 
contrast to the decrease in total individualized alpha power relative to the developmental trajectory. 
Thus, when overall changes in the power spectrum are taken into account, alpha power increased 
with increasing age. However, normalizing alpha power by the power of all the other frequency bands 
measured poses problems for the interpretation of results. Post hoc simulations indicate that changes 
in power in other frequency bands (see Appendix 1—figure 1A) induce changes in relative alpha 
power even when true oscillatory alpha power is kept constant. Furthermore, changes in the aperi-
odic signal induce a confound in the relative alpha power measure (see Appendix 1—figure 1B). This 
is further supported by simulations performed by Donoghue et al., 2020a and Donoghue et al., 
2021. Consequently, the increase in relative alpha power observed with increasing age needs to be 
interpreted with caution, as changes in other frequency bands and in the aperiodic signal can poten-
tially bias this finding. Our study confirmed an age-related decrease of the aperiodic intercept and a 
flattening of the aperiodic slope. Hence, because these changes in the aperiodic signal could induce 
changes in relative alpha power even though the true oscillatory pattern remains stable, this relative 
measure is no conclusive indicator of a true age-related increase in alpha power.

Nonetheless, the present findings on the empirical data demonstrated that both aperiodic-
adjusted alpha power and relative alpha power show similar results with respect to a maturational 
increase. Thus, our results are in line with previous findings reporting age-related increases in rela-
tive alpha power (Clarke et al., 2001; Cragg et al., 2011; Díaz de León et al., 1988; Harmony 
et al., 1995; John et al., 1980; Somsen et al., 1997). Additionally, the analyses relating alpha power 
measures to possible neuroanatomical (thalamocortical connectivity) and behavioral (visual attention 
task performance) correlates yielded very similar significant positive associations with both relative 
and aperiodic-adjusted alpha power. Supplementary, post hoc correlational analyses (see Table 2) 
showed highly comparable associations between the aperiodic signal components with relative alpha 
power (aperiodic intercept: r=0.34, aperiodic slope: r=0.35) and with aperiodic-adjusted alpha power 
(aperiodic intercept: r=0.34, aperiodic slope: r=0.36), hence indicating no distinct confounding effects 
of either the aperiodic intercept or slope on relative alpha power. Moreover, these analyses showed 
a high correlation (r=0.88) between aperiodic-adjusted and relative alpha power. However, this also 
indicated still considerable residual unexplained variance (22.6%) between these two measures of 
alpha power. In fact, Bayesian regression model results demonstrated that maturational changes are 
underestimated when investigating relative alpha power (b=0.14) compared to aperiodic-adjusted 
alpha power (b=0.23), which is also reflected in post hoc performed correlational analyses between 
age and the two measures of alpha power (r relative alpha power = 0.11, r aperiodic-adjusted alpha power = 0.21). Impor-
tantly, the aperiodic-adjusted individualized alpha power showed consistent significant age-related 
increases in the main HBN sample, the HBN subsample of children without any given diagnosis, and 
the validation dataset. Conversely, the relative individualized alpha power only showed a significant 
association with age in the largest main HBN sample. Therefore, our results indicate that there is a risk 
of false negative results when investigating relative alpha power changes from childhood to young 
adulthood in sample sizes commonly used in neurophysiological studies. Hence, the developmental 
increase on periodic alpha power may be underestimated when using relative alpha power indices, 
which might be explained by a potential confounding bias of the aperiodic signal components and 
power in other frequency bands on the relative alpha power (see supplementary simulation studies in 
Appendix 1). Overall, aperiodic-adjusted alpha power should be preferred over relative alpha power 
when analyzing developmental trajectories during brain maturation.

Age-related increase in aperiodic-adjusted individualized alpha power
A significant increase in aperiodic-adjusted individualized alpha power with increasing age was 
observed across samples. As discussed above, this measure of alpha power most likely reflects the 
true oscillatory changes in this phase of life, because its extraction is independent of changes in 
the aperiodic signal and other frequency bands. The separation of periodic and aperiodic activity 
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minimizes confounding factors such as the observed maturational decreases in overall power (i.e. in 
the aperiodic intercept) or the maturational flattening of the aperiodic slope, which are inseparable 
in conventional measures of alpha power. This is further supported by post hoc correlational analyses 
(see Table 2). High correlations were observed between total alpha power and the aperiodic intercept 
(r=0.83) and the aperiodic slope (r=0.63), which were considerably smaller in aperiodic-adjusted alpha 
power (aperiodic intercept: r=0.33, aperiodic slope: r=0.35). Thus, compared to aperiodic-adjusted 
alpha power, findings on age-related decreases in total alpha power are likely to be much more 
strongly driven by changes in the aperiodic signal, in particular by the decrease observed in the aperi-
odic intercept. Consequently, one could interpret that changes in total alpha power reflect changes 
in the aperiodic signal rather than periodic alpha power. Although other recent studies using smaller 
sample sizes and varying age ranges did not find an association of aperiodic-adjusted alpha power 
and brain maturation (Cellier et  al., 2021; He et  al., 2019; Hill et  al., 2022), the present study 
provides strong evidence for an age-related increase across two large datasets.

Previous studies on age-related changes of alpha power during brain maturation speculated that 
decreased total oscillatory power may be due to synaptic pruning processes (e.g. Cragg et al., 2011) 
and thus reflect decreased spiking activity. The increase in aperiodic-adjusted alpha power provides 
new insights into these interpretations: Decomposing the neural power spectra rather indicates that 
these processes relate to changes in the aperiodic signals intercept (see discussion section ‘Matu-
rational changes in aperiodic signal components’). Another speculative hypothesis was that the 
observed developmental changes in the alpha band reflect structural changes in the thalamus and 
thalamocortical connectivity (Cragg et al., 2011; Whitford et al., 2007). However, this specific link 
was not formally investigated, but was based on early work on animal models, which explored adult 
cortical and subcortical neural generators of alpha activity. These models suggested that, in the adult 
animal brain, interacting thalamocortical loops may primarily be involved in the generation of the 
alpha rhythm (Bishop, 1936). Subsequent animal studies provided further evidence that the neural 
generators of alpha oscillations may be the occipital cortex, under strong guidance of the visual thal-
amus (Lopes da Silva, 1991; Lopes da Silva et al., 1973). So far, to the best of our knowledge, no 
studies were conducted to investigate if human maturational changes in the different measures of 
alpha power relate to anatomical changes in the thalamus and its connectivity. To close this missing 
link, we tested whether the resting-state alpha oscillatory power measures extracted here are related 
to anatomical measures of thalamic volume and thalamocortical connectivity, here measured by white 
matter integrity of the thalamic radiation. A significant positive relationship between white matter 
integrity of the thalamic radiation and aperiodic-adjusted individualized alpha power was observed. 
Thus, the current study provides evidence that the increase in aperiodic-adjusted alpha power (and 
relative alpha power) during brain maturation is related to increases in thalamocortical connectivity. 
The statistical models also indicated that this relation is not purely based on co-maturation of alpha 
power and structural connectivity, because significant relations were found between these measures 
after controlling for effects of age and the total intracranial volume. Total alpha power did not show 
any significant relation to these anatomical measures; hence, it is further indicated that this measure 
of alpha power is confounded by aperiodic signal components or non-neurophysiological changes 
during brain maturation. After age and total intracranial volume were controlled for, no association 
was found between thalamic volume and any of the alpha power measures. It could therefore be 
speculatively hypothesized that changes in cortical alpha oscillations are not related to anatomical 
changes in the thalamus. Instead, the increases observed in alpha power may relate to improved 
connectivity between the neural generators in the thalamus and cortical neural populations.

Alterations in thalamocortical connectivity have been positively linked to attention and working 
memory performance in aging (Charlton et al., 2010; Hughes et al., 2012b; Ystad et al., 2011) 
and infancy (Alcauter et  al., 2014; Ball et  al., 2015). Importantly, these cognitive functions have 
typically also been associated with the amplitude of alpha oscillation (Bazanova and Vernon, 2014; 
Foxe and Snyder, 2011; Klimesch, 1997; Klimesch, 1999; Klimesch, 2012) and are well known to 
improve during brain maturation. Furthermore, a highly influential simultaneous EEG and fMRI study 
(Laufs et al., 2003) hypothesized, based on correlations between cortical EEG and the blood oxygen 
level-dependent (BOLD) signal in frontoparietal regions, that adult resting state alpha power is linked 
to internally focused attention. These findings indicate that maturational increases of thalamic regu-
lation of cortical alpha power may relate to improvements in attentional performance. In fact, post 
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hoc analyses supported this hypothesis by providing evidence that oscillatory alpha power is linked to 
performance in visual attention tasks, assessed by performance in the Flanker task. While age, gender, 
and handedness were controlled for, relative and aperiodic-adjusted individualized alpha power 
showed significant positive relations to the attentional performance when adjusting for multiple statis-
tical comparisons, but total individualized alpha power did not. Taken together, contrary to findings 
based on total alpha power, aperiodic-adjusted individualized alpha power increased during brain 
maturation and seems likely to be related to increased thalamocortical connectivity. Functionally, this 
increase in alpha power is linked to improvements in attentional performance.

Maturational changes in aperiodic signal components
The decreases in the aperiodic intercept and slope with increasing age are in line with previous obser-
vations in different age groups (Cellier et al., 2021; Donoghue et al., 2020a; He et al., 2019). One 
explanation for this decrease of the aperiodic intercept may lie within maturational changes that 
are unrelated to neural mechanisms. As previous studies on EEG changes during brain maturation 
have suggested (e.g., Dustman et al., 1999), the thickening of the skull increases its resistance. This 
increased resistance could lead to the observed decrease in broadband EEG power, here reflected in 
a decrease in the aperiodic intercept. However, this maturational effect was also found in broadband 
power (Gómez et al., 2017) and the aperiodic intercept (He et al., 2019) in studies using magneto-
encephalography (MEG), which is not affected by skull thickness.

Alternatively, as previous studies have shown that the aperiodic intercept is related to the overall 
spiking activity of the underlying neural population (Miller et al., 2009), the decrease observed in 
the aperiodic intercept may reflect a reduced parieto-occipital spiking activity during brain matura-
tion. This observation may be related to the finding that as much as 40% of synapses in the striate 
cortex are eliminated during brain development (Huttenlocher and de Courten, 1987). This is further 
supported by Whitford et al., 2007, who found a reduction of gray matter volume in parietal cortex 
co-occurring with a decrease in broadband EEG power during brain development, suggesting that 
this may reflect synaptic pruning processes. Yet, more research is needed to delineate possible mech-
anisms underlying this age-related decrease observed in the aperiodic intercept. An alternative expla-
nation for the finding of a decreased intercept needs to be considered: As pointed out by He et al., 
2019, a maturational flattening of the aperiodic signal imposes a decrease in the intercept due to the 
high correlation between the aperiodic intercept and slope (also observed in the main HBN dataset, 
r=0.89, see Table 2). To estimate whether the observed decrease of the aperiodic intercept is larger 
than expected by the rotation of the aperiodic slope requires estimation of not only the decrease of 
the aperiodic slope, but also the frequency at which the aperiodic signal rotates. Future research is 
needed to provide means by which this estimation can be achieved, considering also interindividual 
differences in the rotation frequency.

The flattening of the aperiodic signal in this age range may also be reflected in the commonly 
observed age-related decrease of power in low frequencies accompanied by an increase in power 
in higher frequencies (Cragg et al., 2011; Whitford et al., 2007). This phenomenon was speculated 
to be related to the elimination of synapses or changes in white matter structure (Segalowitz et al., 
2010; Whitford et al., 2007); however, no significant relation of the aperiodic slope with white matter 
integrity of the thalamic radiation was found in the analyses performed here. An additional post hoc 
analysis also indicated no relation between the aperiodic signal parameters and global white matter 
integrity (see Supplementary file 4). Yet, considering a shift of the aperiodic slope in the interpretation 
of this shift in power of frequency bands could provide additional insights into this little-understood 
result. Flattening of the aperiodic slope has been linked to changes in the excitation–inhibition ratio 
of the neural population (Gao et al., 2017), particularly to an increase in local excitatory feedback. 
This shift in the excitation–inhibition ratio causes temporally decorrelated spikes and thus increases 
in neural noise (Voytek and Knight, 2015). This is supported by earlier studies relating a decreased 
aperiodic slope to more asynchronous activation patterns in neural populations (Miller et al., 2009; 
Usher et al., 1995). Thus, the flattened slope observed here might reflect increases in neural noise 
during brain development (McIntosh, 2010). This may seem contradictory, as aging research has 
linked an increase in neural noise to age-related cognitive decline from adulthood to old age (Voytek 
et  al., 2015). However, increasing neural noise might rather have beneficial effects in the earlier 
processes of brain maturation. Reviewing maturational studies that used EEG and fMRI, McIntosh, 

https://doi.org/10.7554/eLife.77571


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Tröndle et al. eLife 2022;11:e77571. DOI: https://doi.org/10.7554/eLife.77571 � 13 of 34

2010 concluded that the maturing brain develops from a deterministic to a more stochastic system in 
which the increased neural noise leads to enhancement of functional network potential.

Limitations
A limitation of the present study is the composition of the samples investigated, as they contain a 
large proportion of children, adolescents, and young adults in whom psychiatric disorders were diag-
nosed. Consequently, the samples are not representative of the general population in this age range. 
This may present a confound to the analysis of age trajectories of alpha power and the aperiodic 
signal, because psychiatric disorders have previously been linked to differences in resting state EEG 
band power (for a comprehensive review, see Newson and Thiagarajan, 2018) and the aperiodic 
slope (e.g. Robertson et al., 2019). However, control analyses using only healthy subsamples showed 
very similar results to analyses of the full sample. Additionally, the main and the validation analysis 
controlled for possible confounding effects by adding a categorical diagnosis variable as an additional 
predictor. No significant associations were found between clinical diagnoses and either oscillatory or 
aperiodic signal components within either dataset.

Conclusions
This study has demonstrated the relevance of taking the alpha peak frequency and aperiodic signal 
components into account when assessing age-related changes in spectral power during brain matu-
ration. Our results indicate that there is significant variation of aperiodic activity during childhood 
and adolescence, which poses a confound to earlier work. Moreover, canonically defined frequency 
bands render age-related changes in IAF and power inseparable. Accounting for these confounding 
factors, and using the largest openly available pediatric sample, the present report demonstrates that 
aperiodic-adjusted alpha power increases during brain maturation. Although previous recent studies 
did not find any relation between aperiodic-adjusted alpha power and age, the here applied robust 
statistical models provide strong evidence for an age related increase in a large dataset and across 
several control analyses. Moreover, the results on aperiodic-adjusted individualized alpha power and 
the aperiodic signal intercept and slope were confirmed in an independent preregistered validation 
study, indicating that these spectral EEG measures are robust markers of the maturing brain.

In addition, the spectral decomposition into periodic and aperiodic signal components provides 
explanations for the previous ambiguous results of studies investigating total or relative alpha power 
changes during brain maturation. The present study provides evidence that the maturational decreases 
in total alpha power are conflated by the maturational changes of the aperiodic signal components. 
Thus, previous interpretations that total alpha power may be related to the elimination of active 
synapses need to be reconsidered, as the decomposition of the neural power spectrum reveals that 
these processes may rather relate to decreases of the aperiodic intercept. Furthermore, the current 
report provides partial support of previous literature on age-related increases in relative alpha power, 
as these effects could only be replicated in the large dataset, but not in the smaller samples. Conse-
quently, aperiodic-adjusted alpha power should be preferred over relative alpha power, as the latter 
measure underestimated age-related changes of true periodic alpha power and therefore yielded a 
risk of false negative results. Instead, aperiodic-adjusted alpha power increases with increasing age, 
and likely reflects the development of thalamocortical connectivity. Functionally, these maturational 
changes may relate to increased attentional performance.

Materials and methods
All analysis code described below is available at https://osf.io/4nzyk/. This repository further contains 
all extracted EEG features and demographics which were used in the statistical models.

Datasets
For the main study, 2529 resting-state EEG datasets were obtained from the Human Brain Network 
(HBN) project (Alexander et al., 2017). The HBN project by the Child Mind Institute is an ongoing 
initiative that aims to generate a freely available biobank of multimodal datasets of children, adoles-
cents and young adults aged 5–22 years. All participants undergo a variety of assessments. For the 
current study, we retrieved the Edinburgh handedness inventory (EHI, Oldfield, 1971), the Wechsler 
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Intelligence Scale for Children-V (WISC-V, Wechsler, 2003) for children and adolescents aged 6–17 or 
the Wechsler Adult Intelligence Scale (WAIS-IV, Wechsler, 2008) for young adults older than 18 years, 
demographic data on age and gender, and clinical diagnoses. The clinical diagnoses are assessed by 
licensed clinicians who apply the DSM-5-based Schedule for Affective Disorders and Schizophrenia - 
Children’s version (KSADS) psychiatric interview (Kaufman et al., 1997). Additionally, when available, 
the corresponding MRI and DTI datasets were obtained (N=851). Of the 2529 downloaded EEG 
datasets, 78 were not further processed because the EEG files were either corrupt or the recording 
length was not sufficient (i.e. the file size was smaller than 30 megabytes). Of the 2451 remaining 
EEG datasets, 174 could not be used because demographic data was missing. Applying the objec-
tive and reproducible exclusion criteria described below yielded a final sample size of 1770 subjects. 
See Appendix 2—figure 1 for a detailed flow chart of all exclusion criteria and the resulting sample 
size. Table 6 provides an overview of the final sample characteristics. Because the large proportion of 
children, adolescents and young adults with a diagnosed psychiatric disorder within the HBN sample 
might bias findings on general brain maturation, we conducted additional sensitivity analyses by 
subsampling this sample, including only subjects without any given diagnosis. This additional subsa-
mple consisted of 190 subjects.

For the preregistered validation study, a second dataset was employed which had previously been 
collected in a multicentric study. This dataset consisted of 369 children, adolescents and young adults 
aged 6–22 years and contained both participants with ADHD and a healthy subsample (see Table 6). 
In this sample, IQ was measured by CFT 1 R (Weiß, 2011) for children below the age of 9 years, CFT 
20 R part I (Weiß, 2011) for children and adolescents between 9 and 16 years, and WMT-2 for adoles-
cents and young adults older than 16 years (Forman et al., 2006). Table 6 summarizes sample charac-
teristics of the final sample (see Figure 1—figure supplement 1 for a visualization of the distribution 
of age and gender in the HBN sample, and Figure 3—figure supplement 1 for the validation sample).

Main study
Experimental setup and procedure
The participants of the HBN sample were comfortably seated in a chair in a sound‐shielded room at 
a distance of 70 cm from a 17-inch CRT monitor (SONY Trinitron Multiscan G220, display dimensions 
330×240 mm, resolution 800×600 pixels, vertical refresh rate of 100 Hz). The room was equipped with 
a chinrest to minimize head movements. Subjects were informed that EEG would be recorded while 
they rested with their eyes alternately open or closed. Instructions for the tasks were presented on the 
computer screen, and a research assistant answered questions from the participant from the adjacent 
control room through an intercom. Compliance with the task instructions was confirmed through a live 
video-feed to the control room. The task procedure was that participants rested with their eyes open 
for 20s (a total of 1min 40s), followed by 40s (a total of 3min 20s) with their eyes closed, repeated five 
times. Prerecorded verbal instructions automatically informed the participants when to open or close 
their eyes via loudspeakers. Participants were asked to maintain a fixed gaze on the fixation cross 
throughout EO blocks. The total duration of the EEG recording was 5min. The alternating order of EO 
and EC was designed to avoid fatigue and maintain vigilance. The duration of EC blocks was twice as 
long as EO blocks because eyes-closed data is more robust and contains fewer artifacts. This protocol 
has been used in various previous studies (Langer et al., 2012; Langer et al., 2013).

Table 6. Characteristics of the final sample.

Characteristic
HBN subsample without any 
given diagnosis Full HBN sample Healthy validation subsample Full validation sample

Sample size 190 1770 108 310

Female 86 632 62 103

Male 104 1138 46 207

Mean age in years (sd) 10.07 (3.39) 10.81 (3.44) 12.97 (3.75) 13.51 (4.16)

Mean IQ (sd) 106.16 (15.24) 98.86 (16.55) 107.95 (13.13) 103.37 (14.77)

The online version of this article includes the following source data for table 6:

Source data 1. Numerical values of the demographics displayed in Table 6.
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Electroencephalography recording and preprocessing
The EEG was recorded at a sampling rate of 500 Hz using a high‐density 128‐channel EEG Geodesic 
Netamps system (Electrical Geodesics, Eugene, Oregon). The recording reference was at Cz, the 
vertex of the head, and impedances were kept below 40 kΩ.

All analyses were performed using MATLAB 2018b (The MathWorks, Inc, Natick, Massachusetts, 
United States). EEG data was automatically preprocessed using the current version (2.4.3) of the 
MATLAB toolbox Automagic (Pedroni et al., 2019). Our pipeline consisted of the following steps. 
First, bad channels were detected by the algorithms implemented in the clean_rawdata eeglab plugin 
(http://sccn.ucsd.edu/wiki/Plugin_list_process). A channel was defined as a bad electrode when data 
recorded by that electrode was correlated at less than 0.85 with an estimate based on other channels. 
Furthermore, a channel was defined as bad if it had more line noise relative to its signal than all other 
channels (four standard deviations). Finally, a channel was considered bad if it had a longer flat-line 
than 5 s. These bad channels were automatically removed and later interpolated using a spherical 
spline interpolation (EEGLAB function eeg_interp.m). The interpolation was later performed as a final 
step before the automatic quality assessment of the EEG files (see below). Next, data was filtered 
using a high-pass filter (–6 dB cut off: 0.5 Hz). Line noise artifacts were removed by applying Zapline 
(Cheveigné, 2020), removing seven power line components. Subsequently, independent compo-
nent analysis (ICA) was performed. Components reflecting artifactual activity were classified by the 
pretrained classifier ICLabel (Pion-Tonachini et al., 2019). Components which were classified as any 
class of artifacts, including line noise, channel noise, muscle activity, eye activity, and heart artifacts, 
with a probability higher than 0.8 were removed from the data. Subsequently, residual bad channels 
were excluded if their standard deviation exceeded a threshold of 25 μV. Very high transient artifacts 
(>±100 μV) were excluded from the calculation of the standard deviation of each channel. However, if 
this resulted in a significant loss of channel data (>25%), the channel was removed from the data. After 
this, the pipeline automatically assessed the quality of the resulting EEG files based on four criteria: 
A data file was marked as bad-quality EEG and not included in the analysis if, first, the proportion of 
high-amplitude data points in the signals (>30 μV) was larger than 0.20; second, more than 20% of 
time points showed a variance larger than 15 microvolt across channels; third, 30% of the channels 
showed high variance (>15 μV); and fourth, the ratio of bad channels was higher than 0.3. Finally, 13 
of 128 electrodes in the outermost circumference, attached to chin and neck, were excluded from 
further processing as they capture little brain activity and mainly record muscular activity. Additionally, 
10 EOG electrodes were separated from the data and not used for further analysis, yielding a total of 
105 EEG electrodes. Data was then referenced to the common average reference.

Table 7. Overview of extracted parameters.

Parameter Description

Individual alpha frequency (IAF) Frequency at maximum power in search window 7–14 Hz

Total canonical alpha power Averaged log power in the fixed-frequency window [8Hz–13Hz], extracted from the total power spectrum

Total individualized alpha power Averaged log power in window [- 4 Hz to +2 Hz] relative to IAF, extracted from the total power spectrum

Relative canonical alpha power
Averaged power in the fixed-frequency window [8Hz–13Hz], divided by the average power of the full power 
spectrum (2–40 Hz), extracted from the total power spectrum

Relative individualized alpha power
Averaged power in window [- 4 Hz to +2 Hz] relative to IAF, divided by the average power of the full power 
spectrum (2–40 Hz), extracted from the total power spectrum

Aperiodic-adjusted canonical alpha 
power Canonical alpha power, extracted from the aperiodic-adjusted log power spectrum

Aperiodic-adjusted individual alpha 
power Individualized alpha power, extracted from the aperiodic-adjusted log power spectrum

Aperiodic intercept Intercept parameter of the aperiodic signal extracted by specparam

Aperiodic exponent Exponent parameter (i.e. negative slope) of the aperiodic signal extracted by specparam

Note: The term total power spectrum refers to the power spectrum as extracted from the data using Welch’s algorithm. The aperiodic-adjusted power 
spectrum results from a subtraction of the aperiodic signal from the total power spectrum. 

https://doi.org/10.7554/eLife.77571
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Spectral analysis
Spectral analysis was performed on data from the concatenated five blocks of the eyes-closed condi-
tion. Only data from the eyes-closed condition was analyzed, because this data contains fewer arti-
facts and generally shows the strongest alpha oscillatory activity. The first and the last second of 
each eyes-closed block was discarded to exclude motor activity related to opening and closing the 
eyes and auditory activity due to the prompt from the speakers. The remaining data was concat-
enated, resulting in a total of 190s of continuous EEG data. This data was again segmented into 
2s epochs, and each epoch containing large amplitude artifacts (>+90 μV, < –90 μV) was excluded 
from further processing. In 37subjects, more than 50% of trials exceeded this threshold; thus, these 
subjects were not included in subsequent analyses (see Appendix 2—figure 1). For the remaining 
data, on average, 2.95% of trials were excluded by this criterion. Power spectral densities (PSDs) were 
then calculated using Welch’s Method Welch, 1967 implemented in the EEGLab toolbox (Delorme 
and Makeig, 2004). Zero padding was applied to provide a frequency resolution of 0.25Hz in the 
2s sliding time windows within Welch’s algorithm. Averaging the individual PSDs of each window 
resulted in a smoothed power spectrum that complies with the requirements of the specparam algo-
rithm (Donoghue et al., 2020b) used subsequently (see Specparam algorithm and aperiodic-adjusted 
alpha power). Additionally, PSDs were transformed to log scale to scale results equal to outputs from 
the specparam algorithm, which only operates in log power space. In the following, we describe the 
two approaches to extracting total alpha power and aperiodic-adjusted alpha power together with 
the aperiodic signal. See Table 7 for an overview of all extracted parameters.

Computation of individual alpha peak frequency 

The IAF was found by determining the frequency of maximum power between a lower and upper 
frequency limit. Following previous work, these frequencies limits were set to 7 and 14Hz (Posthuma 
et al., 2001; Smit et al., 2006). If the peak was located at the border of the search range, no alpha 
peak was extracted for that subject, and the corresponding data was excluded from further analysis 
(67subjects, see Appendix 2—figure 1).

Extraction of total and relative alpha power
To replicate the results of previous published findings, this standard analysis approach included no 
adjustment for the aperiodic background signal. If an alpha peak was identified (see Computation of 
individual alpha peak frequency), individualized total alpha power was extracted by averaging log 
power in the defined window [–4Hz to+2Hz] relative to the IAF (Klimesch, 1999). This individualized 
alpha power measure was chosen over a canonically defined alpha range, 8–13Hz (Babiloni et al., 
2020), as the shift of the IAF during maturation might introduce a bias when power is averaged within 
a fixed-frequency window. Canonical alpha band power was also extracted for supplementary analysis.

Relative individualized and relative canonical alpha power were calculated by dividing the corre-
sponding total alpha power values by the average power of the full spectrum (2–40 Hz).

Figure 4. Illustration of the two components (left) superimposed in the measured neural power spectrum (right). 
The dark blue bar (right) indicates how total power is assessed relative to the absolute zero. The light blue bar 
represents aperiodic-adjusted power, which is assessed relative to the aperiodic signal.

https://doi.org/10.7554/eLife.77571
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Specparam algorithm and aperiodic-adjusted alpha power
The specparam algorithm (Donoghue et al., 2020b) parameterizes the neural power spectrum to 
separate neural oscillations from the aperiodic background signal. The algorithm estimates oscillatory 
peaks that are superimposed on the aperiodic background signal (see Figure 4) and are therefore 
measured relative to this rather than to the absolute zero. Consequently, the specparam algorithm 
parametrizes the PSD by iteratively fitting the aperiodic background curve (L) to the observed 
smoothed spectral signal, resulting in two parameters: the aperiodic intercept b and the aperiodic 
exponent χ (i.e. slope, the smaller χ, the flatter the spectrum).

	﻿‍ L = b − log
(
k + Fχ)

‍� (1)

In equation 1, F represents the vector of input frequencies and k the knee parameter, which is not 
further discussed here, as it is set to 0 in the proposed analysis: no bend of the aperiodic component 
is additionally modeled in the data, which is the default state of the specparam algorithm.

To extract oscillatory components, this aperiodic signal is subtracted from the power spectrum. 
Gaussians are fitted iteratively to the remaining signal and subsequently subtracted whenever data 
points exceed two standard deviations of the data. The Gaussians represent the true oscillatory 
components in the data; if data points are below the specified threshold, they are considered as 
noise. This results in a data-driven number of Gaussians, each parameterized by the frequency center, 
power relative to the aperiodic signal and the frequency bandwidth. The power spectrum is therefore 
modeled as defined by equation 2,

	﻿‍ P = L +
∑N

n=0 Gn + ε‍� (2)

where Gn represents the nth Gaussian and ε the noise not captured by the model. Note that this 
description of the algorithm is simplified; for a more detailed definition, see Donoghue et al., 2020b.

In the current study, the frequency range of 2–40 Hz of the power spectrum was passed to the 
algorithm because very low frequencies may lead to overfitting of noise as small bandwidth peaks. 
The current release (1.0.0) of the specparam toolbox from the github repository (https://github.com/​
fooof-tools/fooof; Donoghue, 2022) was used. The algorithm was used with these settings: peak 
width limits: [0.5, 12]; max number of peaks: infinite; minimum peak height: 0; peak threshold: 2 
sd above mean; and aperiodic mode: fixed. The resulting periodic signal P (“Oscillatory Signal” in 
Figure 4) was used to extract aperiodic-adjusted canonical alpha power (average across 8–13 Hz) and 
aperiodic-adjusted individualized alpha power (average across a [–4 Hz to +2 Hz] window centered 
on the IAF).

Data was only used for further analysis when the model fit of the specParam model was above a 
threshold of R2 >0.90.

In the analysis of the main HBN sample, an overall high specParam model fit was observed across 
the sample (mean R2=0.9943, sd = 0.0098). Similar model fits were observed in the validation dataset 
(mean R2=0.9941, sd = 0.0120). Model fit was assessed for each of the five occipital electrodes sepa-
rately (see 4.2.7). Across all subjects, only 11 out of 9,705 model fits were below the cut-off of R2 <0.90 
in the HBN sample, and 6 out of 1,675 in the validation sample. Consequently, in 99.94% of subjects, 
all five electrodes could be used to estimate the average occipital periodic and aperiodic parameters. 
For those subjects with insufficient model fits for specific occipital electrodes, the average occipital 
periodic and aperiodic parameters were calculated from the average of the remaining electrodes with 
adequate model fit. In the HBN sample, the numbers of occipital electrodes available in these subjects 
were: Two (N=1 subject), three (N=1 subject), and four (N=6 subjects). In the validation sample, these 
numbers of available electrodes were similar: Three (N=2 subject), four (N=2 subjects). No subject was 
excluded based on the specParam model fit.

A series of control analyses were conducted: The first control analyses indicated a small but signif-
icant relation between age and gender with the specParam model fit (see Appendix 4). Controlling 
for this in the statistical model by adding the specParam model fit as an additional predictor did 
not change any of the main results (see Appendix  4—table 1). Additional control analyses were 
subsequently performed to investigate whether possible overfitting of the specParam models (mean 
R2=0.9943, see above) confounded the results. Following the guidelines of Ostlund et al.’s (2022), 
specParam model fitting parameters and data exclusion criteria were adapted to minimize both 

https://doi.org/10.7554/eLife.77571
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overfitting and underfitting of the model (for the details about this approach see Appendix 5). Results 
were highly consistent with the main results reported in Table 1 and did not indicate any changes to 
the main results (see Appendix 5—table 1). Finally, a control analysis using the periodic alpha peak 
power from the specParam algorithm instead of average individualized band power showed highly 
consistent results and did not change any conclusions (see Appendix 6, Appendix 6—table 1).

Electrode cluster analysis
To test the hypothesis derived from literature review, an electrode-cluster-based analysis was 
performed. This cluster was based on data from the parietal and occipital electrodes, here referred 
to as the parieto-occipital cluster (see Figure 1). These electrodes were chosen because of the strong 
prominence of Oz and Pz electrodes in research on EEG alpha oscillations (Klimesch, 1999) and 
previous findings for age effects on alpha band power in these electrodes (Clarke et al., 2001; Cragg 
et al., 2011; Gasser et al., 1988). To account for individual anatomical differences, the following 
electrodes were selected to create a more robust cluster: E72 (POz), E75 (Oz), E62 (Pz), E67 (PO3), 
E77 (PO4). All parameters described above were extracted for each electrode and subsequently aver-
aged within this cluster. Prior to statistical analyses, data was excluded from further processing if any 
extracted parameter exceeded a threshold of three standard deviations above or below the mean of 
the sample (excluded N=30, mean age = 12.58, sd = 3.92). See Appendix 2—figure 1 for a detailed 
flow chart of all exclusion criteria and the resulting sample size.

Statistical analysis
Bayesian generalized linear mixed models were formulated using the brms R package (Bürkner, 2017). 
Statistical models were separately fitted to the full sample and the subsampled dataset of subjects 
without any given diagnosis. For both samples, the predictor variable was age, and the covariates 
gender, EHI, and site were added. In the full sample, a categorical variable for diagnosis was added 
(no diagnosis, ADHD diagnosis, other diagnosis) to account for the high prevalence of ADHD in this 
dataset (Nno diagnosis = 190, NADHD diagnosis = 1038, Nother diagnosis = 542). However, the focus of this paper is 
on brain maturation; thus, this information is only included to control for possible confounding effects 
of psychiatric disorders.

To determine the best model for each analysis, multiple models were fitted with varying degrees 
of interaction terms and compared using the Watanabe Akaike Information Criteria (WAIC, Wanta-
nabe, 2013). Additionally, expected log pointwise predictive density (ELDP, i.e. the expected predic-
tive accuracy of the model) was calculated using the R function ‘loo_cmpare’ (Vehtari et al., 2017), 
yielding consistent results. For an overview of all models tested and the resulting WAIC and ELDP, see 
Supplementary file 1.

The final models were these:
For the subsample of subjects without any given diagnosis:

	﻿‍

[
dv

′
s
]
∼ age + gender + EHI + site

‍� (3)

For the full sample:

	﻿‍

[
dv

′
s
]
∼ age + gender + diagnosis + EHI + site

‍� (4)

The multivariate models defined above were fitted each to a set of dependent variables: Total indi-
vidualized alpha power, aperiodic-adjusted individualized alpha power, relative individualized alpha 
power, aperiodic intercept, aperiodic slope and IAF. Additionally, for supplementary analyses, model 
two was also fitted to measures of canonical alpha power (i.e. total canonical alpha power, relative 
canonical alpha power and aperiodic-adjusted canonical alpha power).

To correct for multiple comparisons, the significance level was adjusted. We assumed a high 
correlation between the total of 9 outcome variables (including the canonical alpha power measures, 
see Supplementary file 2C), as many of the dependent variables represent various characteristics 
of the individual alpha oscillations. To account for this, we first calculated the effective number of 
tests of all dependent variables using Nyholt’s approach (Nyholt, 2004). Following this approach, the 
significance level (0.05) was then adjusted using the Šidák correction (Nyholt, 2004). Subsequently, 
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the credible intervals (CIs) of the posterior distributions were calculated from the newly estimated 
levels of significance. The resulting significance level was 0.0083, yielding 99.17% credible intervals. 
We refrained from calculating Bayes factors for point estimates as evidence of the effect being zero or 
unequal to zero, as these Bayes factors, which are based on the Savage–Dickey ratio, depend strongly 
on the arbitrary choice of the prior distribution of each effect. Instead, we considered a model param-
eter significant if its 99.17% CI did not include zero. In line with Gelman’s recommendations (Gelman 
et  al., 2007), predictors and outcome variables of the Bayesian regression model were scaled as 
follows: Each numeric parameter (age, EHI, IAF, total canonical alpha power, total individualized alpha 
power, relative canonical alpha power, relative individualized alpha power, aperiodic-adjusted canon-
ical alpha power, aperiodic-adjusted individualized alpha power, aperiodic intercept, and aperiodic 
slope) was scaled to provide a mean of 0 and standard deviation 0.5. Uninformative Cauchy priors 
were used (mean = 0, sd = 2.5), as proposed by Gelman (Gelman et al., 2007).

Anatomical thalamic measures
Total and aperiodic-adjusted alpha power measures were further related to the thalamic volume and 
the fractional anisotropy (FA) of the thalamic radiation.

MRI data acquisition
DTI and T1-weighted scans were acquired at three acquisition sites: Staten Island (SI), Rutgers Univer-
sity Brain Imaging Center (RUBIC), and CitiGroup Cornell Brain Imaging Center (CBIC). For the full 
scanning protocol and site-specific scanning parameters see Alexander et al., 2017 and Appendix 
3A.

DTI preprocessing
DTI data was processed using the FMRIB Software Library (FSL) version 6.0.4 (Jenkinson et al., 2012) 
following the ‘Diffusion parameter EStImation with Gibbs and NoisE Removal’ (DESIGNER) pipeline 
(Veraart et  al., 2018). Detailed descriptions of all processing steps are available in Appendix 3B 
and the entire preprocessing code is available at https://github.com/sdziem/DTIPreprocesingPipeline 
(copy archived at swh:1:rev:e4b48053d150976e1036a46b25870d7973965efc; Dziemian, 2021).

In brief, DTI data preprocessing included denoising (Veraart et  al., 2016) followed by correc-
tion for Gibbs artefacts (Kellner et al., 2016). Preprocessing continued with brain extraction with 
an FA threshold of 0.1 (Smith, 2002) and state-of-the-art correction for eddy current-induced distor-
tions in-scanner head motion (Andersson et  al., 2017; Andersson et  al., 2016; Andersson and 
Sotiropoulos, 2016). Next, outlier detection of MRI parameters and robust parameter estimation 
(Collier et al., 2015), tensor fitting, and extraction of diffusivity measures using weighted linear least 
squares estimation was applied (Fieremans et al., 2011; Veraart et al., 2011; Veraart et al., 2013).

Using automating fiber-tract quantification (AFQ, v.1.1) (Yeatman et al., 2012), which implements 
a deterministic streamline tracking algorithm (Basser et al., 2000; Mori et al., 1999), we extracted 
objective and reliable FA values along the left and right thalamic radiation reflecting the tracts’ white 
matter integrity (Wassermann et al., 2011; Yeatman et al., 2011; Yeatman et al., 2012). In brief 
a co-registered T1-weighted scan was used to define anatomical regions of interest as seeds for 
consecutive tractography. Whole-brain tractography was computed using the following settings: 
FA threshold of 0.2, an FA mask threshold of 0.3, angle threshold of 35°. Next, the left and right 
thalamic radiations were segmented by distinct anatomical regions of interest as defined in a WM 
atlas (Wakana et al., 2007) in the co-registered T1-weighted scan. Fiber tract probability maps (Hua 
et al., 2008) were used to refine the tracts according to the likelihood of a fiber belonging to the tract. 
Fiber tract cleaning and outlier removal was performed using four standard deviations from the mean 
tract length and five standard deviations in distance from the tract core as removal criteria (Yeatman 
et al., 2012).

Each fiber belonging to the left and right thalamic radiation was sampled at 100 equidistant nodes 
(Yeatman et al., 2012). FA values were calculated for each segment along the tract as the sum of FA 
values of corresponding fibers weighted by the probability of the given fiber being part of the tract 
(Yeatman et al., 2012). This yields FA tract profiles for 100 equidistant segments for each participant’s 
left and right thalamic radiation. From these profiles, we calculated the tract-wise mean FA, which 
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provides a more reliable quantification of the tract’s white matter integrity (Carlson et  al., 2014; 
Luque Laguna et al., 2020).

Additionally, to ensure high imaging quality, each participant’s whole brain tractography under-
went visual inspection for incomplete tractographies, gross artefacts, and misalignments of scans. 
Visual inspection was performed by a rater blind to the demographics of the participants. Only data 
rated as ‘good’ was included in the final statistical analysis.

T1-weighted preprocessing
T1-weighted scans were preprocessed in parallel (Tange, 2011) with FreeSurfer (version 6.0.0) (http://​
surfer.nmr.mgh.harvard.edu/). Subcortical volumetric segmentation of the left and right thalamus was 
computed using the function ‘recon-all’. Details on the subcortical volumetric segmentation proce-
dure have been reported previously (Fischl et al., 2002; Fischl et al., 2004; Han et al., 2006) and 
are provided in Appendix 3C. Briefly, processing included (1) correction for intensity non-uniformity, 
(2) Talairach transformation, (3) intensity normalization, (4) skull stripping, and (5) automated subcor-
tical segmentation and labeling based on the default Gaussian Classifier Atlas (GCA) (Fischl et al., 
2002; Fischl et al., 2004; Han et al., 2006). The validity of automated segmentation of the thal-
amus has been verified previously (Keller et al., 2012). Bilateral thalamic volumes (i.e. Left-Thalamus-
Proper, Right-Thalamus-Proper) and total intracranial volume (i.e., EstimatedTotalIntraCranialVol) were 
extracted for subsequent analysis.

Relation to alpha power
To investigate the relation between thalamic volume and the FA of the thalamic radiation, Bayesian 
regression models similar to those described in Statistical analysis were fitted, adding the thalamic 
volume and left and right thalamic radiation predictors while controlling for total intracranial volume, 
age and gender:

	﻿‍

[
dv

′
s
]
∼ thalamic volume + total intracranial volume + age + gender

‍� (5)

	﻿‍

[
dv

′
s
]
∼ left thalamic radiation + total intracranial volume + age + gender

‍� (6)

	﻿‍

[
dv

′
s
]
∼ right thalamic radiation + total intracranial volume + age + gender

‍� (7)

Due to collinearity issues, separate models were fitted for the left and right thalamic radiation. The 
dependent variables for Models 4, 5, and 6 were total individualized alpha power, aperiodic-adjusted 
individualized alpha power, relative individualized alpha power and the aperiodic intercept and slope. 
As described above, the numeric predictors and outcome variables were scaled to provide a mean 
of 0 and standard deviation 0.5. Uninformative Cauchy priors were used (mean = 0, sd = 2.5), as 
proposed by Gelman (Gelman et al., 2007). The models were fitted to the subset of the full sample, 
for which DTI for thalamic radiation and structural MRI for thalamic volume and total intracranial 
volume was available. This yielded a sample size of 851 subjects (mean age = 11.19, sd = 3.58, age 
range = 5.04–21.89, 294 female). To correct for multiplicity, the significance level was adjusted as 
described in section Statistical analysis. For the five outcome variables, the resulting significance level 
was 0.0148, yielding 98.52% credible intervals.

Relation of alpha power to Flanker task scores
Post hoc analyses were performed to investigate the relationship between the different measures 
of alpha power and attentional performance. The Flanker task of the National Institutes of Health 
Toolbox Cognition Battery (Gershon et al., 2013) was employed as a measure of attentional perfor-
mance. In each of the 40 trials of this task, a set of stimuli is presented to participants, who are asked 
to indicate the direction (left or right) of the central stimulus. These stimuli are either arrows, for partic-
ipants of the age 8 years or older, or fish, for children younger than 8 years. Therefore, participants 
need to focus attention on the central stimulus and suppress information from surrounding stimuli, 
which may be congruent or incongruent to the direction with the central stimulus. Thus, the task aims 
to measure inhibitory control and visual selective attention. This data was collected as part of the HBN 
study. Participants performed a computerized version of the task in a separate assessment without 
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neurophysiological recording. The score was calculated based on a combined measure of accuracy 
across trials and reaction time (Zelazo et  al., 2014). Age standardized scores were automatically 
extracted by the test software (for more details, see National Institutes of Health and Northwestern 
University, 2022). The final sample size, for which both task data and EEG data were available, was 
N=1,757 (age range, 5–22 years, mean age = 10.81, sd = 3.44).

The score in the Flanker task was used as the predictor in the linear models. The univariate linear 
models controlled for age, gender, and handedness (EHI) and were defined as:

‍alpha power ∼ Flanker score + age + gender + EHI‍ 

All continuous predictors and outcome variables were standardized (z-transformed). The models 
were fitted separately for three outcome variables: total individualized alpha power, relative indi-
vidualized alpha power, and aperiodic-adjusted individualized alpha power. To account for multiple 
comparisons with three different measures of alpha power, the effective number of tests was calcu-
lated using Nyholt’s approach, and Šidák correction was applied to adjust the significance level of 0.05 
(Nyholt, 2004), yielding a corrected significance level of 0.0264.

Validation study
To validate the results from the analysis of the main dataset, the same analyses (sections Experimental 
setup and procedure - Statistical analysis) were applied to the second dataset of 369 subjects. Before 
the analysis pipeline was performed on this dataset, all analyses were preregistered in https://osf.io/​
7uwy2. In this dataset, eyes-closed resting-state EEG (mean length = 260 s, sd = 28.4 s) was recorded 
at a sampling rate of 500 Hz using a NeuroAmp ×23 with a PC-controlled 19-channel electroenceph-
alographic system. Electrodes were placed according to the international 10–20 system using an elec-
trode cap with tin electrodes (Electro-cap International Inc, Eaton, Ohio, USA). Data was referenced to 
the linked earlobes, and impedances were kept below 5 kΩ. Data was filtered between 0.5 and 50 Hz, 
and the same artifact correction as described in Electroencephalography recording and preprocessing 
was subsequently applied. The electrodes used for the parieto-occipital electrode cluster were Pz, 
P3, P4, O1, and O2. The same exclusion criteria as described above were applied. In this dataset, 
34 subjects were excluded due to bad EEG data quality. Additionally, 11 subjects were excluded due 
to missing demographic data, 10 subjects had no detectable IAF, and 5 subjects were excluded due 
to outlier detection. This yielded a final sample size of 310 subjects (see Table 6 for an overview of the 
characteristics of the final sample). The parameters were scaled as described in Statistical analysis, and 
the same uninformative Cauchy priors were used. An additional analysis combined evidence across 
the two datasets by extracting the posterior distributions for age and gender effects from the analyses 
of the HBN datasets and approximating them to the best-fitting distribution using the fitdistrplus R 
package (Delignette-Muller and Dutang, 2015). Subsequently, the statistical models were refitted 
using these extracted posteriors as priors for the analyses of the validation dataset.
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raw data. We can only share derivatives of the validation data. Requests to access the raw validation 
datasets should be directed to NL, ​n.​langer@​psychologie.​uzh.​ch.
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The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Alexander L 2017 Neuroimaging Data Access http://​fcon_​1000.​
projects.​nitrc.​org/​
indi/​cmi_​healthy_​
brain_​network/​
sharing_​neuro.​html

fcon, cmi_healthy_brain_
network
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Appendix 1
Simulating confounds in total and relative alpha power
To highlight confounding factors in the analysis of age-related changes in relative alpha power, 
simulations were performed. Therefore, power spectra were simulated as defined in the specParam 
algorithm (see equation 1 and 2, section 2.2.6). Gaussians representing neural oscillations were 
further defined as in Donoghue et al., 2020b:

	﻿‍
Gn = a × exp

(
−

(
F−c

)2

2w2

)

‍�

First, two power spectra were generated sharing the identical aperiodic signal component 
(intercept = 1.82, exponent = 1.99). The same alpha oscillation was added to both power spectra, 
being defined by the center frequency c=10.5 Hz, the power a = log10 (6), and the bandwidth w=1. 
A larger theta oscillation as added to the first power spectrum (simulated data 1, c=4, a = log10 (7.5) 
and w=1.1) than to the second power spectrum (simulated data 2, c=4, a = log10 (2) and w=1.1). 
Resulting power spectra are plotted in Appendix 1—figure 1A.

For the second simulated case, two power spectra were generated, which differed in the aperiodic 
signal component (simulated data 3: intercept = 1.8, exponent = 2.0; simulated data 4: intercept = 
1.5, exponent = 1.8). The same alpha oscillation was added to both simulated power spectra (c=10, 
a = log10 (6) and w=1). Resulting power spectra are visualized in Appendix 1—figure 1B. For both 
scenarios, differences in relative and total individualized alpha power were calculated.

Appendix 1—figure 1. Visualizations of possible fallacies in total and relative power measures in simulated data. 
Bar plots on the right indicate the difference in alpha power between simulated data 2 and simulated data 1 in A, 
and simulated data 4 to simulated data 3 in B. (A) Two simulated power spectra with identical true alpha oscillatory 
power. The high amplitude oscillation in the theta range (~5 Hz) in simulated data 1 conflates results in relative 
power differences in the alpha band. (B) Two simulated power spectra with identical alpha oscillatory power. Here, 
differences in the aperiodic intercept and slope between the two signals conflate results in total and relative power 
differences in the alpha band.

https://doi.org/10.7554/eLife.77571
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Appendix 2
Appendix 2—figure 1 visualizes the detailed exclusion criteria and their effect on the sample size 
of the main HBN dataset.

Appendix 2—figure 1. Flow chart of exclusion criteria applied to the main HBN dataset, yielding 1770 subjects 
plotted in Figure 1 and used for the statistical analyses.

https://doi.org/10.7554/eLife.77571
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Appendix 3

A: Site-specific scanning parameters
For detailed scanning protocols for all three acquisition sites see here and Alexander et  al., 
2017.

Staten island (SI) scanning site
Scanning at site SI was performed in a mobile trailer with a 1.5T Siemens Avanto system and a 
Siemens 32-channel head coil, 32 RF receive channels and 45 mT/m gradients. The University of 
Minnesota Center for Magnetic Resonance Research (CMRR) simultaneous multi-slice echo planar 
imaging sequence was used. DTI imaging was acquired at 72 slices, with a resolution of 2 × 2 x 2 mm 
in 64 diffusion directions and b-values of 0, 1,000 and 2000 s/mm2. Further DTI parameters were TR 
= 3110ms, TE = 76.2ms, flip angle of 90 degrees and threefold multiband acceleration.

T1-weighted imaging was acquired at 176 slices with a resolution of 1 × 1 x 1 mm and scanning 
parameters of TR = 2730ms, TE = 1.64ms, TI = 1000ms and a flip angle of 7 degrees.

Rutgers University Brain Imaging Center (RUBIC) scanning site
At the RUBIC site, scans were acquired with a Siemens 3T Tim Trio MRI scanner, a Siemens 32-channel 
head coil using the CMRR simultaneous multi-slice echo planar imaging sequence. DTI imaging 
comprised 72 slices with a resolution of 1.8 × 1.8 x 1.8 mm. Further DTI specifications were: TR = 
3320ms, TE = 100.2ms, a flip angle of 90 degrees, threefold multiband acceleration, 64 diffusion 
directions and b-values of 0, 1,000 and 2000 s/mm2.

For T1-weighted imaging 224 slices at a resolution of 0.8 × 0.8 x 0.8 mm were acquired with TR 
= 2500ms, TE = 3.15ms, TI = 1060ms and flip angle of 8 degrees.

CitiGroup Cornell Brain Imaging Center (CBIC) scanning sites
The CBIC site was equipped with a 3T Prisma scanner and a Siemens 32-channel head coil using the 
CMRR simultaneous multi-slice echo planar imaging sequence. DTI was acquired at 81 slices with 
a resolution of 1.8 × 1.8 x 1.8 mm in 64 diffusion directions and b-values of 0, 1000, and 2000 s/
mm2. Further scanning parameters were set to TR = 3320ms, TE = 100.2ms, a flip angle of 90 deg, 
threefold multiband acceleration. The parameters for T1-weighted imaging at CBIC were identical 
to the RUBIC site.

B: DTI Preprocessing
The DTI preprocessing pipeline included the following steps: (1) Denoising was performed using the 
‘MPdenoising’ function employing a four-dimensional image denoising and noise map estimation 
algorithm (Veraart et al., 2016). (2) Gibbs artefacts were removed from the denoised images using 
the ‘unring’ function with the default parameters (Kellner et al., 2016). The following steps were 
executed using the FMRIB Software Library (FSL) version 6.0.4 (Jenkinson et  al., 2012). (3) We 
used the FSL Brain Extraction Tool (BET) to obtain a binary brain mask from the whole head image 
using a fractional anisotropy threshold of 0.1 (Smith, 2002). (4) Eddy current-induced distortions 
and in-scanner head motion artefacts were removed using the FSL tool ‘eddy_cuda’ (Andersson 
et al., 2016; Andersson et al., 2017; Andersson and Sotiropoulos, 2016). For this tool the settings 
were as follows: 8 iterations, smoothing full-width-half-max parameters of [10, 6, 4, 2, 0, 0, 0, 0] for 
each respective iteration, enabled outlier detection and replacement for slice-wise and multiband 
group outliers and additional 8 iterations for slice-to-volume correction. (5) Outlier detection of 
MRI parameters and robust parameter estimation was performed with the function ‘irlls’ applying 
iterative reweighted linear least squares (Collier et al., 2015). (6) Using the function ‘dki_fit’ (Veraart 
et al., 2013) we performed tensor fitting and extraction of diffusivity measures based on weighted 
linear least squares estimation. (7) For the extraction of DTI parameters we used the function ‘dki_
parameters’ (Veraart et al., 2011). (8) To calculate white matter tract integrity metrics we applied 
the function ‘wmti_parameters’ (Fieremans et al., 2011). (8) AC-PC aligned nifti image was created 
using the function ‘mrAnatAutoAlignAcpcNifti’ (https://github.com/vistalab/vistasoft, Vistalab; 
Cardinal, 2022, Stanford University, Stanford, CA). The output of this preprocessing pipeline was 
the input for tractography using Automating Fiber-Tract Quantification (AFQ, v0.1) (Yeatman et al., 
2012). (9) The parameters for the function ‘AFQ_Create’ were: ‘cutoff’ of [5 95], FA threshold of 0.2, 
FA mask threshold of 0.3, and angle threshold of 35 degrees. (10) We used the ‘AFQ_run’ function to 
calculate individual white matter tract profiles of FA. (11) Based on these tract profiles, we calculated 

https://doi.org/10.7554/eLife.77571
http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/
https://github.com/vistalab/vistasoft
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a mean FA value which is the average FA of 100 equidistant nodes along clipped predefined regions 
of the left and the right thalamic radiation, respectively.

C: T1-weighted preprocessing
T1-weighted scans were preprocessed with FreeSurfer (version 6.0.0) (http://surfer.nmr.mgh.​
harvard.edu/). Subcortical volumetric segmentation of the left and right thalamus was computed 
using the function recon-all (Fischl et al., 2002; Fischl et al., 2004; Han et al., 2006). First, the T1-
weighted scan was corrected for intensity non-uniformity with Non-parametric Non-uniform intensity 
Normalization. Second, the Talairach transformation was computed which is an affine transform to 
the MNI305 atlas. Third, intensity normalization was applied, which corrects deviations in intensity 
for later intensity-based segmentation. All voxel’s intensity was scaled such that the white matter 
mean intensity was 110. Fourth, skull tissue was removed from the intensity normalized image and 
a brain mask was created. Next automatic subcortical segmentation was performed. For this, the 
intensity non-uniformity corrected (NU-corrected) image was co-registered to the Gaussian Classifier 
Atlas (GCA). Based on the GCA model the image was first normalized and nonlinearly transformed 
to the GCA atlas. In a next step, regions corresponding to the neck were removed from the NU-
corrected image. Further, a transformation was applied of the NU-corrected image without the neck 
to the GCA image containing the skull. Lastly, subcortical structures were labeled in accordance with 
the GCA model and statistics on the segmented subcortical structures computed and summarized.

https://doi.org/10.7554/eLife.77571
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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Appendix 4
Control analysis: Influence of specParam model fit
Control analyses were performed to investigate the relationship between the specParam model fit 
and age, gender and diagnoses (no diagnoses, ADHD, other diagnosis) controlling for recording site 
and handedness (EHI) in the full HBN dataset. A linear model was formulated as

	﻿‍ specParam model fit ∼ age + gender + diagnosis + EHI + site‍�

No significant effects were found in diagnosis, EHI or site; however, age (b=–0.0002, p=6.63e- 
10) and gender (b female = –0.0015, p=7.73e-15) showed significant negative associations with the 
model fit.

To rule out possible confounding effects of the specParam model fit in the analysis of alpha power 
and aperiodic signal components, additional control analyses were performed, adding a predictor 
labeled ‘specParam model fit’ to the main statistical analysis (equation 2, section 2.2.8). Therefore, 
for the main HBN dataset, a multivariate Bayesian regression model (brms) was defined as

	﻿‍

[
dv

′
s
]

∼ age ∗ gender + diagnosis + EHI + site + specParam model fit
‍�

As summarized in Appendix 4—table 1 and a significant association of the specParam model fit 
with the magnitude of the alpha power measures and the aperiodic signal parameters was observed 
in the main HBN dataset. However, the original results and conclusions remained unaffected: A 
significant negative effect of age was found on the aperiodic intercept and slope and on total 
individualized alpha power. Aperiodic-adjusted and relative individualized alpha power and the 
alpha peak frequency showed a positive significant association with age. All these six dependent 
variables showed a significant association with gender (i.e. smaller values for females as compared 
to males) and no significant associations with the clinical diagnosis.

Appendix 4—table 1. Main HBN dataset: Bayesian regression model controlling for possible 
influence of the specParam model fit on effects of age, gender, and diagnosis on the outcome 
variables.

Outcome

βpredictor [CI]

Age Gender Diagnosis: ADHD Diagnosis: Other Age*gender
specParam model 
fit

Alpha peak frequency 0.41 [0.34 0.49] –0.08 [–0.14 –0.02] –0.07 [–0.17 0.02] –0.06 [–0.16 0.04] –0.04 [–0.16 0.08] –0.04 [–0.10 0.02]

Total individualized 
alpha power –0.30 [–0.37 –0.23] –0.34 [–0.37 –0.23] 0.02 [–0.08 0.11] 0.01 [–0.09 0.12] 0.15 [0.04 0.27] 0.13 [0.07 0.19]

Relative individualized 
alpha power 0.18 [0.10 0.25] –0.31 [–0.38 –0.25] 0.00 [–0.10 0.10] 0.00 [–0.10 0.11] –0.03 [–0.15 0.09] 0.17 [ 0.11 0.23]

Aperiodic-adjusted 
individualized alpha 
power 0.27 [0.20 0.34] –0.35 [–0.41 –0.29] –0.03 [–0.12 0.07] –0.02 [–0.13 0.08] –0.04 [–0.16 0.08] 0.15 [ 0.09 0.20]

Aperiodic intercept –0.54 [–0.60 –0.48] –0.31 [–0.36 –0.26] 0.00 [–0.08 0.09] –0.01 [–0.09 0.08] 0.11 [0.02 0.21] 0.23 [0.18 0.27]

Aperiodic slope –0.43 [–0.49 –0.37] –0.31 [–0.36 –0.26] –0.02 [–0.10 0.06] –0.03 [–0.11 0.06] –0.01 [–0.10 0.09] 0.32 [ 0.27 0.37]

Note: CI = 98.97% Credible Interval, gender variable is dummy coded: 1=female, 0=male.

https://doi.org/10.7554/eLife.77571


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Tröndle et al. eLife 2022;11:e77571. DOI: https://doi.org/10.7554/eLife.77571 � 33 of 34

Appendix 5
Control analysis: SpecParam fitting procedure following guidelines of 
Ostlund et al., 2022
To rule out potential resulting confounding effects of specParam model overfitting (mean R-
squared=0.9943, sd = 0.0098 in the full HBN sample) and the cut-off defined a priori for exclusion 
of bad specParam model fits (R2 <0.9), additional control analyses were performed following the 
procedure described in the guidelines by Ostlund et  al., 2022. Following these guidelines, we 
randomly subsampled 10% of the HBN dataset. First, we applied the default specParam fitting 
parameters as previously in the initial submission (peak width limits: [0.5 12], max number of 
peaks: infinite, minimum peak height: 0, peak threshold: 2 sd above mean, aperiodic mode: fixed). 
Subsequently, the proportion of model underfits and overfits were determined using the cut-offs 
mean absolute error (MAE)>0.1 for underfitting and MAE <0.025 for overfitting. The definitions of 
these MAE cut-offs were adopted from the example analysis in Ostlund et al., 2022, who investigated 
a sample of children (mean age = 9.97, sd = 0.95). Applying these cut-offs yielded significant loss of 
data in the subsample analyzed (5.3% overfitting, 0.001% underfitting). Consequently, to minimize 
overfitting, the model fit parameters were changes as suggested in Ostlund et al., 2022: peak width 
limits: [1 8]; max number of peaks: 6; minimum peak height: 0.1; peak threshold: 2 sd above mean; 
aperiodic mode: fixed. Applying specParam again to data of the same 10% subsample of the HBN 
data yielded very little loss of data (0.001% underfitting, 0.4% overfitting).

Subsequently, all analyses described in 4.2.3–4.2.8 were repeated for the full HBN dataset, 
applying these updated specParam fitting parameters. With these parameter settings, 0.2% of all 
fitted specParam models were underfitting, and 0.5% were overfitting in the full sample, applying 
the new exclusion criteria (MAE >0.1 or MAE <0.025).

The control analysis showed highly consistent results compared to the previous analysis reported 
in Table 1, see Appendix 5—table 1 for detailed results.

Appendix 5—table 1. Bayesian regression model results of the main dataset. 

Adjusted specParam fitting parameters (peak width limits: [1 8]; max number of peaks: 6; minimum 
peak height: 0.1; peak threshold: 2 sd above mean; aperiodic mode: fixed) and data exclusion 
criteria of specParam fit: MAE >0.1 or MAE <0.025.

Outcome

βpredictor [CI]

Age Gender Diagnosis: ADHD Diagnosis: Other Age*gender

Alpha peak frequency 0.42 [0.34 0.49] –0.05 [–0.12 –0.01] –0.07 [–0.16 0.04] –0.06 [–0.16 0.05] –0.01 [–0.15 0.10]

Total individualized 
alpha power –0.33 [–0.40 –0.26] –0.36 [–0.42 –0.30] 0.01 [–0.09 0.10] 0.02 [–0.08 0.12] 0.14 [0.03 0.26]

Relative individualized 
alpha power 0.15 [0.07 0.22] –0.34 [–0.40 –0.28] –0.01 [–0.11 0.09] 0.01 [–0.09 0.11] –0.04 [–0.16 0.09]

Aperiodic-adjusted 
individualized alpha 
power 0.24 [0.17 0.32] –0.37 [–0.43 –0.31] –0.03 [–0.13 0.07] –0.02 [–0.11 0.08] –0.04 [–0.16 0.08]

Aperiodic intercept –0.57 [–0.63 –0.518] –0.35 [–0.40 –0.30] –0.01 [–0.09 0.07] –0.01 [–0.10 0.07] 0.09 [–0.01 0.19]

Aperiodic slope –0.47 [–0.53 –0.40] –0.37 [–0.42 –0.32] –0.03 [–0.12 0.05] –0.04 [–0.13 0.05] –0.04 [–0.15 0.06]

Note: Credible Interval (CI)=99.17%

https://doi.org/10.7554/eLife.77571
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Appendix 6
Control analysis: Analysis of specParam periodic alpha peak power
The present results indicated an age-related increase in aperiodic-adjusted alpha power when 
averaging power from the aperiodic-adjusted power spectrum in a frequency window commonly 
applied in literature ([–4  Hz 2  Hz] centered around the individual alpha peak frequency, e.g., 
Klimesch, 1999). Alternatively, as proposed by Donoghue et al., 2020b, the periodic peak in the 
alpha range could be extracted from the specParam algorithm as an indicator of individual alpha 
power. A control analysis was performed on the main HBN dataset to investigate whether results are 
consistent when applying both periodic measures of alpha power. Therefore, the highest Gaussian 
oscillatory peak detected by the specParam algorithm was found in a search window (7.5 Hz to 
13.5 Hz) and its height was extracted as the individual alpha power. The analyses described in 4.2 
were repeated, using the specParam oscillatory peak height instead of the average of the aperiodic-
adjusted power spectrum in the individual alpha range. Results are highly consistent across the two 
approaches. The results for the specParam periodic alpha peak power approach are: bage = 0.20, CI 
= [0.12, 0.27], bgender = –0.30, CI = [-0.37,–0.24]. The results for aperiodic-adjusted individual alpha 
band power approach found: bage = 0.23, CI = [0.16, 0.30], bgender = –0.39, CI = [-0.45,–0.33]. This is 
not surprising as the average aperiodic-adjusted power spectrum in the individual alpha range and 
specParam periodic alpha peak power are highly correlated (r=0.92). Detailed results of the control 
analysis are reported in Appendix 6—table 1.

Appendix 6—table 1. Bayesian regression model results of the main HBN dataset, using the 
specParam periodic alpha peak parameter.

Outcome

βpredictor [CI]

Age Gender ADHD diagnosis Age*gender

Alpha peak frequency 0.42 [0.35 0.49] –0.07 [–0.14 –0.02] –0.07 [–0.17 0.02] –0.04 [–0.15 0.08]

Total individualized alpha power –0.31 [–0.39 –0.24] –0.37 [–0.42 –0.30] 0.02 [–0.08 0.11] 0.14 [0.02 0.25]

Relative individualized alpha power 0.16 [0.08 0.23] –0.34 [–0.41 –0.28] –0.01 [–0.11 0.09] –0.05 [–0.17 0.07]

specParam periodic alpha peak 
power 0.20 [0.12 0.27] –0.30 [–0.37 –0.24] –0.01 [–0.11 0.08] –0.05 [–0.17 0.07]

Aperiodic intercept –0.56 [–0.62 –0.50] –0.35 [–0.41 –0.30] 0.00 [–0.09 0.08] 0.09 [–0.01 0.19]

Aperiodic slope –0.38 [–0.43 –0.33] –0.03 [–0.11 0.06] –0.04 [–0.15 0.06]

Note: CI = 99.17% Credible Interval; gender variable is dummy coded: 1=female, 0=male.

https://doi.org/10.7554/eLife.77571
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