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Introduction
COPD and smoking. Chronic obstructive pulmonary 

disease (COPD) refers to a group of pathologies that includes 
progressively worsening respiratory symptoms, non-reversible 
airway obstruction, chronic bronchitis, and emphysema.1–3 In 
the developed world, the most important risk factor for COPD 
is cigarette smoke (CS) and it has been estimated that tobacco 
use accounts for up to 70–95% of COPD in Western popula-
tions,4,5 although pollution and occupational exposure to dust 
and chemicals are also important risk factors for this disease.6 
Incidence estimates of COPD vary in smokers,7 and not all 
develop COPD, indicating that there may be genetic or host 

factors that predispose individuals to its development. The  
collection and analysis of clinical data has provided insights 
into the diagnosis and treatment of COPD, and it has been 
found advantageous to analyze molecular and genetic data col-
lected from in vivo models to elucidate the underlying molec-
ular mechanisms of COPD. Over the past few years, animal 
models of CS-induced lung damage that mimic human dis-
ease have been developed, including mouse models in which 
emphysematous changes in the lung can be observed after 
5 months of exposure to CS.8 Whilst these models have pro-
vided information about the physiological outcomes of smoke 
inhalation, the molecular mechanisms underlying disease 

Discovery of Emphysema Relevant Molecular Networks from an A/J Mouse 
Inhalation Study Using Reverse Engineering and Forward Simulation 
(REFS™)

Yang Xiang1, Ulrike Kogel1, Stephan Gebel2, Michael J. Peck1, Manuel C. Peitsch1,  
Viatcheslav R. Akmaev3 and Julia Hoeng1

1Philip Morris Research and Development, Neuchâtel, Switzerland. 2Philip Morris Research Laboratories GmbH, Köln, Germany. 3Berg, 
Framingham, MA, USA. 

Abstract: Chronic obstructive pulmonary disease (COPD) is a respiratory disorder caused by extended exposure of the airways to noxious stimuli, 
principally cigarette smoke (CS). The mechanisms through which COPD develops are not fully understood, though it is believed that the disease process 
includes a genetic component, as not all smokers develop COPD. To investigate the mechanisms that lead to the development of COPD/emphysema, we 
measured whole genome gene expression and several COPD-relevant biological endpoints in mouse lung tissue after exposure to two CS doses for various 
lengths of time. A novel and powerful method, reverse engineering and forward simulation (REFS™), was employed to identify key molecular drivers by 
integrating the gene expression data and four measured COPD-relevant endpoints (matrix metalloproteinase (MMP) activity, MMP-9 levels, tissue inhibi-
tor of metalloproteinase-1 levels and lung weight). An ensemble of molecular networks was generated using REFS™, and simulations showed that it could 
successfully recover the measured experimental data for gene expression and COPD-relevant endpoints. The ensemble of networks was then employed to 
simulate thousands of in silico gene knockdown experiments. Thirty-three molecular key drivers for the above four COPD-relevant endpoints were therefore 
identified, with the majority shown to be enriched in inflammation and COPD.

Keywords: Bayesian network, chronic obstructive pulmonary disease (COPD), reverse engineering and forward simulation (REFS™)

Citation: Xiang et al. Discovery of Emphysema Relevant Molecular Networks from an A/J Mouse Inhalation Study Using Reverse Engineering and Forward Simulation 
(REFS™). Gene Regulation and Systems Biology 2014:8 45–61 doi: 10.4137/GRSB.S13140.

Received: September 5, 2013. ReSubmitted: November 13, 2013. Accepted for publication: November 21, 2013.

Academic editor: James Willey, Editor in Chief

TYPE: Original Research

Funding: This work was funded by Philip Morris International.

Competing Interests: Yang Xiang, Ulrike Kogel, Stephan Gebel, Michael J. Peck, Manuel C. Peitsch, and Julia Hoeng are employees of Philip Morris International. 
Viatcheslav R. Akmaev is an employee of Berg Biosystems and was an employee of GNS Healthcare.

Copyright: © the authors, publisher and licensee Libertas Academica Limited. This is an open-access article distributed under the terms of the Creative Commons CC-
BY-NC 3.0 License.

Correspondence: Yang.Xiang@pmi.com

http://www.la-press.com
http://www.la-press.com
http://dx.doi.org/10.4137/GRSB.S13140
mailto:Yang.Xiang@pmi.com


Xiang et al

46 Gene Regulation and Systems Biology 2014:8

development remain unclear. To address this, we applied state 
of the art Bayesian network inference technology, reverse 
engineering and forward simulation (REFS™), to data 
generated from mouse models of CS-induced disease in an 
attempt to uncover gene regulatory networks involved in the 
development of COPD/emphysema.

Classical emphysema hypothesis. For the past few 
decades, the prevailing hypothesis regarding emphysema 
onset and progression has revolved around lung inflammation 
caused by CS and environmental pollutants. This is postulated 
to cause a protease/antiprotease imbalance, which ultimately 
results in the alveolar destruction seen in emphysema.9

One of the enzyme groups thought to play an important 
role in the development of emphysema is the matrix metal-
loproteinases (MMP). These enzymes are proteases that can 
be activated by reactive oxygen species via metalloproteinase 
precursors.10–16 In addition, they can be inhibited by so-called 
antiproteases.17 These proteases and antiproteases are thought 
to play a key role in CS-induced emphysema, and, at the most 
fundamental level, emphysema is caused by an imbalance of 
protease and antiprotease activities that result in lung paren-
chymal tissue destruction.18 This imbalance might result from 
an abnormal increase in pulmonary proteases or a decrease in 
antiproteases. For example, oxidation of methionine residues 
at the active sites of the antiprotease alpha-1 antitrypsin results 
in a dramatic reduction of its in vitro inhibitory ability, lead-
ing to an increase in proteases over antiproteases,17,19 which 
overwhelms the local antiproteolytic defense mechanism. The 
outcome is a breakdown of extracellular matrix components of 
the lung, which is postulated to result in pulmonary emphy-
sema. Indeed, patients deficient in the serine elastase inhibitor 
a1-antitrypsin were shown to develop early-onset emphysema, 
particularly if they smoked.20

Matrix Metalloproteinases (MMPs). MMPs are 
capable of degrading non-matrix proteins such as cytokines, 
chemokines, growth factors, and proteinase inhibitors, sug-
gesting an indirect role in the development and progression 
of CS-induced pulmonary emphysema as well as chronic 
obstructive bronchiolitis and chronic bronchitis.21–23 Increased 
evidence for the involvement of MMPs in CS-related emphy-
sema comes from several human as well as animal studies. 
Patients with emphysema showed increased concentrations 
of MMP-1, MMP-8, and MMP-9 in bronchoalveolar lavage 
fluid (BALF),11,24 while the expression and activity of  
MMP-1, MMP-2, and MMP-9 was found to be increased 
in the lung parenchyma of emphysematous patients compared 
with healthy controls.10,12,13 Although MMP-9 −/− mice 
were not protected against CS-induced pulmonary emphy-
sema, they were protected from small airway fibrosis, which is 
another feature of COPD.25 Churg et al recently found that an  
MMP-9/12  inhibitor prevented the development of pulmo-
nary emphysema in CS-exposed guinea pigs.26 Moreover, 
MMP-2, MMP-9, and MMP-12 were increased in BALF 
from mice with CS-induced pulmonary emphysema.27–29

Although, many human and animal studies suggest that 
MMP-9 may prove to be a useful biomarker for CS-induced 
pulmonary emphysema,24,27,29–31 current knowledge is still 
limited. Therefore, to investigate the protease/antiprotease 
balance, we measured the overall enzyme activity of MMP 
and the amount of MMP-9 protein together with levels of the 
anti-protease tissue inhibitor of metalloproteinase (TIMP-1).

Causal modeling. Typically, high-throughput genome-
wide molecular data are analyzed using multi-dimensional 
statistical approaches and machine-learning techniques to 
identify correlations between variables in a high dimensional 
space. Such analyses rank variable links according to statisti-
cal confidence values derived from the experimental observa-
tions. However, the identification of statistical links between 
variables alone cannot determine causal directions. Different 
mathematical modeling techniques use information “learned” 
from previous experimentation, which is often deemed to be 
the “true” knowledge of an existing physical property. These 
models are employed to establish a predictable dependency 
over time and to model the flux of variables in a physical/
biological system. To extrapolate new knowledge from such 
models, comprehensive experimentation and sound statistical, 
correlation-based analyses of data are required.

The identification of interactions between molecular 
entities within cells is key to understanding the biological 
processes involved.32–34 Bayesian network theory provides a 
convenient framework for systematizing data to deduce prob-
abilistic cause-and-effect relationships and for modeling sys-
tems of increasingly large numbers of interacting variables35–37; 
thus, Bayesian network simulations can be used to predict 
the effects of specific interventions. The REFS™ technol-
ogy is an efficiently parallelized implementation of Bayes-
ian network inference and simulation. REFS™ allows users 
to rapidly infer interaction networks from high dimensional 
data through the parallelization of high-intensity computa-
tions across an immensely large number of processing units. 
REFS™ combines two mathematical techniques: Bayesian 
network inference and simulations of ensembles of Bayesian 
networks. Previous approaches made predictions based on a 
single network topology,38,39 whereas REFS™ algorithms dif-
fer in two distinctive ways: the first is that REFS™ generates 
a statistical sample, or ensemble, of network structures con-
sistent with collected data; the second is that REFS™ enables 
quantitative predictions to be made of perturbation effects 
and additionally accounts for uncertainties in network topol-
ogy and in the parameter estimates of local statistical models. 
With the ability to predict the impact of specific interventions 
that may not be part of the collected data, REFS™ organizes 
the data into a rational model and also predicts unseen events. 
In this regard, the model captures the essence of the physical 
process as it is observed in the data.

The REFS™ platform has been utilized and validated 
in collaborations between GNS healthcare, the pharmaceu-
tical industry, and academia to learn novel biology ab initio 
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from experimental and clinical data sets.40 For example, Xing 
et  al. used REFS™ to identify new therapeutic targets for 
rheumatoid arthritis.41 In a project studying a new cancer drug 
in cancer cell lines, six of seven key genes identified by REFS™ 
were validated by siRNA knockdown and other findings were 
validated in the literature.40 Moreover, in a collaboration 
between GNS Healthcare and an academic group, REFS 
metabolic disease mouse model data composed of genetic 
variation (single-nucleotide polymorphisms), gene expression, 
and endpoint data made accurate out-of-sample predictions 
about endpoints for mice not trained upon and yielded both 
existing and novel targets for metabolic disease.40

Results
CS-induced mouse model of COPD progression. To 

investigate the mechanism leading to the development of 
COPD/emphysema, the transcriptome of parenchymal tissue 
obtained from the lungs of CS-exposed A/J mice was mea-
sured as a function of CS exposure duration and smoking ces-
sation as well as a function of CS dose. CS dose was defined 
as the number of hours per day that the animal was exposed 
to CS, and exposure duration was defined as the total num-
ber of days of exposure. The mice were exposed to two CS 
doses: 2 h per day for the low-dose group and 4 h per day for 
the high-dose group. Gene expression profiles were obtained 
from CS-exposed and control animals after various exposure 
times: 1 day, 7 days, 1 month, and 5 months (Table 1). Smok-
ing cessation was modeled as 5 months of exposure followed 
by 2 months without CS exposure. The CS-exposed groups 
were exposed to mainstream CS generated from the standard 
3R4F reference cigarette (University of Kentucky, Lexington, 
KY, USA) and control animals were exposed to filtered ambi-
ent air (sham exposure).

To identify key molecular regulators of COPD/emphysema  
progression in A/J mice, BALF from lung tissue was exam-
ined for the presence of the putative emphysema-related bio-
logical endpoints MMP-9, TIMP-1 (the levels of both), and 
MMP activity (measured by gelatinase activity). In addition to 
these molecular endpoints, animal lung weight was included 

as a crude indicator of the accumulated mass of connective  
tissue matrix material, structural cells, inflammatory cells, and 
edema fluid in the lung. Acute (1-day and 7-day) and chronic 
(1-month and 5-month) responses to CS exposure were inves-
tigated in the lung tissue at both high and low exposure dura-
tion levels.

We found that MMP activity was higher in BALF from 
CS-exposed A/J mice compared with sham-exposed at the 
7-day, 1-month, and 5-month exposure time points. The 
high-dose (4-h exposure) group showed a greater increase 
than the low-dose (2-h exposure) group. In the smoking ces-
sation group, MMP activity was almost completely reversed 
(Fig. S1). A similar trend was seen for MMP-9, with levels 
dose-dependently increased at each of the time points. MMP-9 
levels increased with continuous exposure to CS at the high-
exposure dose, and decreased after cessation of exposure back 
to a level lower than that observed in the 7-day exposure 
group. TIMP-1 levels dose-dependently increased at each 
time point, and decreased to levels seen at 1-day exposure after 
2 months of cessation. The mean absolute lung weight, includ-
ing the larynx and trachea, was dose- and time-dependently 
increased at the 7-day, 1-month, and 5-month exposure time 
points in both the low- and high-exposure groups compared 
with sham animals at the same time points and with exposed 
animals at the previous timepoint (Fig. S1). Following the 
2-month cessation period, the lung weight of smoke-exposed 
animals decreased but remained heavier than in sham animals 
(Fig. S1).

Building the REFS™ BioModel™ of molecular inter-
actions and COPD/emphysema endpoints. Bayesian causal 
networks were inferred from experimental observations to 
gain a more comprehensive understanding of the molecular 
mechanisms underpinning COPD/emphysema progression 
in the A/J mouse. REFS™ technology was used to gener-
ate an ensemble of Bayesian networks from gene expression, 
MMP activity, MMP-9 expression, TIMP-1 expression, 
and lung weight data. The REFS™ BioModel™ (hereafter 
called BioModel™) was built as a collection of 10 ensembles 
comprising 100 Bayesian networks from 10 data frames 

Table 1. Number of animals used to capture each measured endpoint (gene expression, MMP activity, MMP-9 and TIMP-1 abundance, lung 
weight) per condition (dose and time point).

Exposure Time 1 Day 7 Days 1 Month 5 Months 5 Months + 2  
Months PE

Smoke Exposure  
Groups

Sham Low High Sham Low High Sham Low High Sham Low High Sham High

Gene expression 8 7 8 8 8 8 7 7 8 8 8 8 8 8

MMP activity ND 9 9 10 10 8 10 9 10 10 10 10 5 9

MMP-9 ND 10 10 10 10 10 10 9 9 10 10 10 8 10

TIMP-1 ND 10 10 10 10 10 10 9 9 9 9 8 8 10

Lung weight 10 10 10 10 9 10 10 10 10 18 ND 24 20 20

Note: ND, not determined.
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constructed using bootstrap sampling of endpoint values and 
endpoint measurements matched with microarray data within 
experimental groups. The lung weight values were imputed for 
one of the experimental groups (5-month, low dose) because 
of missing measurements (Fig. S2).

The BioModel™ of COPD/emphysema progression 
was assessed for accuracy by simulating variables for all 
experimental conditions. The simulation results for each of 
the 10 ensembles (data frames) of Bayesian networks were 
compared with observed variables. After the BioModel™ 
was built and successfully tested, the only inputs used were 
CS exposure time, total exposure, and CS cessation. Given 
these, the expression values of 10,643 probe sets were pre-
dicted, from which the four endpoints were predicted. The 
prediction/simulation was run 30 times for each of the 100 
networks belonging to a specific data frame; therefore, a total 
of 3,000 predicted values were made for every probe set and 
every endpoint. Figure  1  shows representative comparison 
charts for one of the 10 data frames. Figure 1A shows the 
empirical distribution of the correlation coefficient between 
predicted and observed transcript expression for 10,643 
probe sets; the mean of this is 0.71, which is significantly 
greater than zero. Figure 1B displays the scatter plot of the 
mean of observed and predicted lung weights. The correla-
tion coefficient between the mean of the observed and pre-
dicted lung weights is 0.883, which is significant based on 
the P-value. We tested the null hypothesis that the predicted 
value is equal to the observed value. A paired t-test gave a 
P-value of 0.79, so we cannot reject the null hypothesis that 
the predicted value is equal to the observed value. The scatter 
plots of the other three endpoints, MMP-9, TIMP-1, and 
MMP activity, are similar to the scatter plot of lung weight 
with varying correlation coefficients. These results show that 
the predictions given by BioModel™ correlate well with the 
observations.

BioModel™ identified molecular drivers of COPD/
emphysema-related endpoints. A REFS™ model is an 
ensemble of Bayesian networks that captures not only the 
most likely topology of variable interactions but also derives 
mathematical relationships of such interactions and their cor-
responding uncertainties. Extensive model simulations were 
therefore performed to identify gene expression variables 
that have a measurable effect on MMP activity, MMP-9 and 
TIMP-1 expression, and lung weight changes. By analyz-
ing network topology and selecting variables upstream of the 
endpoints identified, causal transcripts could be obtained. The 
gene expression of every causal transcript was knocked-down 
in silico by 10-fold. Differences in the endpoint posterior dis-
tributions across the 10 data frames were processed to assess 
the effects of these perturbations. Molecular drivers for the 
endpoints were identified under high-dose CS exposure for 1 
and 5 months, as well as CS cessation. Key molecular drivers 
for a specific endpoint were defined as those genes that act as 
molecular drivers of the particular endpoint at all three time 
points. Table 2 lists these for the four endpoints: MMP activ-
ity, MMP-9 and TIMP-1 expression, and lung weight. As an 
example, the distribution of baseline expression and knock-
down expression in silico for integrin (Itgb2; Fig. 2) and cathe-
psin Z (Ctsz; Fig. 3) genes under high-dose CS exposure for 
5 months was plotted. Knocked-down simulations were per-
formed for the high-dose CS group as more genes are known 
to be perturbed. The in silico 10-fold knockdown of Itgb2 
gene expression is predicted to significantly down-regulate 
endpoint MMP-9 but not to affect the other three endpoints 
(threshold for adjusted P-value, 0.05). In silico 10-fold knock-
down in gene expression of the protease Ctsz is predicted to 
down-regulate the MMP-9 and lung weight endpoints, but 
not MMP activity or TIMP-1.

Literature support for the REFS™ findings. At least 15 
of the identified key drivers were described in the context of 
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inflammatory responses (Ingenuity Systems, www.ingenuity.
com); eight of these (Ceacam1, Clec7a, Csf2rb, Itgb2, mMsr1, 
Npy, Sc11a1, and Trem2) were reported to be involved in the 
activation of leucocytes, and six (Csf2rb, Ctsz, Itgax, Itgb2, 
Msr1, and Pltp) were associated with immune cell adhesion. 
A major contributory factor to the development of COPD 

is the inflammatory response to CS.42 Neutrophils and 
macrophages have been implicated in this process through 
their ability to release proteolytic enzymes and generate oxi-
dants, which cause tissue damage, as well as the release of 
cytokines and chemokines, which can potentiate inflam-
mation and trigger an immune response. Therefore, it is 

Table 2. Key molecular drivers identified by REFS™ for the four measured endpoints.

Gene Symbol Name MMP-9 MMP  
activity

TIMP-1 Lung  
weight

Csf2rb colony stimulating factor 2 receptor, beta, low-affinity  
(granulocyte-macrophage)

×

Csf2rb2 colony stimulating factor 2 receptor, beta 2, low-affinity  
(granulocyte-macrophage)

×

Cyba cytochrome b-245, alpha polypeptide × ×

Rnh1 ribonuclease/angiogenin inhibitor 1 × ×

Ctsz cathepsin Z × ×

Hal histidine ammonia lyase ×

Gusb glucuronidase, beta × ×

Itgb2 integrin beta 2 ×

Fuca1 fucosidase, alpha-L- 1, tissue × × ×

Psmd8 proteasome (prosome, macropain) 26S subunit, non-ATPase, 8 ×

Clec7a C-type lectin domain family 7, member a ×

Itgax integrin alpha X ×

Nceh1 arylacetamide deacetylase-like 1 ×

Macf1 microtubule-actin crosslinking factor 1 ×

Ceacam1; Ceacam2 carcinoembryonic antigen-related cell adhesion molecule 1;  
carcinoembryonic antigen-related cell adhesion molecule 2

×

Slc9a3r2 solute carrier family 9 (sodium/hydrogen exchanger),  
member 3 regulator 2

×

Ubxn2a UBX domain protein 2A ×

Pltp phospholipid transfer protein ×

Kif5b kinesin family member 5B ×

Gstp1 glutathione S-transferase, pi 1 ×

Zranb1 zinc finger, RAN-binding domain containing 1 ×

Pcf11 cleavage and polyadenylation factor subunit homolog  
(S. cerevisiae)

×

Slc11a1 solute carrier family 11 (proton-coupled divalent metal ion  
transporters), member 1

×

Npy neuropeptide Y ×

Trem2 triggering receptor expressed on myeloid cells 2 ×

Hvcn1 hydrogen voltage-gated channel 1 ×

Orm1 orosomucoid 1 ×

Ctsb cathepsin B ×

Msr1 macrophage scavenger receptor 1 ×

Pla2g2d phospholipase A2, group IID ×

Atp6v0c ATPase, H+ transporting, lysosomal V0 subunit C ×

Hpse heparanase ×
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comprehensible that nearly half of our identified key drivers 
are linked to this process.

Functional annotations were performed using the 
DAVID Bioinformatics Resources 6.7 database.43 Key molec-
ular drivers Atp6v0c, Ctsb, Ctsz, Fuca1, Gusb, and Slc11a1 were 
assigned to lysosomal pathways that transport damaged pro-
teins and organelles to lysosomes for degradation. This process 
of autophagy involves a highly conserved homeostatic pathway 
that was recently linked to the pathogenesis of COPD.44–46

The REFS™ approach identified several endpoint drivers 
for the protease Mmp-9, including Itgb2 (which encodes the 
integrin β2 chain, CD18) and Itgax (which encodes the inte-
grin alpha X chain, CD11c) (Table 2). Integrins are integral 
cell-surface receptors that are involved in cell functions such as 
signaling, adherence, aggregation, and the regulation of shape, 
motility and the cell cycle. Thus, integrin α and β chains were 
identified as drivers for MMP-9. Interestingly, both integrin 
chains can form a complex (integrin αXβ2 or p150,95) known 
as complement receptor 4 (CR4).47 The complement receptors 
and phagocytic cells that express those receptors are likely to 
be of great importance in maintaining a degree of order in the 
smoker’s lung by triggering clearance through phagocytosis48 
Indeed, several studies suggest that complement is activated 
in COPD.49,50 Moreover, a literature search revealed that inte-
grin β2 chain functions as a substrate for MMP-9, thus link-
ing them directly. These studies show that Mmp-9 induces the 
shedding of the integrin β2 chain subunit from macrophages, 

causing an efflux of macrophages from the inflammatory site.51 
It was proposed that this mechanism contributes to the resolu-
tion of inflammation. The in silico 10-fold knockdown in gene 
expression of Itgb2 was predicted to down-regulate the end-
point MMP-9 (Fig. 2), which might indicate that Itgb2 regu-
lates Mmp-9 feedback. When less Itgb2 is expressed, fewer 
macrophages or neutrophils would be attached to the sites of 
inflammation, which may lead to a reduced contribution of 
MMP9-mediated cleavage of the integrin β2 chain. Further, 
in silico 10-fold knockdown of Ctsz expression was predicted 
to down-regulate the endpoint MMP-9 (Fig. 3). It has been 
reported that the overexpression of Ctsz up-regulates Mmp-9 
(both the precursor and active form) in hepatocellular carci-
noma,52 although to our knowledge no relationship with COPD 
has been identified. It is tempting to speculate that CtsZ has 
been identified as a new protease involved in COPD.

BioModel™ also identified β-glucuronidases as key driv-
ers of Mmp-9 (and lung weight). β-glucuronidases catalyze 
the breakdown of complex carbohydrates,53 and the gelati-
nolytic activity in tracheal aspirates of horses suffering from 
COPD has been correlated with β-glucuronidase activity.54 
These findings suggest that MMP-9-related gelatinases, pos-
sibly originating from neutrophils or macrophages, may play 
a role in the pathogenesis of equine respiratory diseases. In 
addition to the horse data, alveolar macrophages from COPD 
patients have significantly more β-glucuronidase than mac-
rophages from patients without COPD.55
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Colony stimulating factor 2 receptor β and the β-2 subunit 
were also identified as key drivers of MMP-9. The protein 
encoded by this gene is the common β chain of the high affin-
ity receptor for interleukin (IL)-3, IL-5, and colony stimulat-
ing factor (CSF). Although no direct link with the COPD 
receptor has been reported, the CSF2 ligand granulocyte 
colony-stimulating factor 2 (granulocyte-macrophage), also 
known as GM-CSF, has been shown to play an important role 
in the pathogenesis of acute and chronic lung disease,56 and it 
has been suggested that neutralization of GM-CSF is a novel 
treatment modality for lung inflammation, particularly for 
COPD.56 However, only a few studies have suggested a con-
nection between GM-CSF and MMP-9; for example, small 
murine cholangiocyte (bile duct epithelia) cultures treated 
with a combination of stem cell factor and GM-CSF showed 
significantly elevated Mmp2 and Mmp-9 levels,57 suggesting 
that GM-CSF may be involved in the expression of MMP-9, 
although the effects could have been caused by stem cell factor 
alone.

Based on the REFS™ approach, none of the above-
mentioned transcripts appear to cause changes in TIMP-1 
expression. Pro-inflammatory factors such as MMP-9 are 
broadly over-expressed and secreted by macrophages and lym-
phocytes whereas their inhibitors (for example TIMP-1) are 
typically over-expressed by alveolar epithelial cells in response 
to acute and chronic inflammation.30,58,59 Thus, the REFS™ 
data-driven approach has confirmed that the pro-inflamma-
tory molecular regulation pathways are distinct from the pro-
tease inhibition or anti-inflammatory regulation pathways. 
That the Mmp9 and Timp-1 genes themselves were not iden-
tified as key drivers for MMP activity may be explained as 
follows: the key drivers are not direct interactions, and/or the 

expression levels of MMP genes do not necessarily correlate 
with the amount of protein and even less with enzyme activ-
ity, especially because the MMPs are synthesized as inactive 
pro-enzymes or zymogens.

The literature search revealed that some of the key drivers 
identified by BioModel™ were not yet reported to be associ-
ated with COPD/emphysema and could therefore represent 
new findings that might be valuable for experimental con-
firmation. The reports that link the identified key drivers to 
COPD/emphysema (see above) provide confidence in the rel-
evance of our REFS™ simulation approach. Furthermore, the 
agreement between the knockdown predictions and some of 
the published experiments suggests that BioModel™ has the 
ability to identify key molecular drivers from large-scale sys-
tems biology experiments relevant for disease investigations.

BioModel™ simulates intermediate time points when 
no experiments were performed. We examined whether 
BioModel™ could model intermediate time points when no 
experiments were performed. Although traditional statistical 
regression is a useful technique for creating predictive mod-
els of response variables and enumerating the response vari-
able dependence on experimental factors, it is less useful for 
the reconstruction of molecular interaction networks and the 
inference of mathematical hierarchy between causal and end-
point variables. Compared with statistical regression, Bayesian 
networks are causal, hierarchical models that can reflect bio-
logical mechanisms as well as equations from a set of inde-
pendent variables. Figure 4 shows the BioModel™-predicted  
(all time points after 1 month) and experimentally observed 
(1, 5, and 7 months) values under high dose CS exposure for 
the four endpoints. The model links experimental factors to 
the endpoints by fitting mathematical models for gene expres-
sion variables and endpoint changes through modeled changes 
in gene expression.

The expression values of more than 10,000  genes were 
predicted, from which the four endpoint values were simu-
lated. For every endpoint at one specific time point, 101 pre-
dicted values were simulated. The null hypotheses that the 
predicted value is equal to the observed value at experimen-
tal time points were tested for all endpoints. Welch’s t-test 
was performed and P-values are shown in Figure 4. A strin-
gent cutoff for the P-value, 0.01, was set as the sample size 
is large. Under this cutoff, reasonable consistency between 
the predictions and observations for all endpoints across all 
experimental time points was obtained; three exceptions 
were the predictions for MMP-9 at 1 and 5 months, and the 
prediction for MMP activity at 5 months. The deviation in 
the predicted value of MMP activity at 5  months could be 
caused by the large variations in experimental values that were 
obtained for this group. The dashed extension line beginning 
at the 5-month time point indicates predicted endpoint values 
for the effect of 2 months of CS cessation after 5 months of 
CS exposure. BioModel™ reasonably captures the cessation 
effect. In addition to the measured time points, endpoints 
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Figure 3. In silico 10-fold knockdown of Ctsz modulates MMP-9 and lung 
weight. Plots of simulated concentrations of A. MMP-9, B. lung weight, C. 
MMP activity, and D. TIMP-1 in response to a 10-fold knockdown of Ctsz 
expression. Baseline (without knockdown), blue; knockdown, red. The 
time point shown here is 5 months and the conditions are high-dose CS.
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Figure 4. BioModel™ models intermediate time points when no experiment was performed. Observed (red triangle) and the mean of BioModel™-
predicted values (blue triangle and diamond) for A. MMP-9 abundance, B. TIMP-1 abundance, C. MMP activity, and D. lung weight. The means of the 
predicted values of the four endpoints are denoted by blue filled triangles together with 95% confidence intervals for the different CS exposure regimens 
from 1–7 months. The dashed extension lines with the blue diamond at the end are model predictions of endpoint values with the addition of the 2-month 
smoking cessation period.

and gene expression changes can be predicted at time points 
outside of the original experimental design by simulating the 
BioModel™ model. For example, Figure 4 shows the predic-
tion of a 2-month cessation effect for 1-, 2-, 3-, and 4-month 
time points at high doses of CS exposure (dashed lines). The 
interpolation of the results of CS cessation should be used 
with caution because there is only one time point for cessation 
in the observed data.

Interaction networks of key molecular drivers. In addi-
tion to the identification of key molecular regulators of the 
study endpoints, BioModel™ allows the interpretation of key 
molecular driver interaction networks (hereafter referred to 
as molecular interaction networks). Gene expression of every 
key driver, for example driver A, was knocked-down in silico 
by 10-fold. Differences in the posterior distributions of key 
drivers other than driver A, say driver B, across the 10 data 
frames were processed to assess the effects of driver A per-
turbation. P-values were computed by a t-test under the null 
hypothesis that there is no difference between the means of 
posterior distributions for driver B before and after perturba-
tion of driver A. An interaction between drivers A and B was 

defined when the difference caused by perturbation of driver 
A was significant (P-value cutoff, 0.05). Though each network 
in the ensemble is a directed acyclic graph (DAG), this is not 
necessarily true of the interaction network, and bi-directional 
arrows could be observed.

Figure 5 displays the molecular interaction network as a 
visualization of the interactions between key molecular drivers. 
The end of each network branch is marked with an endpoint 
icon that indicates the specific study observation predicted by 
BioModel™ to be regulated by the cascade of molecular mech-
anisms displayed within the sub-network. The model shows 
26S proteasome non-ATPase regulatory subunit 8 (Psmd8) 
as the master regulator of the entire network because all the 
arrows associated with Psmd8 point outwards. Furthermore, 
Psmd8 is predicted to regulate fucosidase-1 (Fuca1) and Ctsz, 
which were predicted to interact with each other.

Discussion and Conclusions
As emphysematous changes occur in the parenchyma tissue of 
the lung, we believe that this tissue is the most appropriate to 
analyze gene expression and end point evaluation. Progression 
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of CS-induced emphysema was previously shown to associate 
with the expression of genes involved in multiple pathways in 
the lungs that were predicted to belong to the functional cate-
gories of phase I genes, Nrf2-regulated antioxidant and phase 
II genes, phase III detoxification genes, and other immune/
inflammatory response genes. This suggested that the gene 
expression data corresponded to significant bronchoalveolar 
inflammation as well as enhanced oxidative stress and increased 
apoptosis as determined by immunohistochemical staining.60 
Mathematical modeling techniques were not employed in 
the correlation-based analysis that was used in this earlier 
study. In other studies that explored CS-induced gene expres-
sion changes in A/J mice,61,62 gene expression data and other 
biological endpoints were also treated as unrelated variables.  
By contrast, in the present study, we included Bayesian 
network inference methods that can identify cause-and-effect 
relationships and predict mechanistic interaction networks, 
providing a strikingly different view of biological systems. 
Inferred molecular networks are typically interrogated to 
generate specific hypotheses and explore disease biology in a 
rigorous and systematic way.35,37,41

For the REFS™ approach, the use of multiple biological 
endpoints from the same animal would be optimal; however, 
this is not always possible. In the current study for example, to 
avoid physical irritation that might interfere with or influence 
gene expression changes, the lungs destined for gene expres-
sion analysis were not the ones subjected to bronchoalveolar 
lavage (BAL). As a consequence, the samples used to generate 
gene expression data were not from the same animals as those 
used to measure MMP-9 and TIMP-1 expression and MMP 
activity. Although this could be a source of mismatch in the 
Bayesian network building, because the mice can be consid-
ered to be genetically identical, we used a bootstrap technique 

to match the samples used for gene expression analysis and 
those used for other measured endpoints.

Molecular interaction networks. We developed an 
ensemble of networks for the A/J mouse model with different 
CS dose and exposure times. This model successfully recov-
ered the measured experimental data on gene expression and 
four measured COPD-relevant endpoints. Based on the in 
silico 10-fold knockdown of gene expression in this ensemble 
of networks, 33 key molecular drivers for the four selected 
COPD-relevant endpoints were identified; the majority of 
these were associated with inflammation or COPD directly. 
These observations suggest that genes identified using this 
ensemble of networks represent promising key molecular driv-
ers underlying the development of COPD and, as such, war-
rant further investigation.

BioModel™ predicted Psmd8, a 26S proteasome non-
ATPase regulatory subunit 8, to be the master regulator of 
the molecular interaction networks. Interestingly, PSMD8 
was reported to be more highly expressed in sedentary COPD 
patients than in sedentary controls,63 underlining a role for 
this molecule in COPD. Furthermore, Psmd8 was predicted 
to regulate Fuca1 and Ctsz in the network. BioModel™ also 
uncovered biologically valid cause-and-effect relationships 
but no direct interactions. The relationship between PSMD8 
and CTSZ can be explained, for example, via ubiquitin. Both 
the proteasomal subunit and CTSZ directly bind ubiquitin.63 
Pmsd8 binds to the ubiquitin protein ligase TRAF6, which 
interacts further with the ubiquitin specific peptidase USP21, 
which itself was shown to bind directly with FUCA1.64 
FUCA1 is a lysosomal enzyme involved in the degradation of 
fucose-containing glycoproteins and glycolipids. In our net-
work model, Fuca1 and Ctsz were predicted to interact and 
we propose that this interaction is likely to be via ubiquitin. 

Figure 5. Simulation-based causal network of molecular interactions for key molecular drivers of experimental endpoints. Microscope with LW label 
symbolizes the lung weights as experimentally determined, the syringe symbolizes endpoints determined from BALF. The direction of the arrows reflects 
causality.
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In addition, the genes Cyba and Gusb, further downstream in 
the network, can be linked through ubiquitin.65,66

Various studies have shown that ubiquitin expression 
is up-regulated in the peripheral muscle of patients with 
COPD.67,68 Our data combined with literature searches hint 
that ubiquitin plays an as yet unexplored role in the develop-
ment of COPD. Because our study focused on parenchymal 
lung tissue, it remains to be determined whether the up-
regulation of ubiquitin in COPD is a general factor for disease 
development.

In summary, the successful application of REFS™ to this 
data set from the A/J mouse COPD inhalation study demon-
strates that REFS™ is a powerful method for the integrative 
analysis of diverse data types. We believe that this study pro-
vides new insights into the mechanisms of smoking-induced 
emphysema. In addition, we show that BioModel™ can be 
leveraged to reduce the number of animals required for in vivo 
investigations since the effects of intermediate exposure time 
points can be simulated.

Materials and Methods
Ethics statement. All experimental procedures were in 

conformity with the American Association for Laboratory 
Animal Science Policy on the Humane Care and Use of Labo-
ratory Animals (American Association for Laboratory Animal 
Science, 1996) in an AAALAC (Association for Assessment 
and Accreditation of Laboratory Animal Care International)-
accredited facility and were approved by the Institutional Ani-
mal Care and Use Committee (IACUC, Leuven, Belgium).

CS generation and animal exposure. Mice were exposed 
to CS from the reference cigarette 3R4F.69 Mainstream smoke 
was diluted with conditioned fresh air to reach a target con-
centration of 750 µg/l total particulate matter (TPM).

Female A/J mice (The Jackson Laboratory, Bar Harbor, 
ME, USA) were housed under controlled conditions in stan-
dard laboratory cages. All in vivo experimental protocols were 
approved by the local Ethics Committee and complied with 
strict governmental and international guidelines on animal 
experimentation. Mice (2–3  months old) were whole-body 
exposed for 2 or 4 h per day for 5 days/week for a period of 
1 day to 5 months. A 30-min fresh-air period was included 
between the first and second hour of daily exposure. Between 
the second and third, and third and fourth hours of exposure, 
there were 60-min periods of fresh-air exposure. The exposure 
period began with an adaptation period: TPM concentrations 
were 125 µg/l on study days 1 and 2, 250 µg/l on study days 
3 and 4, 375 µg/l on study days 7 and 8, 500 µg/l on study 
days 9 and 10, and 625 µg/l on study days 11 and 14. From 
study day 15, the target concentration was 750 µg/l. All ani-
mals received the same adaptation schedule except for those 
that were exposed for seven days. The adaptation phase for 
the 7-day time point was: TPM concentrations of 125 µg/l on 
days 1 and 2, 250 µg/l on day 3, 375 µg/l on day 4, 500 µg/l on 
day 5, 625 µg/l on day 6, and 750 µg/l on day 7. The inhalation 

protocol for the 7-day time point was different because the 
animals had to be given time to adapt progressively for animal 
welfare reasons as they were to be exposed for up to 5 months. 
Control animals were exposed to filtered, conditioned fresh 
air with the same exposure conditions as those for the 4-h 
CS-exposed group of mice. The smoke and air-exposed ani-
mals in the different groups were sacrificed after 1 day, 7 days, 
1 month and 5 months. In addition, smoking cessation was 
modeled by 5 months of CS exposure followed by 2 months of 
no smoke exposure. This group was sacrificed after 7 months.

The mice in both the low- and high-dose groups were 
dissected 1–2 h after their last exposure. The lungs were 
retrieved and shock frozen immediately after dissection and 
stored at −80°C.

BALF collection protocol and endpoints analysis. 
BALF was collected from 10 mice per group for the determi-
nation of MMP-9 and TIMP-1 expression, and MMP activ-
ity. In brief, mice were exsanguinated under deep pentobarbital 
anesthesia. The trachea was cannulated and the lungs lavaged 
with 1  ml of Ca2+- and Mg2+-free Dulbecco’s phosphate-
buffered saline warmed to 37°C. After centrifuging the lavage 
fluid (4°C, 5  min, 300  ×  g), the supernatant was aliquoted 
and stored at −80°C. MMP-9 and TIMP-1 levels were deter-
mined by multi-analyte profiling using high-density, quantita-
tive immunoassays (Rules-Based Medicine Inc., Austin, TX, 
USA). MMP activity was determined as gelatinolytic activity 
using a fluorescence-labeled gelatin (EnzChek®Gelatinase/
Collagenase Assay Kit; Invitrogen, Karlsruhe, Germany) 
according to the manufacturer’s instructions.

Microarray data generation. For microarray analysis, 
the parenchymal tissue from frozen lungs was prepared by 
laser capture micro-dissection and RNA was isolated using 
an RNeasy Micro Kit (Qiagen, Hilden, Germany). RNA 
was further processed using a GeneChip® 3’ IVT Express 
Kit. (Affymetrix, High Wycombe, UK). The biotin-labeled, 
fragmented RNA was hybridized against Affymetrix Mouse 
Genome 430 2.0  Arrays. The acquired Affymetrix CEL 
files that passed the quality check were used for further data 
processing and were submitted to ArrayExpress (E-MTAB-
1426).

Microarray data processing and feature selection. Data 
processing. CEL files were processed using an in-house pipe-
line. GC Robust Multi-array Average (GCRMA) background 
correction, quantile normalization, and median polish sum-
marization were performed to generate microarray expression 
values using affy, GCRMA, and affyPLM R packages.70–72

Low signal and unannotated probe sets. Pre-filtering 
improves the reliability of Affymetrix GeneChip results when 
used to analyze gene expression in complex tissues. In this 
study, probe sets were filtered out when the 95% quantile of 
the log2 expression value was ,7, or when they did not belong 
to any gene.73–75

Redundant probe sets. Affymetrix GeneChip microarray 
designs often include multiple probe sets per gene or transcript 
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unit. Probe sets that measure the same biomolecule tend to 
exhibit highly correlated behaviors across gene expression 
measurements. One probe set was selected from each group of 
correlated probe sets within a gene, thereby eliminating redun-
dant variables. Two probe sets were considered to be correlated 
if the Pearson correlation coefficient was $0.6. The probe set 
that was differentially expressed in the largest number of 
comparisons between the experimental groups was selected. 
A probe set was defined as differentially expressed between two 
experimental conditions if the Benjamini-Hochberg corrected 
moderated t-test P-value was #0.01.76 When two probe sets 
within a gene were differentially expressed in an equal number 
of comparisons, the probe set that was closest to the 3’ end of 
the gene was selected. The genomic coordinates for each probe 
set were extracted from the NetAffx annotation file for Mouse 
430 2 Array Version 31. If multiple alignments were associ-
ated with a given probe set, the alignment that matched the 
chromosome and strand for the gene was assigned to the probe 
set. The chromosome strand for the gene was extracted from 
the Ensembl mouse genome. Probe sets that corresponded to 
genes with no Ensembl ID were ignored. For each probe set, 
the start and stop positions from the selected alignment were 
stored. Based on the selection process described above, 1,988 
redundant probe sets were removed.

Non-informative probe sets. Linear models were used to 
assess the covariance between endpoints and probe set expres-
sion measurements. To construct the linear models, each 
expression data point was matched with the group median 
value of the endpoint variable. Equation (1) describes the lin-
ear models (in R notation) and experimental conditions that 
were used for the individual endpoints.

	

~ *  
~ *

E T GE
GE T GE 	

(1)

Here, E is a continuous variable represented by the group 
median endpoint values; T is time modeled as a discrete cat-
egorical variable; and GE is the probe set gene expression 
values modeled as a continuous variable. The resulting slopes 
of the regression lines were tested for a significant difference 
from zero. A probe set was considered to significantly co-
vary with the endpoint if the Benjamini-Hochberg corrected 
P-value for any time point was #0.01. Gene expression values 
per time point were normalized relative to sham by subtract-
ing the median sham expression value within the same time 
point before fitting the linear models. In total, 10,643 probe 
sets were selected at this stage.

Calculation of total smoke exposure and transformation of 
endpoint variables. The animals in the study were exposed 
to a specific amount of particulate matter per hour each day. 
The total smoke exposure was calculated at a given time point 
based on the exposure schedule for each experimental group. 
The low-exposure groups were exposed to smoke for 2 h daily 
and the high-exposure groups were exposed to smoke for 

4 h daily. Before REFS™ modeling, total smoke exposure 
values were logarithmically transformed. Table S1 displays the 
calculated total smoke exposure values and their logarithmic 
transformation.

The distributions of the endpoint variables were assessed 
for normality. MMP-9 expression and MMP activity data 
followed a log-normal distribution. The values of the MMP-9 
and MMP activity variables were logarithmically transformed 
before REFS™ analysis and feature selection. Zero values 
were replaced by the logarithm of the minimum value for each 
variable.

Missing lung weight values for the low-dose CS group at 
5 months were imputed based on the assumption of normality. 
A quadratic model was fitted for the lung weight values across 
the study timeline. This was used to predict the average lung 
weight for low smoke exposure at 5 months; the logarithm of 
smoke exposure was calculated as 5.16, and the corresponding 
lung weight average was predicted to be 0.23 g. Lung weight 
values were imputed by sampling from the normal distribu-
tion, N(0.23,σ). The standard deviation was estimated from 
lung weight measurements in the high-dose CS group at 
5 months (Fig. S2).

Linking endpoint data with gene expression. Because of 
biological assay implementation challenges, endpoint mea-
surements and gene expression profiles were obtained between 
mice. To match the samples for which phenotypic endpoints 
were measured to those for which gene expressions were pro-
filed, bootstrap was leveraged. Covariation and error terms of 
linear models linking endpoint variables and gene expression 
were estimated conservatively as mixtures of estimates from 
10 different data frames. Each data frame was constructed by 
bootstrap sampling of the endpoint values within an experi-
mental group. Samples were then matched with the microar-
ray data. Endpoints were sampled without replacement for 
every experimental group except MMP activity in the low-
dose CS group at 5 months. MMP activity in this group was 
sampled with replacement because there were fewer endpoint 
measurements than microarray data points. Values for a given 
endpoint were sampled independently of other endpoints, 
except when multiple endpoints were measured in the same 
animal where values for all measured endpoints were matched 
to a gene expression profile within the same experimental 
group.

Constructing BioModel™: REFS™ methodology. A mul-
tivariate system of random variables where each variable is 
either discrete (time, smoke exposure cessation) or continuous 
(smoke exposure, gene expression, endpoints) may be charac-
terized probabilistically using a joint probability distribution 
function. The explicit formulation of a joint probability dis-
tribution requires the estimation of a large number of param-
eters. However, a joint probability distribution may often 
be factorized into a product of local conditional probability 
distributions (Fig.  6A). This approach yields a framework 
where each particular factorization and choice of parameters 
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is a distinct probabilistic model of the process that created the 
observed experimental data.41 Learning models from a data 
set determine which factorizations of the data joint distribu-
tion are most likely given the observation, and what are the 
likely values for the parameters.

Each factorization of the joint probability function is 
represented by a unique DAG with a vertex for each random 
variable and directed edges between vertices to represent the 
dependencies between variables functionalized under local 
conditional distributions. In addition to the graph, the model 
also specifies distributions for the parameters of local condi-
tional distributions. The likelihood function gives the poste-
rior distribution of the parameter values around the maximum 
likelihood estimate.

To determine which factorizations are likely given the 
data, a Bayesian framework is used to compute the posterior 

probability of the model P(M|D) from Bayes’ Theorem 
(equation 2).

	
( | ) ( )( | )

( )
P D M P MP M D

P D
=

	
(2)

Here, P(D) is the probability of the observed data and 
P(M) is the prior probability of the model. Each local condi-
tional model is scored using the Schwartz’s Bayesian Informa-
tion Criterion approximated to the above posterior probability. 
The total DAG score is defined as the sum of the local model 
scores. Linear regression, sigmoidal regression, and ANCOVA 
models between probe sets, endpoints, smoke exposure and 
cessation, and time factors were exhaustively scored.

Even with such local model restrictions, the space of all 
possible graphs is too large to be explored by an exhaustive 
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Figure 6. Schematic representation of REFS™ data analysis steps and model simulation workflow. A. The network fragment enumeration step. Local 
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search. Instead, the Metropolis method was used to generate 
samples from an equilibrium Boltzmann distribution of can-
didate structures.77 Each step in a Metropolis Markov Chain 
corresponds to local transformations such as adding or delet-
ing network fragments. To accelerate convergence, simulated 
annealing was applied with a decreasing annealing tempera-
ture. In the REFS™ implementation, the temperature was 
stopped at T =  1 because sampling at this temperature cor-
responds directly to sampling from the posterior distribution, 
P(M|D). As illustrated in Figure  6B, 100 network models 
were sampled for each of the 10 data frames generated by the 
bootstrap-driven match of gene expression data and endpoint 
measurements. The final BioModel™ of probabilistic gene 
interactions and their effects on study endpoints in A/J mice 
was a mixture of 10 REFS™ ensembles.

Model simulations. Stochastic simulations of a probabi-
listic model allow predictions about individual variables to 
be made under different conditions. These conditions can be 
perturbations of other variables in the model and/or different 
values of the input factors. Monte Carlo simulations were used 
to generate posterior probabilities for gene expression and 
endpoint variables using sampling parameters and error terms 
from their respective posterior distributions. A typical simu-
lation routine sweeps the network iteratively and generates 
samples of variables with ‘parents’ that have already acquired a 
value in previous iterations, until all variables have values. One 
full sweep produces one sample per network in an ensemble 
(Fig.  6C, blue histogram); the sweep is then repeated mul-
tiple times per network for 100 networks within one ensemble 
(Fig. 6C, green histogram); the final posterior distribution is 
therefore a mixture of 1,000 samples (100 networks across 10 
ensembles) as depicted in Figure 6C, red histogram. Interven-
tions such as knockdown of gene transcript expression can be 
simulated in silico by reducing the expression level of that gene 
by a pre-specified value. For example, a 10-fold knockdown 
was performed by subtracting log210 from the baseline gene 
expression level. A network sweep is then performed to esti-
mate the knockdown effect by sampling the posterior distri-
bution of all other variables in the model.

Modeling experimental conditions. Model performance was 
assessed by simulating the experimental conditions and cor-
relating model predictions with the observed data. In simula-
tions, only the factor variables were set to their experimental 
values. These factor variables were CS exposure, time, and ces-
sation status. Other variables in each network of the ensemble 
were propagated from factor variables until all variables had 
been assigned a calculated value. Pearson’s correlation coef-
ficient between the observed and REFS™-simulated data was 
calculated for every endpoint and probe set.

Identification of molecular drivers of study endpoints. 
Baseline and gene expression knockdown simulations of 
BioModel™ were performed to identify key molecular driv-
ers for the study endpoints. Simulations were performed for 
four different study conditions: 1  month, no CS exposure; 

1  month, high CS exposure; 5  months, high CS exposure; 
5 months high CS exposure plus 2 months of no CS expo-
sure (cessation). For each experimental condition, baseline 
transcript expression and endpoint values were calculated by 
simulation with BioModel™. BioModel™ was used to find 
a subset of gene expression variables that are upstream and 
therefore causal of a particular endpoint in the model. A probe 
set was said to be causal of an endpoint if it was upstream of 
this endpoint in at least one DAG. Causal probe sets were 
found for every endpoint variable across 100 DAGs and 10 
data frames in the model, resulting in 1,118 from a set union. 
The following algorithm was used to assess whether any of 
the causal relationships were likely to be observed in a simi-
larly sized validation study: A causal probe set was knocked 
down 10-fold in the model and the posterior distribution of 
the corresponding endpoint was estimated by creating a mix-
ture posterior distribution across 100 networks for each data 
frame (Fig. 6C, green histogram). The next objective was to 
estimate the chance of observing a significant difference in 
the endpoint measurement if samples were to be drawn from 
the baseline posterior distribution or the posterior distribution 
under the gene expression perturbation. A number of samples 
equal to the study size (101 animals) were drawn from the 
baseline endpoint posterior distribution and the perturbed 
endpoint posterior distribution. The t-test statistic for the 
difference of the means and its P-value was calculated from 
the drawn samples. This sampling procedure was repeated 
100 times and the average P-value was recorded. Average 
P-values for all causal probe sets were corrected for multiple 
testing using the Benjamin-Hochberg correction. At the end 
of this workflow, 10 P-values were calculated for every causal 
probe set; these corresponded to the 10 data frames used in 
the model development. A causal probe set was defined as 
a significant molecular driver of the endpoint if the second 
smallest adjusted P-value was #0.05. This threshold detected 
a substantial perturbation effect and also guaranteed that a 
significant difference between endpoint measurements was 
achieved in at least two of the 10 ensembles created.

Simulation-based inference from interaction networks. Net-
work inference from a REFS™ model can be done by exam-
ining the topology of Bayesian networks in the ensemble and 
visualizing network fragments or edges based on a fragment or 
edge frequency threshold.41 However, it is important to note 
that the presence of topological links does not always trans-
late into a sizeable effect on a network dependent variable. In 
addition, model topology in itself accounts for all experimen-
tal conditions and therefore will not reveal insights specific to 
a particular experimental arm or explain differences between 
experimental groups. Thus, a more robust approach to network 
inference in REFS™ models, or any other network inference 
model, would be to use simulations of variable perturbations.

To generate a molecular interaction network of significant 
drivers for a particular experimental group, the input variables 
time, CS exposure, and CS-exposure cessation were set to the 
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experimental group values. Each significant driver probe set 
identified by REFS™ was down-regulated by 10-fold in the 
model. Changes in downstream network variables were evalu-
ated. If a downstream variable changed by $ two-fold, then 
the relationship between the perturbed and downstream vari-
ables was recorded as a parent—child relationship. The fold 
change was calculated between the means of perturbed and 
baseline posterior distributions mixed across all ensembles 
and networks. To aid in the visualization of the final network, 
direct links between gene expression variables were omitted 
when an indirect link existed.
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Figure S1. The four endpoints measured after exposure to high and low CS doses at different time points. MMP activity was determined as gelatinolytic 
activity (µU/ml) in BALF. MMP-9 and TIMP-1 were measured by multiplexed immunoassays. *indicates a statistically significant difference between the 
mean of the group beneath it and the mean of the sham group at the same time point; # indicates a statistically significant difference between the mean of 
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Figure S2. Linear and quadratic models of lung weight (g) across logarithmically transformed smoke exposure (TPM × h/l) conditions. Filled circles 
indicate the predicted average lung weight at 5 months obtained using linear (red line) and quadratic (blue line) regression models.
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Table S1. Total CS exposure calculated for each experimental group 
on linear and logarithmic scales.

Experimental  
group

Smoke  
exposure

Smoke expo-
sure  
(log10 scale)

1 day low 250 2.397940009

7 days low 5500 3.740362689

1 month low 24000 4.380211242

5 months low 144000 5.158362492

1 day high 500 2.698970004

7 days high 11000 4.041392685

1 month high 48000 4.681241237

5 months high 288000 5.459392488
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