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Background: The identification of different subtypes of early-stage lung invasive adenocarcinoma before 
surgery contributes to the precision treatment. Radiomics could be one of the effective and noninvasive 
identification methods. The value of peritumoral radiomics in predicting the subtypes of early-stage lung 
invasive adenocarcinoma perhaps clinically useful.
Methods: This retrospective study included 937 lung adenocarcinomas which were randomly divided 
into the training set (n=655) and testing set (n=282) with a ratio of 7:3. This study used the univariate and 
multivariate analysis to choose independent clinical predictors. Radiomics features were extracted from  
18 regions of interest (1 intratumoral region and 17 peritumoral regions). Independent and conjoint 
prediction models were constructed based on radiomics and clinical features. The performance of the models 
was evaluated using receiver operating characteristic (ROC) curves, accuracy (ACC), sensitivity (SEN), and 
specificity (SPE). Significant differences between areas under the ROC (AUCs) were estimated using in the 
Delong test.
Results: Patient age, smoking history, carcinoembryonic antigen (CEA), lesion location, length, width and 
clinic behavior were the independent predictors of differentiating early-stage lung invasive adenocarcinoma 
(≤3 cm) subtypes. The highest AUC value among the 19 independent models was obtained for the PTV0~+3 
radiomics model with 0.849 for the training set and 0.854 for the testing set. As the peritumoral distance 
increased, the predictive power of the models decreased. The radiomics-clinical conjoint model was 
statistically significantly different from the other models in the Delong test (P<0.05).
Conclusions: The intratumoral and peritumoral regions contained a wealth of clinical information. The 
diagnostic efficacy of intra-peritumoral radiomics combined clinical model was further improved, which was 
particularly important for preoperative staging and treatment decision-making.
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Introduction

Pathologically, invasive lung adenocarcinoma comprises the 
following five types: lepidic-predominant adenocarcinoma 
(LPA), acinar-predominant adenocarcinoma (APA), 
p a p i l l a r y - p r e d o m i n a n t  a d e n o c a r c i n o m a  ( P PA ) , 
micropapillary-predominant adenocarcinoma (MPA) and 
solid-predominant adenocarcinoma (SPA) (1). Although 
lobectomy is the traditional clinical treatment for lung 
adenocarcinoma, wedge or segmental lung resection is 
probably more useful for the lepidic-dominanted subtype 
(2-4). Patients who choose sublobar resection have less 
surgical trauma and loss of lung function than with 
lobectomy. They have a substantially better quality of 
life after surgery. Moreover, the 5-year recurrence-free 
survival (RFS) and disease-free survival (DFS) rates for 
lepidic lung adenocarcinoma are significantly higher than 
those for the other subtypes (5,6). However, early-stage 
invasive lung adenocarcinoma always appears as a ground 
glass nodule on computed tomography (CT) with a low 
operative component. It is challenging to determine the 
lung adenocarcinoma subtype of patients by traditional 
methods such as imaging, blood markers, and needle biopsy 
before surgery (7-9). Therefore, clinical decision-making 
desperately needs more effective and non-invasive methods 
to bail out the phenomenon of overtreatment.

Radiomics is an emerging and reliable research 
approach that is widely used to non-invasively predict 
the classification and extent of cancer, resolve genetic 

phenotypes, and predict disease onset and regression  
(10-13). It is a data-driven method that screens extensive 
features from medical images for reproducibility to excavate 
the research object of potential information. 

The changes in lymphatic vessels, blood vessels, 
inflammation and immune cell  infi ltration in the 
microenvironment around tumors are conditions that 
support the occurrence and progression of tumors  
(14-16). Many studies of the peritumoral region have 
yielded promising results in recent years. Zhang et al. 
revealed the added value of peritumoral radiomics in terms 
of tumor heterogeneity (17). Chen et al. extracted the 
radiomics features of the 9 mm area surrounding the lesions 
to improve the prediction of lymphovascular invasion 
and overall survival in non-small cell lung cancer (18).  
Yamazaki et al.’s studies have shown the combined use of 
intra- and peritumoral radiomic features improved the 
performance for epidermal growth factor receptor (EGFR) 
mutation prediction in primary lung cancer (19). The above 
studies provided methodological feasibility. Few studies on 
radiomics have investigated or discussed the subtypes of 
early-stage lung invasive adenocarcinoma.

Therefore, this study aimed to investigate the potentially 
valuable information in the intratumoral and peritumoral 
regions of early invasive lung adenocarcinoma through 
radiomics methods and construct the effective model 
to distinguish between the LPA and the non-lepidic-
predominant subtype (non-LPA) before the clinical 
operation. We present this article in accordance with the 
TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-1324/rc)

Methods

Study population

This study retrospectively analysed patients with 
pathologically confirmed lung adenocarcinoma in Shaoxing 
People’s Hospital, Shaoxing Hospital, Zhejiang University 
School of Medicine from January 2016 to September 
2021. Clinical and imaging data were collected from 
856 patients with 937 lesions after evaluation. Inclusion 
criteria: (I) pulmonary nodules underwent complete 
surgical resection with pathologically confirmed early 
invasive lung adenocarcinoma; (II) the interval between CT 
examination and surgery of less than 30 days; (III) patients 
with complete clinical data. Exclusion criteria: (I) patients 
with a history of extra-pulmonary malignancy (n=9); (II) 
poor CT image quality due to severe respiratory artefacts or 
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inflammation affecting the assessment (n=46); (III) patients 
with previous neoadjuvant treatment for malignancy 
(n=10); (IV) lesions larger than 3 cm in length on imaging 
(n=29). The blood biomarkers criteria: the normal upper 
limit for carcinoembryonic antigen (CEA), cancer antigen 
125 (CA125), CA50, CA242, and neuron-specific enolase 
(NSE) was 5, 35 ng/mL, 25, 35 IU/mL, and 15.7 ng/mL, 
respectively. All patients underwent blood testing at our 
institution. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Ethics Committee of the Shaoxing People’s 
Hospital, Shaoxing Hospital, Zhejiang University School of 
Medicine (No. 2021-K-Y-363-01), and the patient consent 
requirement was waived because of its retrospective nature.

CT image acquisition

All patients were scanned with a Brilliance 64 scanner 
(Philips Healthcare, Eindhoven, The Netherlands) and 
a Brightspeed 16 scanner (General Electric Healthcare, 
Shenzhen, China) for 1–2.5 mm thickness chest CT scans. 
The procedure was as follows: the patient lay flat on the 
scanning table, his or her hands were raised to the head 
to avoid scan occlusion, the breath was held according to 
the instrument prompts, the range was from above the 
lung apex to below the level of the diaphragm, and the 
acquisition parameters included voltage (120 KV), current 
(160 mA), scan layer thickness (1.0-2.5 mm), matrix 
(512×512), spacing (0.8–1.5), frame rotation speed (0.5 s/r), 
window width 1,500 HU, window position −600 HU.

Histopathological assessment

Two experienced lung cancer pathologists performed a 
comprehensive histological assessment of all surgically 
resected lung specimens according to the 2011 version 
of the International Association for the Study of Lung 
Cancer (IASLC), the American Thoracic Society (ATS), 
and the European Respiratory Society (ERS) classification  
criteria (1). All patients included in the study were divided 
into two groups: the LPA group (LPA) and the non-LPA 
group (APA, PPA, MPA, and SPA). These two groups were 
used as a clinical endpoint for the classification problem.

Segmentation and radiomics feature extraction

All case scan CT images recorded for this study were 
loaded into The Darwin research platform (https://arxiv.

org/abs/2009.00908) and performed image preprocessing 
(standardized image resampling). The gross tumor volume 
(GTV) was defined as the tumor that was identified within 
the visible tumor border. The peritumoral volume (PTV) 
was defined as PTV0~+3 (3 mm external to the tumor border). 
We used a compiled artificial intelligence (AI) algorithm 
which based on Fast Region-based Convolutional Network 
method (Faster R-CNN; https://arxiv.org/abs/1506.01497) 
to help two radiologists who skilled in image processing 
software delineate the target nodules semi-automatically. 
The radiologists were blinded to all clinical information. 
Next, they adjusted the regions of interest (ROIs) of the 
target tumor and avoided blood vessels, bronchi, and 
adjacent structures along the nodal border that were 
recognisable to the naked eye. Finally, a senior physician 
reviewed the adjustments. Meanwhile, they also evaluated 
the characteristics of nodules, like pure, part-solid or solid. 
Some previous findings showed that a resection margin  
>15 mm did not decrease the risk of recurrence or a 
resection margin ≥20 mm was the safe margin (20,21). Liu 
et al. found that a 6 mm area surrounding the tumor could 
provide biological information related to the heterogeneity 
of lung adenocarcinoma (22). Based on the above research, 
we used an extension algorithm with 3 and 5 mm spacing 
to extend the segmented tumor outer contour outward to 
20 mm, respectively (3, 6, 9, 12, 15, 18 mm and 5, 10, 15, 
20 mm), while manually calibrating the tumor margin. The 
peritumoral region included pulmonary vessels and bronchi. 
Figure 1 shows the flow of our study.

This study extracted first-order features, shape features, 
and texture features, which were image histology features, 
by using the above software and processes the CT images 
using filters: wavelet transform and Laplace operator to 
obtain the transformed features. Definitions and formulas of 
these radiomic features are available at https://pyradiomics.
readthedocs.io/en/latest/features.html.

Feature selection and radiomics model construction

The cases in this study were allocated as training or 
test cohorts in a ratio of 7:3. The feature selection and 
model construction for each target region were handled 
consistently. First, the extracted radiomics features were 
normalised using a standardisation method to eliminate 
the magnitudes. The Pearson Correlation Coefficient 
(PCC) method (excluding features with absolute correlation 
coefficient ≥0.9) and the F-Value method were chosen to 
reduce the dimensionality. The 10-fold cross-validation 

https://arxiv.org/abs/2009.00908
https://arxiv.org/abs/2009.00908
https://arxiv.org/abs/1506.01497
https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
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Figure 1 Overall radiomics workflow and pipeline in this study. Step 1: imaging segmentation and extension were performed on chest CT 
using commercial software in an automatic manner. Step 2: extraction of 1,781 radiomics features from each of the target regions. Step 
3: radiomics features are selected through the PCC method, the F-Value method, the LASSO method. Step 4: the predictive ability of 
radiomics features is evaluated by the prediction model. CT, computed tomography; GTV, gross tumor volume; PTV, peritumoral volume; 
PTV0~+3, the volume of the region 3 mm external to the visible tumor border; ROC, receiver operating characteristic; PCC, Pearson 
Correlation Coefficient; LASSO, Least Absolute Shrinkage and Selection Operator. 

method prevented overfitting and improved the model’s 
generalization ability. The redundant radiomics features 
were removed using the Least Absolute Shrinkage and 
Selection Operator (LASSO) method. The radiomics score 
(rad-score) was calculated based on candidate features. 
Next, this study used the rad-scores to establish the logistic 
regression (LR) independent prediction model respectively. 
Finally,  optimal radiomics features selected from 
intratumoral and peritumoral features to construct GTV 
+ PTV model. The best features of GTV + PTV model 
were combined with the clinical features to build clinical-
intratumoral-peritumoral conjoint model (Clinical + GTV 
+ PTV model). 

Construction of the clinical model and nomogram

This study used univariate analysis and multivariate LR 
analysis to screen the independent clinical predictors of LPA 
tumor and constructed the clinical model. The nomogram 
was constructed based on independent clinical predictors 

and the rad-score of the best radiomics model. 

Statistical analysis

Clinical data were analysed statistically using SPSS software 
(version 27.0 IBM SPSS Statistics, Armonk, NY, USA). 
The methods were as follows: the Student t-test (normally 
distributed values) and Mann-Whitney U test (non-normally 
distributed values) assessed the continuous measurement 
data. The Chi-squared test or Fisher exact test was used for 
comparison between categorical variables.

The radiomics data analysis was based on R software 
(version: 3.6.3; http://www.r-project.org). Area under the 
receiver operating characteristic (ROC) curve (AUC), 
accuracy (ACC), sensitivity (SEN), and specificity (SPE) 
were calculated by plotting the ROC curves. Significant 
differences between the AUCs were estimated using 
the Delong test, which could determine the statistical 
significance between the models. P<0.05 was considered 
statistically significant. Data in the parentheses referred to 

http://www.r-project.org
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the 95% confidence interval of AUC.

Results

Characteristics of the study cohorts

A total of 937 lung adenocarcinomas were included in this 
study, with 603 (64.4%) LPAs and 334 (35.6%) non-LPAs 
(259 APAs, 51 PPAs, 1 MPA, and 23 SPAs). Significant 
differences were found in patient age, smoking history, 
CEA, lesion location, length, width and clinic behavior 
(P<0.05). Table 1 shows the details. After multivariate 
analysis, we found patient age, smoking history, CEA, lesion 
location (right or left upper lobe, right middle lobe, right 
lower lobe), length, width and clinic behavior (pure, solid) 
as the independent predictors of differentiating the LPA or 
Non-LPA lung cancer (P<0.05), and the feature importance 
could be found in Figure 2A.

Feature selection and model situation

Each target region was extracted with 1,781 radiomics 

features, which were collected and summarised as 
follows: 342 first order feature, 456 GLCM (gray level 
co-occurrence matrix feature), 266 GLDM (gray level 
dependence matrices feature), 304 GLRLM (gray level 
run length matrix feature), 304 GLSZM (gray level size 
zone matrix feature), 95 NGTDM (neighboring gray tone 
difference matrix feature), and 14 shape based. We used the 
above method to select and retain the top 10 features with 
greater weight in the target region to calculate rad-scores 
for the GTV, PTV, and GTV + PTV models. We converted 
12 best radiomics features to rad-score which combined 
with the clinical features to construct the Clinical + GTV + 
PTV0~+3 model. The models’ coefficients could be found in 
Figure 2B-2E.

Model effectiveness

This study used the above independent clinical predictors to 
establish the clinical model (Figure 3A). The corresponding 
AUC values, ACC, SEN, and SPE of each model are shown 
in Table 2. The results showed that the highest AUC value 
among the 19 independent models was for the PTV0~+3 

Table 1 Patient characteristics in the training and testing sets

Characteristics Lepidic (n=603) Non-lepidic (n=334) P values

Age (years), median [range] 61 [18–83] 63 [28–83] <0.01

Sex, n [%] 0.337

Female 424 [70] 224 [67]

Male 179 [30] 110 [33]

BMI (kg/m2), median [range] 22.7 [14.9–35.3] 22.9 [15.2–38.1] 0.194

Length (mm), median [range] 11 [3–30] 15 [5–30] <0.01

Width (mm), median [range] 9 [3–30] 12 [3–26] <0.01

Smoking, n [%] 0.006

Yes 72 [12] 62 [19]

No 531 [88] 272 [81]

Drinking, n [%] 0.036

Yes 71 [12] 56 [17]

No 532 [88] 278 [83]

Hypertension, n [%] 0.002

Yes 184 [31] 135 [40]

No 419 [69] 199 [60]

Table 1 (continued)
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Table 1 (continued)

Characteristics Lepidic (n=603) Non-lepidic (n=334) P values

Diabetes, n [%] 0.637

Yes 53 [9] 33 [10]

No 550 [91] 301 [90]

Clinic behavior, n [%] <0.01

Pure 294 [49] 14 [4]

Opacity 278 [46] 197 [59]

Solid 31 [5] 123 [37]

Lesion location, n [%] <0.01

Right upper lobe 265 [44] 115 [34]

Right middle lobe 34 [6] 32 [10]

Right lower lobe 91 [15] 66 [20]

Left upper lobe 161 [27] 60 [18]

Left lower lobe 52 [9] 61 [18]

CEA, n [%] <0.01

Abnormal 36 [6.0] 41 [12.3]

Normal 567 [94.0] 293 [87.7]

CA125, n [%] >0.99

Abnormal 9 [1.5] 5 [1.5]

Normal 594 [98.5] 329 [98.5]

CA50, n [%] 0.109

Abnormal 3 [0.5] 6 [1.8]

Normal 600 [99.5] 328 [98.2]

CA242, n [%] >0.99

Abnormal 4 [0.7] 2 [0.6]

Normal 599 [99.3] 332 [99.4]

NSE, n [%] 0.754

Abnormal 2 [0.3] 0 [0.0]

Normal 601 [99.7] 334 [100.0]

Surgical decision, n [%] <0.01

Wedge resection 267 [44] 78 [23]

Segmentectomy 190 [32] 61 [18]

Lobectomy 146 [24] 195 [58]

Statistical difference between each set is resolved using Mann-Whitney U and Chi-squared tests for continuous and categorical variables, 
respectively. P values is derived from the univariable association analyses between dataset LPA group and dataset non-LPA group. Pure: 
pure ground-glass nodule; Opacity: mixed ground-glass nodule; Solid: solid nodule. BMI, body mass index; CEA, carcinoembryonic 
antigen; CA, cancer antigen; NSE, neuron-specific enolase; LPA, lepidic-predominant adenocarcinoma; non-LPA, acinar-predominant 
adenocarcinoma, papillary-predominant adenocarcinoma, micropapillary-predominant adenocarcinoma and solid-predominant 
adenocarcinoma. 
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Table 2 The performance of the different models

Model name
Training set Testing set

AUC SEN SPE ACC AUC SEN SPE ACC

Clinical 0.8374 0.7536 0.7511 0.7527 0.8432 0.7569 0.703 0.7376

GTV 0.8628 0.846 0.7253 0.8031 0.8427 0.8232 0.703 0.7801

PTV0~+3 0.8492 0.8492 0.782 0.7725 0.8541 0.7901 0.7822 0.7872

PTV0~+5 0.8428 0.8318 0.7082 0.7878 0.8498 0.7956 0.7327 0.773

PTV0~+6 0.836 0.8081 0.7253 0.7787 0.829 0.8011 0.7129 0.7695

PTV0~+9 0.8245 0.8389 0.6738 0.7802 0.8083 0.8177 0.7228 0.7837

PTV0~+10 0.8239 0.7488 0.7597 0.7527 0.7908 0.7293 0.7327 0.7305

PTV0~+12 0.8104 0.7180 0.7768 0.7389 0.7913 0.6575 0.7525 0.6915

PTV0~+15 0.7883 0.7512 0.7093 0.7344 0.7601 0.6961 0.7426 0.7128

PTV0~+18 0.7771 0.7749 0.6567 0.7328 0.7445 0.7182 0.6832 0.7057

PTV0~+20 0.7063 0.628 0.7124 0.658 0.6367 0.5249 0.6535 0.5709

PTV+3~+6 0.819 0.819 0.7701 0.721 0.7911 0.7569 0.7228 0.7447

PTV+6~+9 0.8070 0.7512 0.7253 0.7420 0.7804 0.7072 0.7129 0.7092

PTV+9~+12 0.7825 0.7678 0.6953 0.7420 0.7181 0.6906 0.6436 0.6738

PTV+12~+15 0.7317 0.6872 0.6824 0.6855 0.6780 0.6133 0.6436 0.6241

PTV+15~+18 0.6887 0.7559 0.5579 0.6855 0.6036 0.6851 0.4752 0.6099

PTV+5~+10 0.8015 0.7962 0.6695 0.7511 0.7997 0.7459 0.6535 0.7128

PTV+10~+15 0.7121 0.7085 0.6052 0.6718 0.6709 0.6243 0.6139 0.6206

PTV+15~+20 0.7369 0.6682 0.6910 0.6763 0.6311 0.5470 0.6238 0.5745

GTV + PTV0~+3 0.8623 0.8768 0.6953 0.8122 0.8558 0.8564 0.7426 0.8156

Clinical + GTV + PTV0~+3 0.8804 0.8081 0.7983 0.8046 0.8919 0.8232 0.7822 0.8085

AUC, area under the receiver operating characteristic curve; SEN, sensitivity; SPE, specificity; ACC, accuracy; GTV, gross tumor volume; 
PTV, peritumoral volume; PTV0~+3, the volume of the region 3 mm external to the visible tumor border.

radiomics model with an AUC value of 0.849 (95% CI: 
0.818, 0.881) for the training set and 0.854 (95% CI: 0.808, 
0.9) for the testing set. The GTV model AUC value was 
similar to the PTV0~+3 peritumoral model. The AUC value 
of the clinical model was relatively low. The features of 
GTV + PTV model were selected from features extracted 
within the intratumoral region and the peritumoral 0–3 mm 
region, with an AUC value of 0.862 (95% CI: 0.832, 0.892) 
for the training set and 0.856 (95% CI: 0.809, 0.903) for the 
testing set. We constructed the Clinical + GTV + PTV0~+3 
model with an AUC value of 0.8804 (95% CI: 0.853, 0.908) 
in the training set and 0.8919 (95% CI: 0.855,0.929) in 
the testing set. The ROC curves for the above models are 

shown in Figure 3B-3F.
In Figure 4, the image showed the trend of model 

predictive efficacy with peritumoral distance. The longer 
the peritumoral distance, the worse the prediction 
eff iciency.  The training set AUC values for each 
independent model were >0.80 in the 0–9 mm range outside 
the tumor. According to Delong’s test (Table 3), there was 
no significant difference in the ROC curve area between the 
GTV, PTV0~+3 and PTV0~+5 models (P>0.05). The PTV0~+5 
model was significantly different from the PTV0~+6 model. 
The Clinical + GTV + PTV0~+3 model was statistically 
significantly different from the GTV + PTV0~+3 model, Z 
=2.6685, P=0.0076.
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Development of nomogram

The Clinical + GTV + PTV0~+3 model was selected as the 
best radiomics model to construct the nomogram. The 
nomogram was created incorporating the significant clinical 
predictors and rad-scores. It was shown in Figure 5.

Discussion

High throughput imaging data radiomics analysis energizes 
the field of lung nodule staging studies (23). In our work, 
we constructed a Clinical + GTV + PTV0~+3 model (the 
PTV0~+3 model had the best AUC in peritumoral models) 
and found that sufficient information was concentrated 
in the migration zone between normal lung tissue and 
tumor lesions in the 0–6 mm area surrounding the tumor. 
The outcome revealed that intratumoral and peritumoral 
features could improve the prediction of early-stage lung 
adenocarcinoma subtypes. It provided one more reliable 
basis for clinical procedures and lesion margin selection.

Radiomics could quantify subtle differences in lung 
nodules’ internal structure and visualize the lesions’ 
biological significance (24,25). The current relevant 
radiomics studies discussed cases with small data sets, 
which were easily interfered with by extraneous conditions 
such as images and feature study methods, and intrinsic 
factors such as the redundancy of radiomics features and 
the high correlation of some features. These reasons made 
the selection of radiomics features for model building 

0.90 

0.85 

0.80 

0.75 

0.70 

0.65 

0.60

A
U

C

0 3 6 9 12 15 18 21 24
Peritumoral distance, mm

Training set 

Testing set

Figure 4 The trend of model predictive efficacy with peritumoral 
distance. AUC, area under the ROC; ROC, receiver operating 
characteristic. 

Table 3 Comparison of significant differences across the different models

Comparison Z values P values

GTV vs. PTV0~+3 0.9245 0.3552

GTV vs. PTV0~+5 0.4479 0.6542

GTV vs. PTV0~+6 0.5725 0.567

GTV vs. PTV0~+9 2.4117 0.0159

GTV vs. GTV+PTV 0~+3 1.6192 0.1054

GTV vs. Clinical + GTV+ PTV0~+3 3.2775 0.001

PTV0~+3 vs. GTV+PTV 0~+3 0.2066 0.8363

PTV0~+3 vs. Clinical + GTV + PTV0~+3 2.6368 0.0084

GTV + PTV0~+3 vs. Clinical + GTV + PTV0~+3 2.6685 0.0076

PTV0~+3 vs. PTV0~+5 0.4224 0.6728

PTV0~+3 vs. PTV0~+6 1.8903 0.0587

PTV0~+5 vs. PTV0~+6 2.37 0.0178

PTV0~+3 vs. PTV+3~+6 3.3888 0.0007

PTV0~+3 vs. PTV0~+9 3.1913 0.0014

GTV, gross tumor volume; PTV, peritumoral volume; PTV0~+3, the volume of the region 3 mm external to the visible tumor border. 
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very different among studies. The radiomics model built 
in this study contained mainly first-order statistics, a grey 
dependency matrix, and a grey co-occurrence matrix. In the 
GTV model, it could be found that the original image had 
more value, while the derived 3D image had more weight in 
the peritumoral model. The difference in the distribution of 
blood vessels and lymphatic vessels around the tumor may 
be the reason for this (14). 

Chen et al. reported that the association between 
peritumoral radiomics features which extracted from the 
0–6 mm region external to the tumor border and lymph 
node metastasis in clinical stage IA non-small cell lung 
cancer was a reasonable result (26). Similarly, in our 
study, the Delong test implied that factors for early lung 
adenocarcinoma progression might be concentrated in 
the peritumoral 0–6 mm range. This result might be 
associated with imaging signs such as indistinct tumor 
margins or small burr structures that were not accessible to 
the naked eye of radiologists. In the available experimental 
results, the diagnostic efficacy of the models decreased as 

the peritumoral expansion distance increases (Figure 4), 
which may be related to the size of some lesions and the 
presence of normal tissue within the expanded area diluting 
the proportion of peritumoral carcinogenic components. 
Astonishingly, most independent models still have good 
diagnostic efficacy (AUC >78%). Das et al. (27) used the 
multiple LR method to predict lymph node metastasis in 
163 cases of cT1N0M0 lung adenocarcinoma by combining 
intratumoral and peritumoral expansion of 5 mm and lymph 
node radiomics features. However, the peritumoral 5 mm 
model only had 50% SPE. The AUCs of the intratumoral 
and peritumoral model testing sets were 0.76 and 0.72, 
respectively, which were low compared with the present 
study. Perrone et al. (28) developed and validated a model to 
extract quantitative radiomics features from CT images to 
predict the evolution of non-small cell lung cancer tumors. 
Nevertheless, Perrone et al. used the “virtual biopsy” 
concept to extract and analyse only part of the peritumoral 
area, which may miss more essential parameters. In this 
study, the complete tumor margin was included, allowing 
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a more comprehensive analysis of the role of peritumoral 
environmental factors from a multidimensional perspective. 

Currently, several studies revealed that the radiomics 
model of the +3 mm peritumoral area effectively predicted 
chemotherapy response or EGFR mutation in non-small-
cell lung cancer (19,29,30). This study of differentiating 
LPA and Non-LPA lung cancer also obtained the same 
peritumoral area (the PTV0~+3 model had the best AUC in 
peritumoral models). Different from the above studies in 
which the efficacy of the peritumoral model was higher than 
that of the intratumoral model, the predictive performance 
of the GTV, PTV0~+3 and PTV0~+5 models was consistent 
in this study. It implied that the intratumoral and some 
peritumoral regions of invasive adenocarcinoma had similar 
developmental trends in early cancer evolution. However, 
the optimal peritumoral region can vary depending on the 
ACC of intratumoral segmentation, further evaluation 
should be performed.

To date, the identification of lung cancer relies on the 
imaging pattern of lung nodules on imaging and follow-up 
strategies. An increase in the solid component of nodules 
on follow-up CT images was one of the bases on which 
imaging physicians judge their benign or malignant (31). 
However, the proportion of solid components did not 
precisely match the degree of invasiveness (32). In our 
study, approximately 20% of the 154 lung adenocarcinomas 
that appeared solid had a predominantly lepidic growth 
pattern on pathology. It suggested that solid nodules did 
not always imply a higher degree of malignancy; the finding 
coincides with the experiments of Hattori et al. and Deng 
et al. (33,34). The nomogram showed that the pure ground 
glass nodule characteristic, negative CEA results and non-
smoking behavior made the lesion types more inclined to 
the LPA type. Seeking a basis for selecting a procedure 
solely from imaging follow-up might be overtreating. 
Wu et al.’s studies have shown that peritumoral radiomics 
features of CT images have increasing advantages in non-
small cell lung cancer research (35). Our experiment used 
a combination of intratumoral, peritumoral and clinical 
labels to construct the predictive model of high diagnostic 
value (testing set AUC: 0.8919), which could assist in 
making more appropriate clinical decisions. Vaidya et al. (36)  
confirmed that combining the advanced image analysis via 
radiomics and the routine visual assessment of CT scans 
could help better differentiate adenocarcinoma invasiveness. 
This was similar to the method used in this study. However, 
this study found no significant difference in the probability 
of nodules appearing pure or opacity behavior in LPA group 

(pure 49%, opacity 46%). The AUC of clinical model was 
lower than the AUC of radiomics fusion model, so we paid 
more attention to the experiment of radiomics.

This study’s advantage was using software-compiled 
AI algorithms to assist and semi-automatically segment 
the target lesion ROI, reducing errors in lesion margin 
outlining (37) and using a radiomics approach to visualise 
the carcinogenic environmental factors inside and 
outside the tumor. Zhu et al. (38) included data from  
1,018 patients diagnosed with ground glass nodule-like lung 
adenocarcinoma and extracted 1,223 radiomics features 
within the boundary and around the nodules on enhanced 
CT to conduct experiments. In this study, 1,781 initial 
radiomics features were extracted from each target region, 
which allowed for more excellent mining of potential 
information on the tumor CT images and increased the 
reliability of the findings. This study made additional 
efforts to subdivide the peritumoral regions to enhance the 
scientific and rigorous nature of the experiment.

There are several shortcomings in this study: (I) a 
retrospective study with a 5-year time window for collecting 
patient data, which cannot avoid some biases even when 
statistical methods were applied to adjust for it; (II) a 
single-centre study, which requires external validation by 
other institutions; (III) a grouping based on post-operative 
pathology reports, with a skewed sample distribution.

Conclusions

The ability of intratumoral and peritumoral radiomics based 
on preoperative CT images were of high value in predicting 
early-stage lung invasive adenocarcinoma pathological 
subtypes (LPA or non-LPA). The diagnostic efficacy of 
intratumoral-peritumoral radiomics combined clinical 
model was further improved, with particular reference 
significance for the preoperative staging and treatment 
decision.
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